Spaces:
Build error
Build error
#!/usr/bin/env python3 | |
# HF baichuan --> gguf conversion | |
from __future__ import annotations | |
import argparse | |
import json | |
import os | |
import struct | |
import sys | |
from pathlib import Path | |
from typing import TYPE_CHECKING, Any | |
import itertools | |
import gguf | |
import numpy as np | |
import torch | |
from sentencepiece import SentencePieceProcessor # type: ignore[import] | |
if TYPE_CHECKING: | |
from typing import TypeAlias | |
NDArray: TypeAlias = 'np.ndarray[Any, Any]' | |
# reverse HF permute back to original pth layout | |
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray: | |
if n_kv_head is not None and n_head != n_kv_head: | |
n_head //= n_kv_head | |
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | |
.swapaxes(1, 2) | |
.reshape(weights.shape)) | |
def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray: | |
r = weights.shape[0] // 3 | |
return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv)) | |
def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray: | |
r = weights.shape[0] // 3 | |
return weights[r * n_part : r * n_part + r, ...] | |
def count_model_parts(dir_model: str) -> int: | |
num_parts = 0 | |
for filename in os.listdir(dir_model): | |
if filename.startswith("pytorch_model-"): | |
num_parts += 1 | |
if num_parts > 0: | |
print("gguf: found " + str(num_parts) + " model parts") | |
return num_parts | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file") | |
parser.add_argument( | |
"--vocab-only", action="store_true", | |
help="extract only the vocab", | |
) | |
parser.add_argument( | |
"--outfile", type=Path, | |
help="path to write to; default: based on input", | |
) | |
parser.add_argument( | |
"model", type=Path, | |
help="directory containing model file, or model file itself (*.bin)", | |
) | |
parser.add_argument( | |
"ftype", type=int, choices=[0, 1], default=1, nargs='?', | |
help="output format - use 0 for float32, 1 for float16", | |
) | |
return parser.parse_args() | |
args = parse_args() | |
dir_model = args.model | |
ftype = args.ftype | |
if not dir_model.is_dir(): | |
print(f'Error: {args.model} is not a directory', file = sys.stderr) | |
sys.exit(1) | |
# possible tensor data types | |
# ftype == 0 -> float32 | |
# ftype == 1 -> float16 | |
# map from ftype to string | |
ftype_str = ["f32", "f16"] | |
if args.outfile is not None: | |
fname_out = args.outfile | |
else: | |
# output in the same directory as the model by default | |
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' | |
print("gguf: loading model "+dir_model.name) | |
with open(dir_model / "config.json", "r", encoding="utf-8") as f: | |
hparams = json.load(f) | |
print("hello print: ",hparams["architectures"][0]) | |
if hparams["architectures"][0] != "BaichuanForCausalLM": | |
print("Model architecture not supported: " + hparams["architectures"][0]) | |
sys.exit() | |
# get number of model parts | |
num_parts = count_model_parts(dir_model) | |
print(f"num_parts:{num_parts}\n") | |
ARCH=gguf.MODEL_ARCH.BAICHUAN | |
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) | |
print("gguf: get model metadata") | |
block_count = hparams["num_hidden_layers"] | |
head_count = hparams["num_attention_heads"] | |
if "num_key_value_heads" in hparams: | |
head_count_kv = hparams["num_key_value_heads"] | |
else: | |
head_count_kv = head_count | |
if "_name_or_path" in hparams: | |
hf_repo = hparams["_name_or_path"] | |
else: | |
hf_repo = "" | |
if "max_sequence_length" in hparams: | |
ctx_length = hparams["max_sequence_length"] | |
elif "max_position_embeddings" in hparams: | |
ctx_length = hparams["max_position_embeddings"] | |
elif "model_max_length" in hparams: | |
ctx_length = hparams["model_max_length"] | |
else: | |
print("gguf: can not find ctx length parameter.") | |
sys.exit() | |
gguf_writer.add_name(dir_model.name) | |
gguf_writer.add_source_hf_repo(hf_repo) | |
gguf_writer.add_tensor_data_layout("Meta AI original pth") | |
gguf_writer.add_context_length(ctx_length) | |
gguf_writer.add_embedding_length(hparams["hidden_size"]) | |
gguf_writer.add_block_count(block_count) | |
gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) | |
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) | |
gguf_writer.add_head_count(head_count) | |
gguf_writer.add_head_count_kv(head_count_kv) | |
