Spaces:
Build error
Build error
int32_t get_num_physical_cores() { | |
// enumerate the set of thread siblings, num entries is num cores | |
std::unordered_set<std::string> siblings; | |
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) { | |
std::ifstream thread_siblings("/sys/devices/system/cpu" | |
+ std::to_string(cpu) + "/topology/thread_siblings"); | |
if (!thread_siblings.is_open()) { | |
break; // no more cpus | |
} | |
std::string line; | |
if (std::getline(thread_siblings, line)) { | |
siblings.insert(line); | |
} | |
} | |
if (siblings.size() > 0) { | |
return static_cast<int32_t>(siblings.size()); | |
} | |
int32_t num_physical_cores; | |
size_t len = sizeof(num_physical_cores); | |
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0); | |
if (result == 0) { | |
return num_physical_cores; | |
} | |
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0); | |
if (result == 0) { | |
return num_physical_cores; | |
} | |
//TODO: Implement | |
unsigned int n_threads = std::thread::hardware_concurrency(); | |
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; | |
} | |
void process_escapes(std::string& input) { | |
std::size_t input_len = input.length(); | |
std::size_t output_idx = 0; | |
for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) { | |
if (input[input_idx] == '\\' && input_idx + 1 < input_len) { | |
switch (input[++input_idx]) { | |
case 'n': input[output_idx++] = '\n'; break; | |
case 'r': input[output_idx++] = '\r'; break; | |
case 't': input[output_idx++] = '\t'; break; | |
case '\'': input[output_idx++] = '\''; break; | |
case '\"': input[output_idx++] = '\"'; break; | |
case '\\': input[output_idx++] = '\\'; break; | |
default: input[output_idx++] = '\\'; | |
input[output_idx++] = input[input_idx]; break; | |
} | |
} else { | |
input[output_idx++] = input[input_idx]; | |
} | |
} | |
input.resize(output_idx); | |
} | |
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { | |
bool invalid_param = false; | |
bool escape_prompt = false; | |
std::string arg; | |
gpt_params default_params; | |
const std::string arg_prefix = "--"; | |
for (int i = 1; i < argc; i++) { | |
arg = argv[i]; | |
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { | |
std::replace(arg.begin(), arg.end(), '_', '-'); | |
} | |
if (arg == "-s" || arg == "--seed") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.seed = std::stoul(argv[i]); | |
} else if (arg == "-t" || arg == "--threads") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_threads = std::stoi(argv[i]); | |
if (params.n_threads <= 0) { | |
params.n_threads = std::thread::hardware_concurrency(); | |
} | |
} else if (arg == "-p" || arg == "--prompt") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.prompt = argv[i]; | |
} else if (arg == "-e") { | |
escape_prompt = true; | |
} else if (arg == "--prompt-cache") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.path_prompt_cache = argv[i]; | |
} else if (arg == "--prompt-cache-all") { | |
params.prompt_cache_all = true; | |
} else if (arg == "--prompt-cache-ro") { | |
params.prompt_cache_ro = true; | |
} else if (arg == "-f" || arg == "--file") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
std::ifstream file(argv[i]); | |
if (!file) { | |
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); | |
invalid_param = true; | |
break; | |
} | |
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt)); | |
if (params.prompt.back() == '\n') { | |
params.prompt.pop_back(); | |
} | |
} else if (arg == "-n" || arg == "--n-predict") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_predict = std::stoi(argv[i]); | |
} else if (arg == "--top-k") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.top_k = std::stoi(argv[i]); | |
} else if (arg == "-c" || arg == "--ctx-size") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_ctx = std::stoi(argv[i]); | |
} else if (arg == "-gqa" || arg == "--gqa") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_gqa = std::stoi(argv[i]); | |
} else if (arg == "-eps" || arg == "--rms-norm-eps") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.rms_norm_eps = std::stof(argv[i]); | |
} else if (arg == "--rope-freq-base") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.rope_freq_base = std::stof(argv[i]); | |
} else if (arg == "--rope-freq-scale") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.rope_freq_scale = std::stof(argv[i]); | |
} else if (arg == "--rope-scale") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.rope_freq_scale = 1.0f/std::stof(argv[i]); | |
} else if (arg == "--memory-f32") { | |
params.memory_f16 = false; | |
} else if (arg == "--top-p") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.top_p = std::stof(argv[i]); | |
} else if (arg == "--temp") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.temp = std::stof(argv[i]); | |
} else if (arg == "--tfs") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.tfs_z = std::stof(argv[i]); | |
} else if (arg == "--typical") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.typical_p = std::stof(argv[i]); | |
} else if (arg == "--repeat-last-n") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.repeat_last_n = std::stoi(argv[i]); | |
} else if (arg == "--repeat-penalty") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.repeat_penalty = std::stof(argv[i]); | |
} else if (arg == "--frequency-penalty") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.frequency_penalty = std::stof(argv[i]); | |
