Spaces:
Build error
Build error
#import "ggml-metal.h" | |
#import "ggml.h" | |
#import <Foundation/Foundation.h> | |
#import <Metal/Metal.h> | |
#import <MetalPerformanceShaders/MetalPerformanceShaders.h> | |
#undef MIN | |
#undef MAX | |
#define MIN(a, b) ((a) < (b) ? (a) : (b)) | |
#define MAX(a, b) ((a) > (b) ? (a) : (b)) | |
#ifdef GGML_METAL_NDEBUG | |
#define metal_printf(...) | |
#else | |
#define metal_printf(...) fprintf(stderr, __VA_ARGS__) | |
#endif | |
#define UNUSED(x) (void)(x) | |
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES) | |
struct ggml_metal_buffer { | |
const char * name; | |
void * data; | |
size_t size; | |
id<MTLBuffer> metal; | |
}; | |
struct ggml_metal_context { | |
int n_cb; | |
float * logits; | |
id<MTLDevice> device; | |
id<MTLCommandQueue> queue; | |
id<MTLLibrary> library; | |
int n_buffers; | |
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS]; | |
int concur_list[GGML_MAX_CONCUR]; | |
int concur_list_len; | |
// custom kernels | |
#define GGML_METAL_DECL_KERNEL(name) \ | |
id<MTLFunction> function_##name; \ | |
id<MTLComputePipelineState> pipeline_##name | |
GGML_METAL_DECL_KERNEL(add); | |
GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast | |
GGML_METAL_DECL_KERNEL(mul); | |
GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast | |
GGML_METAL_DECL_KERNEL(scale); | |
GGML_METAL_DECL_KERNEL(silu); | |
GGML_METAL_DECL_KERNEL(relu); | |
GGML_METAL_DECL_KERNEL(gelu); | |
GGML_METAL_DECL_KERNEL(soft_max); | |
GGML_METAL_DECL_KERNEL(diag_mask_inf); | |
GGML_METAL_DECL_KERNEL(get_rows_f16); | |
GGML_METAL_DECL_KERNEL(get_rows_q4_0); | |
GGML_METAL_DECL_KERNEL(get_rows_q4_1); | |
GGML_METAL_DECL_KERNEL(get_rows_q2_K); | |
GGML_METAL_DECL_KERNEL(get_rows_q3_K); | |
GGML_METAL_DECL_KERNEL(get_rows_q4_K); | |
GGML_METAL_DECL_KERNEL(get_rows_q5_K); | |
GGML_METAL_DECL_KERNEL(get_rows_q6_K); | |
GGML_METAL_DECL_KERNEL(rms_norm); | |
GGML_METAL_DECL_KERNEL(norm); | |
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32); | |
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32); | |
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32); | |
GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32); | |
GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32); | |
GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32); | |
GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32); | |
GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32); | |
GGML_METAL_DECL_KERNEL(rope); | |
GGML_METAL_DECL_KERNEL(alibi_f32); | |
GGML_METAL_DECL_KERNEL(cpy_f32_f16); | |
GGML_METAL_DECL_KERNEL(cpy_f32_f32); | |
GGML_METAL_DECL_KERNEL(cpy_f16_f16); | |
#undef GGML_METAL_DECL_KERNEL | |
}; | |
// MSL code | |
// TODO: move the contents here when ready | |
// for now it is easier to work in a separate file | |
static NSString * const msl_library_source = @"see metal.metal"; | |
// Here to assist with NSBundle Path Hack | |
@interface GGMLMetalClass : NSObject | |
@end | |
@implementation GGMLMetalClass | |
@end | |
struct ggml_metal_context * ggml_metal_init(int n_cb) { | |
fprintf(stderr, "%s: allocating\n", __func__); | |
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context)); | |
ctx->n_cb = n_cb; | |
ctx->device = MTLCreateSystemDefaultDevice(); | |
ctx->queue = [ctx->device newCommandQueue]; | |
ctx->n_buffers = 0; | |
ctx->concur_list_len = 0; | |
// determine if we can use MPS | |
if (MPSSupportsMTLDevice(ctx->device)) { | |
fprintf(stderr, "%s: using MPS\n", __func__); | |
} else { | |
fprintf(stderr, "%s: not using MPS\n", __func__); | |
GGML_ASSERT(false && "MPS not supported"); | |
} | |
#if 0 | |
// compile from source string and show compile log | |
{ | |
NSError * error = nil; | |
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error]; | |
if (error) { | |
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); | |
exit(1); | |
} | |
} | |
#else | |
UNUSED(msl_library_source); | |
// read the source from "ggml-metal.metal" into a string and use newLibraryWithSource | |
{ | |
NSError * error = nil; | |
//NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"]; | |
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; | |
NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; | |
fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]); | |
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error]; | |
if (error) { | |
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); | |
exit(1); | |
} | |
#ifdef GGML_QKK_64 | |
MTLCompileOptions* options = [MTLCompileOptions new]; | |
options.preprocessorMacros = @{ @"QK_K" : @(64) }; | |
ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error]; | |
#else | |
ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error]; | |
#endif | |
if (error) { | |
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]); | |
exit(1); | |
} | |
} | |
#endif | |
// load kernels | |
{ | |
#define GGML_METAL_ADD_KERNEL(name) \ | |
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \ | |
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \ | |
fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name); | |
GGML_METAL_ADD_KERNEL(add); | |
GGML_METAL_ADD_KERNEL(add_row); | |
GGML_METAL_ADD_KERNEL(mul); | |
GGML_METAL_ADD_KERNEL(mul_row); | |
GGML_METAL_ADD_KERNEL(scale); | |
GGML_METAL_ADD_KERNEL(silu); | |
GGML_METAL_ADD_KERNEL(relu); | |
GGML_METAL_ADD_KERNEL(gelu); | |
GGML_METAL_ADD_KERNEL(soft_max); | |
GGML_METAL_ADD_KERNEL(diag_mask_inf); | |
GGML_METAL_ADD_KERNEL(get_rows_f16); | |
GGML_METAL_ADD_KERNEL(get_rows_q4_0); | |
GGML_METAL_ADD_KERNEL(get_rows_q4_1); | |
GGML_METAL_ADD_KERNEL(get_rows_q2_K); | |
GGML_METAL_ADD_KERNEL(get_rows_q3_K); | |
GGML_METAL_ADD_KERNEL(get_rows_q4_K); | |
GGML_METAL_ADD_KERNEL(get_rows_q5_K); | |
GGML_METAL_ADD_KERNEL(get_rows_q6_K); | |
GGML_METAL_ADD_KERNEL(rms_norm); | |
GGML_METAL_ADD_KERNEL(norm); | |
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32); | |
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32); | |
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32); | |
GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32); | |
GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32); | |
GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32); | |
GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32); | |
GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32); | |
GGML_METAL_ADD_KERNEL(rope); | |
GGML_METAL_ADD_KERNEL(alibi_f32); | |
GGML_METAL_ADD_KERNEL(cpy_f32_f16); | |
GGML_METAL_ADD_KERNEL(cpy_f32_f32); | |
GGML_METAL_ADD_KERNEL(cpy_f16_f16); | |
#undef GGML_METAL_ADD_KERNEL | |
} | |
fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); | |
fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); | |
if (ctx->device.maxTransferRate != 0) { | |
fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); | |
} else { | |
fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__); | |
} | |
return ctx; | |
} | |
void ggml_metal_free(struct ggml_metal_context * ctx) { | |
fprintf(stderr, "%s: deallocating\n", __func__); | |
for (int i = 0; i < ctx->n_buffers; ++i) { | |
[ctx->buffers[i].metal release]; | |
} | |
free(ctx); | |
} | |
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) { | |
ctx->n_cb = n_cb; | |
} | |
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx) { | |
if (ctx->concur_list_len) { | |
return true; | |
} | |
return false; | |
} | |
// finds the Metal buffer that contains the tensor data on the GPU device | |
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the | |
// Metal buffer based on the host memory pointer | |
// | |
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) { | |
//fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); | |
const int64_t tsize = ggml_nbytes(t); | |
// find the view that contains the tensor fully | |
for (int i = 0; i < ctx->n_buffers; ++i) { | |
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data; | |
if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) { | |
*offs = (size_t) ioffs; | |
//fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs); | |
return ctx->buffers[i].metal; | |
} | |
} | |
fprintf(stderr, "%s: error: buffer is nil\n", __func__); | |
return nil; | |
} | |
bool ggml_metal_add_buffer( | |
struct ggml_metal_context * ctx, | |
const char * name, | |
void * data, | |
size_t size, | |
size_t max_size) { | |
if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) { | |
fprintf(stderr, "%s: too many buffers\n", __func__); | |
return false; | |