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) | |
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]: | |
if "type" in hparams["rope_scaling"]: | |
if hparams["rope_scaling"]["type"] == "linear": | |
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"]) | |
# TOKENIZATION | |
print("gguf: get tokenizer metadata") | |
tokens: list[bytes] = [] | |
scores: list[float] = [] | |
toktypes: list[int] = [] | |
tokenizer_model_file = dir_model / 'tokenizer.model' | |
if not tokenizer_model_file.is_file(): | |
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr) | |
sys.exit(1) | |
# vocab type sentencepiece | |
print("gguf: get sentencepiece tokenizer vocab, scores and token types") | |
tokenizer = SentencePieceProcessor(str(tokenizer_model_file)) | |
for i in range(tokenizer.vocab_size()): | |
text: bytes | |
score: float | |
piece = tokenizer.id_to_piece(i) | |
text = piece.encode("utf-8") | |
score = tokenizer.get_score(i) | |
toktype = 1 # defualt to normal token type | |
if tokenizer.is_unknown(i): | |
toktype = 2 | |
if tokenizer.is_control(i): | |
toktype = 3 | |
# toktype = 4 is user-defined = tokens from added_tokens.json | |
if tokenizer.is_unused(i): | |
toktype = 5 | |
if tokenizer.is_byte(i): | |
toktype = 6 | |
tokens.append(text) | |
scores.append(score) | |
toktypes.append(toktype) | |
added_tokens_file = dir_model / 'added_tokens.json' | |
if added_tokens_file.is_file(): | |
with open(added_tokens_file, "r", encoding="utf-8") as f: | |
addtokens_json = json.load(f) | |
print("gguf: get added tokens") | |
for key in addtokens_json: | |
tokens.append( key.encode("utf-8") ) | |
scores.append(-1000.0) | |
toktypes.append(4) # user-defined token type | |
gguf_writer.add_tokenizer_model("llama") | |
gguf_writer.add_token_list(tokens) | |
gguf_writer.add_token_scores(scores) | |
gguf_writer.add_token_types(toktypes) | |
special_vocab = gguf.SpecialVocab(dir_model) | |
special_vocab.add_to_gguf(gguf_writer) | |
# TENSORS | |
tensor_map = gguf.get_tensor_name_map(ARCH,block_count) | |
# tensor info | |
print("gguf: get tensor metadata") | |
if num_parts == 0: | |
part_names = iter(("pytorch_model.bin",)) | |
else: | |
part_names = ( | |
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) | |
) | |
for part_name in part_names: | |
if args.vocab_only: | |
break | |
print("gguf: loading model part '" + part_name + "'") | |
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") | |
tmp=model_part | |
for i in range(block_count): | |
if f"model.layers.{i}.self_attn.W_pack.weight" in model_part: | |
print(f"Unpacking and permuting layer {i}") | |
tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count) | |
tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv) | |
tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2) | |
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] | |
for name in model_part.keys(): | |
data = model_part[name] | |
# we don't need these | |
if name.endswith(".rotary_emb.inv_freq"): | |
continue | |
old_dtype = data.dtype | |
# convert any unsupported data types to float32 | |
if data.dtype != torch.float16 and data.dtype != torch.float32: | |
data = data.to(torch.float32) | |
data = data.squeeze().numpy() | |
# map tensor names | |
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) | |
if new_name is None: | |
print("Can not map tensor '" + name + "'") | |
sys.exit() | |
n_dims = len(data.shape) | |
data_dtype = data.dtype | |
# if f32 desired, convert any float16 to float32 | |
if ftype == 0 and data_dtype == np.float16: | |
data = data.astype(np.float32) | |
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | |
if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | |
data = data.astype(np.float32) | |
# if f16 desired, convert any float32 2-dim weight tensors to float16 | |
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | |
data = data.astype(np.float16) | |
print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) | |
gguf_writer.add_tensor(new_name, data) | |
print("gguf: write header") | |
gguf_writer.write_header_to_file() | |
print("gguf: write metadata") | |
gguf_writer.write_kv_data_to_file() | |
if not args.vocab_only: | |
print("gguf: write tensors") | |
gguf_writer.write_tensors_to_file() | |
gguf_writer.close() | |
print(f"gguf: model successfully exported to '{fname_out}'") | |
print("") | |