} else if (arg == "--presence-penalty") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.presence_penalty = std::stof(argv[i]); | |
} else if (arg == "--mirostat") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.mirostat = std::stoi(argv[i]); | |
} else if (arg == "--mirostat-lr") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.mirostat_eta = std::stof(argv[i]); | |
} else if (arg == "--mirostat-ent") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.mirostat_tau = std::stof(argv[i]); | |
} else if (arg == "--cfg-negative-prompt") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.cfg_negative_prompt = argv[i]; | |
} else if (arg == "--cfg-scale") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.cfg_scale = std::stof(argv[i]); | |
} else if (arg == "-b" || arg == "--batch-size") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_batch = std::stoi(argv[i]); | |
params.n_batch = std::min(512, params.n_batch); | |
} else if (arg == "--keep") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_keep = std::stoi(argv[i]); | |
} else if (arg == "--chunks") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_chunks = std::stoi(argv[i]); | |
} else if (arg == "-m" || arg == "--model") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.model = argv[i]; | |
} else if (arg == "-a" || arg == "--alias") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.model_alias = argv[i]; | |
} else if (arg == "--lora") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.lora_adapter = argv[i]; | |
params.use_mmap = false; | |
} else if (arg == "--lora-base") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.lora_base = argv[i]; | |
} else if (arg == "-i" || arg == "--interactive") { | |
params.interactive = true; | |
} else if (arg == "--embedding") { | |
params.embedding = true; | |
} else if (arg == "--interactive-first") { | |
params.interactive_first = true; | |
} else if (arg == "-ins" || arg == "--instruct") { | |
params.instruct = true; | |
} else if (arg == "--multiline-input") { | |
params.multiline_input = true; | |
} else if (arg == "--simple-io") { | |
params.simple_io = true; | |
} else if (arg == "--color") { | |
params.use_color = true; | |
} else if (arg == "--mlock") { | |
params.use_mlock = true; | |
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_gpu_layers = std::stoi(argv[i]); | |
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); | |
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); | |
} else if (arg == "--main-gpu" || arg == "-mg") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.main_gpu = std::stoi(argv[i]); | |
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n"); | |
} else if (arg == "--tensor-split" || arg == "-ts") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
std::string arg_next = argv[i]; | |
// split string by , and / | |
const std::regex regex{R"([,/]+)"}; | |
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; | |
std::vector<std::string> split_arg{it, {}}; | |
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); | |
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) { | |
if (i < split_arg.size()) { | |
params.tensor_split[i] = std::stof(split_arg[i]); | |
} else { | |
params.tensor_split[i] = 0.0f; | |
} | |
} | |
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n"); | |
} else if (arg == "--mul-mat-q" || arg == "-mmq") { | |
params.mul_mat_q = true; | |
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to use mul_mat_q kernels.\n"); | |
} else if (arg == "--low-vram" || arg == "-lv") { | |
params.low_vram = true; | |
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n"); | |
} else if (arg == "--no-mmap") { | |
params.use_mmap = false; | |
} else if (arg == "--mtest") { | |
params.mem_test = true; | |
} else if (arg == "--numa") { | |
params.numa = true; | |
} else if (arg == "--export") { | |
params.export_cgraph = true; | |
} else if (arg == "--verbose-prompt") { | |
params.verbose_prompt = true; | |
} else if (arg == "-r" || arg == "--reverse-prompt") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.antiprompt.push_back(argv[i]); | |
} else if (arg == "--perplexity") { | |
params.perplexity = true; | |
} else if (arg == "--hellaswag") { | |
params.hellaswag = true; | |
} else if (arg == "--hellaswag-tasks") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.hellaswag_tasks = std::stoi(argv[i]); | |
} else if (arg == "--ignore-eos") { | |
params.logit_bias[llama_token_eos()] = -INFINITY; | |
} else if (arg == "--no-penalize-nl") { | |
params.penalize_nl = false; | |
} else if (arg == "-l" || arg == "--logit-bias") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
std::stringstream ss(argv[i]); | |
llama_token key; | |
char sign; | |
std::string value_str; | |
try { | |
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { | |
params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); | |
} else { | |
throw std::exception(); | |
} | |
} catch (const std::exception&) { | |
invalid_param = true; | |
break; | |
} | |
} else if (arg == "-h" || arg == "--help") { | |
gpt_print_usage(argc, argv, default_params); | |
exit(0); | |
} else if (arg == "--random-prompt") { | |
params.random_prompt = true; | |
} else if (arg == "--in-prefix-bos") { | |
params.input_prefix_bos = true; | |
} else if (arg == "--in-prefix") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.input_prefix = argv[i]; | |
} else if (arg == "--in-suffix") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.input_suffix = argv[i]; | |