} | |
if (data) { | |
// verify that the buffer does not overlap with any of the existing buffers | |
for (int i = 0; i < ctx->n_buffers; ++i) { | |
const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data; | |
if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) { | |
fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name); | |
return false; | |
} | |
} | |
const size_t size_page = getpagesize(); | |
size_t size_aligned = size; | |
if ((size_aligned % size_page) != 0) { | |
size_aligned += (size_page - (size_aligned % size_page)); | |
} | |
// the buffer fits into the max buffer size allowed by the device | |
if (size_aligned <= ctx->device.maxBufferLength) { | |
ctx->buffers[ctx->n_buffers].name = name; | |
ctx->buffers[ctx->n_buffers].data = data; | |
ctx->buffers[ctx->n_buffers].size = size; | |
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; | |
if (ctx->buffers[ctx->n_buffers].metal == nil) { | |
fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0); | |
return false; | |
} | |
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0); | |
++ctx->n_buffers; | |
} else { | |
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into | |
// one of the views | |
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case | |
const size_t size_step = ctx->device.maxBufferLength - size_ovlp; | |
const size_t size_view = ctx->device.maxBufferLength; | |
for (size_t i = 0; i < size; i += size_step) { | |
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i); | |
ctx->buffers[ctx->n_buffers].name = name; | |
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i); | |
ctx->buffers[ctx->n_buffers].size = size_step_aligned; | |
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; | |
if (ctx->buffers[ctx->n_buffers].metal == nil) { | |
fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); | |
return false; | |
} | |
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i); | |
if (i + size_step < size) { | |
fprintf(stderr, "\n"); | |
} | |
++ctx->n_buffers; | |
} | |
} | |
fprintf(stderr, ", (%8.2f / %8.2f)", | |
ctx->device.currentAllocatedSize / 1024.0 / 1024.0, | |
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); | |
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) { | |
fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n"); | |
} else { | |
fprintf(stderr, "\n"); | |
} | |
} | |
return true; | |
} | |
void ggml_metal_set_tensor( | |
struct ggml_metal_context * ctx, | |
struct ggml_tensor * t) { | |
metal_printf("%s: set input for tensor '%s'\n", __func__, t->name); | |
size_t offs; | |
id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs); | |
memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t)); | |
} | |
void ggml_metal_get_tensor( | |
struct ggml_metal_context * ctx, | |
struct ggml_tensor * t) { | |
metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name); | |
size_t offs; | |
id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs); | |
memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t)); | |
} | |
void ggml_metal_graph_find_concurrency( | |
struct ggml_metal_context * ctx, | |
struct ggml_cgraph * gf) { | |
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time | |
int nodes_unused[GGML_MAX_CONCUR]; | |
for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; } | |
for (int i = 0; i < gf->n_nodes; i++) { nodes_unused[i] = 1; } | |
ctx->concur_list_len = 0; | |
int n_left = gf->n_nodes; | |
int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list | |
int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos | |
while (n_left > 0) { | |
// number of nodes at a layer (that can be issued concurrently) | |
int concurrency = 0; | |
for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) { | |
if (nodes_unused[i]) { | |
// if the requirements for gf->nodes[i] are satisfied | |
int exe_flag = 1; | |
// scan all srcs | |
for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) { | |
struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind]; | |
if (src_cur) { | |
// if is leaf nodes it's satisfied. | |
// TODO: ggml_is_leaf() | |
if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) { | |
continue; | |
} | |
// otherwise this src should be the output from previous nodes. | |