} else if (arg == "--grammar") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.grammar = argv[i]; | |
} else if (arg == "--grammar-file") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
std::ifstream file(argv[i]); | |
if (!file) { | |
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); | |
invalid_param = true; | |
break; | |
} | |
std::copy( | |
std::istreambuf_iterator<char>(file), | |
std::istreambuf_iterator<char>(), | |
std::back_inserter(params.grammar) | |
); | |
} else { | |
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
gpt_print_usage(argc, argv, default_params); | |
exit(1); | |
} | |
} | |
if (invalid_param) { | |
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | |
gpt_print_usage(argc, argv, default_params); | |
exit(1); | |
} | |
if (params.prompt_cache_all && | |
(params.interactive || params.interactive_first || | |
params.instruct)) { | |
fprintf(stderr, "error: --prompt-cache-all not supported in interactive mode yet\n"); | |
gpt_print_usage(argc, argv, default_params); | |
exit(1); | |
} | |
if (escape_prompt) { | |
process_escapes(params.prompt); | |
process_escapes(params.input_prefix); | |
process_escapes(params.input_suffix); | |
} | |
return true; | |
} | |
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { | |
fprintf(stdout, "usage: %s [options]\n", argv[0]); | |
fprintf(stdout, "\n"); | |
fprintf(stdout, "options:\n"); | |
fprintf(stdout, " -h, --help show this help message and exit\n"); | |
fprintf(stdout, " -i, --interactive run in interactive mode\n"); | |
fprintf(stdout, " --interactive-first run in interactive mode and wait for input right away\n"); | |
fprintf(stdout, " -ins, --instruct run in instruction mode (use with Alpaca models)\n"); | |
fprintf(stdout, " --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n"); | |
fprintf(stdout, " -r PROMPT, --reverse-prompt PROMPT\n"); | |
fprintf(stdout, " halt generation at PROMPT, return control in interactive mode\n"); | |
fprintf(stdout, " (can be specified more than once for multiple prompts).\n"); | |
fprintf(stdout, " --color colorise output to distinguish prompt and user input from generations\n"); | |
fprintf(stdout, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n"); | |
fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); | |
fprintf(stdout, " -p PROMPT, --prompt PROMPT\n"); | |
fprintf(stdout, " prompt to start generation with (default: empty)\n"); | |
fprintf(stdout, " -e process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); | |
fprintf(stdout, " --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n"); | |
fprintf(stdout, " --prompt-cache-all if specified, saves user input and generations to cache as well.\n"); | |
fprintf(stdout, " not supported with --interactive or other interactive options\n"); | |
fprintf(stdout, " --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n"); | |
fprintf(stdout, " --random-prompt start with a randomized prompt.\n"); | |
fprintf(stdout, " --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n"); | |
fprintf(stdout, " --in-prefix STRING string to prefix user inputs with (default: empty)\n"); | |
fprintf(stdout, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n"); | |
fprintf(stdout, " -f FNAME, --file FNAME\n"); | |
fprintf(stdout, " prompt file to start generation.\n"); | |
fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict); | |
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); | |
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); | |
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa); | |
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps); | |
fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k); | |
fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p); | |
fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z); | |
fprintf(stdout, " --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p); | |
fprintf(stdout, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n); | |
fprintf(stdout, " --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty); | |
fprintf(stdout, " --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty); | |
fprintf(stdout, " --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty); | |
fprintf(stdout, " --mirostat N use Mirostat sampling.\n"); | |
fprintf(stdout, " Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"); | |
fprintf(stdout, " (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat); | |
fprintf(stdout, " --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta); | |
fprintf(stdout, " --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau); | |
fprintf(stdout, " -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n"); | |
fprintf(stdout, " modifies the likelihood of token appearing in the completion,\n"); | |
fprintf(stdout, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"); | |
fprintf(stdout, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n"); | |
fprintf(stdout, " --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n"); | |
fprintf(stdout, " --grammar-file FNAME file to read grammar from\n"); | |
fprintf(stdout, " --cfg-negative-prompt PROMPT \n"); | |
fprintf(stdout, " negative prompt to use for guidance. (default: empty)\n"); | |
fprintf(stdout, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale); | |
fprintf(stdout, " --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale (default: %g)\n", 1.0f/params.rope_freq_scale); | |
fprintf(stdout, " --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: %.1f)\n", params.rope_freq_base); | |
fprintf(stdout, " --rope-freq-scale N RoPE frequency linear scaling factor, inverse of --rope-scale (default: %g)\n", params.rope_freq_scale); | |
fprintf(stdout, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n"); | |
fprintf(stdout, " --no-penalize-nl do not penalize newline token\n"); | |
fprintf(stdout, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); | |
fprintf(stdout, " not recommended: doubles context memory required and no measurable increase in quality\n"); | |
fprintf(stdout, " --temp N temperature (default: %.1f)\n", (double)params.temp); | |
fprintf(stdout, " --perplexity compute perplexity over each ctx window of the prompt\n"); | |
fprintf(stdout, " --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); | |
fprintf(stdout, " --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); | |
fprintf(stdout, " --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep); | |
fprintf(stdout, " --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); | |
if (llama_mlock_supported()) { | |
fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n"); | |
} | |
if (llama_mmap_supported()) { | |
fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); | |
} | |
fprintf(stdout, " --numa attempt optimizations that help on some NUMA systems\n"); | |
fprintf(stdout, " if run without this previously, it is recommended to drop the system page cache before using this\n"); | |
fprintf(stdout, " see https://github.com/ggerganov/llama.cpp/issues/1437\n"); | |
fprintf(stdout, " -ngl N, --n-gpu-layers N\n"); | |
fprintf(stdout, " number of layers to store in VRAM\n"); | |
fprintf(stdout, " -ts SPLIT --tensor-split SPLIT\n"); | |
fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); | |
fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" ); | |
fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n" ); | |
fprintf(stdout, " -mmq, --mul-mat-q use experimental mul_mat_q CUDA kernels instead of cuBLAS. TEMP!!!\n" ); | |
fprintf(stdout, " Reduces VRAM usage by 700/970/1430 MiB for 7b/13b/33b but prompt processing speed\n" ); | |
fprintf(stdout, " is still suboptimal, especially q2_K, q3_K, q5_K, and q6_K.\n" ); | |
fprintf(stdout, " --mtest compute maximum memory usage\n"); | |
fprintf(stdout, " --export export the computation graph to 'llama.ggml'\n"); | |
fprintf(stdout, " --verbose-prompt print prompt before generation\n"); | |
fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n"); | |
fprintf(stdout, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); | |
fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); | |
fprintf(stdout, " -m FNAME, --model FNAME\n"); | |
fprintf(stdout, " model path (default: %s)\n", params.model.c_str()); | |
fprintf(stdout, "\n"); | |
} | |
std::string gpt_random_prompt(std::mt19937 & rng) { | |
const int r = rng() % 10; | |
switch (r) { | |
case 0: return "So"; | |
case 1: return "Once upon a time"; | |
case 2: return "When"; | |
case 3: return "The"; | |
case 4: return "After"; | |
case 5: return "If"; | |
case 6: return "import"; | |
case 7: return "He"; | |
case 8: return "She"; | |
case 9: return "They"; | |
default: return "To"; | |
} | |
return "The"; | |
} | |
// TODO: not great allocating this every time | |
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) { | |
// initialize to prompt numer of chars, since n_tokens <= n_prompt_chars | |
std::vector<llama_token> res(text.size() + (int) add_bos); | |
const int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos); | |
assert(n >= 0); | |
res.resize(n); | |
return res; | |
} | |
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) { | |
auto lparams = llama_context_default_params(); | |
lparams.n_ctx = params.n_ctx; | |
lparams.n_batch = params.n_batch; | |
lparams.n_gqa = params.n_gqa; | |
lparams.rms_norm_eps = params.rms_norm_eps; | |
lparams.n_gpu_layers = params.n_gpu_layers; | |
lparams.main_gpu = params.main_gpu; | |
lparams.tensor_split = params.tensor_split; | |
lparams.low_vram = params.low_vram; | |
lparams.mul_mat_q = params.mul_mat_q; | |
lparams.seed = params.seed; | |
lparams.f16_kv = params.memory_f16; | |
lparams.use_mmap = params.use_mmap; | |
lparams.use_mlock = params.use_mlock; | |
lparams.logits_all = params.perplexity; | |
lparams.embedding = params.embedding; | |
lparams.rope_freq_base = params.rope_freq_base; | |
lparams.rope_freq_scale = params.rope_freq_scale; | |
return lparams; | |
} | |
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params) { | |
auto lparams = llama_context_params_from_gpt_params(params); | |
llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams); | |
if (model == NULL) { | |
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); | |
return std::make_tuple(nullptr, nullptr); | |
} | |
llama_context * lctx = llama_new_context_with_model(model, lparams); | |
if (lctx == NULL) { | |
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); | |
llama_free_model(model); | |
return std::make_tuple(nullptr, nullptr); | |
} | |
if (!params.lora_adapter.empty()) { | |
int err = llama_model_apply_lora_from_file(model, | |
params.lora_adapter.c_str(), | |
params.lora_base.empty() ? NULL : params.lora_base.c_str(), | |
params.n_threads); | |
if (err != 0) { | |
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); | |
llama_free(lctx); | |
llama_free_model(model); | |
return std::make_tuple(nullptr, nullptr); | |
} | |
} | |
return std::make_tuple(model, lctx); | |
} | |