int is_found = 0; | |
// scan 2*search_depth back because we inserted barrier. | |
//for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) { | |
for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) { | |
if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) { | |
is_found = 1; | |
break; | |
} | |
} | |
if (is_found == 0) { | |
exe_flag = 0; | |
break; | |
} | |
} | |
} | |
if (exe_flag) { | |
// check if nodes[i]'s data will be overwritten by a node before nodes[i]. | |
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3] | |
int64_t data_start = (int64_t) gf->nodes[i]->data; | |
int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]); | |
for (int j = n_start; j < i; j++) { | |
if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \ | |
&& gf->nodes[j]->op != GGML_OP_VIEW \ | |
&& gf->nodes[j]->op != GGML_OP_TRANSPOSE \ | |
&& gf->nodes[j]->op != GGML_OP_PERMUTE) { | |
if (((int64_t)gf->nodes[j]->data) >= data_start + length || \ | |
((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) { | |
continue; | |
} | |
exe_flag = 0; | |
} | |
} | |
} | |
if (exe_flag) { | |
ctx->concur_list[level_pos + concurrency] = i; | |
nodes_unused[i] = 0; | |
concurrency++; | |
ctx->concur_list_len++; | |
} | |
} | |
} | |
n_left -= concurrency; | |
// adding a barrier different layer | |
ctx->concur_list[level_pos + concurrency] = -1; | |
ctx->concur_list_len++; | |
// jump all sorted nodes at nodes_bak | |
while (!nodes_unused[n_start]) { | |
n_start++; | |
} | |
level_pos += concurrency + 1; | |
} | |
if (ctx->concur_list_len > GGML_MAX_CONCUR) { | |
fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__); | |
} | |
} | |
void ggml_metal_graph_compute( | |
struct ggml_metal_context * ctx, | |
struct ggml_cgraph * gf) { | |
metal_printf("%s: evaluating graph\n", __func__); | |
// if there is ctx->concur_list, dispatch concurrently | |
// else fallback to serial dispatch | |
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor; | |
const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR; | |
const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes; | |
edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial; | |
// create multiple command buffers and enqueue them | |
// then, we encode the graph into the command buffers in parallel | |
const int n_cb = ctx->n_cb; | |
NSMutableArray * command_buffers = [NSMutableArray arrayWithCapacity:n_cb]; | |
for (int i = 0; i < n_cb; ++i) { | |
command_buffers[i] = [ctx->queue commandBuffer]; | |
// enqueue the command buffers in order to specify their execution order | |
[command_buffers[i] enqueue]; | |
} | |
// TODO: is this the best way to start threads? | |
dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT); | |
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) { | |
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb; | |
dispatch_async(queue, ^{ | |
size_t offs_src0 = 0; | |
size_t offs_src1 = 0; | |
size_t offs_dst = 0; | |
id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx]; | |
id<MTLComputeCommandEncoder> encoder = nil; | |
const int node_start = (cb_idx + 0) * n_nodes_per_cb; | |
const int node_end = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb; | |
for (int ind = node_start; ind < node_end; ++ind) { | |
const int i = has_concur ? ctx->concur_list[ind] : ind; | |
if (i == -1) { | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
continue; | |
} | |
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers]; | |
continue; | |
} | |
metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); | |
struct ggml_tensor * src0 = gf->nodes[i]->src[0]; | |
struct ggml_tensor * src1 = gf->nodes[i]->src[1]; | |
struct ggml_tensor * dst = gf->nodes[i]; | |
const int64_t ne00 = src0 ? src0->ne[0] : 0; | |
const int64_t ne01 = src0 ? src0->ne[1] : 0; | |
const int64_t ne02 = src0 ? src0->ne[2] : 0; | |
const int64_t ne03 = src0 ? src0->ne[3] : 0; | |
const uint64_t nb00 = src0 ? src0->nb[0] : 0; | |
const uint64_t nb01 = src0 ? src0->nb[1] : 0; | |
const uint64_t nb02 = src0 ? src0->nb[2] : 0; | |
const uint64_t nb03 = src0 ? src0->nb[3] : 0; | |
const int64_t ne10 = src1 ? src1->ne[0] : 0; | |
const int64_t ne11 = src1 ? src1->ne[1] : 0; | |
const int64_t ne12 = src1 ? src1->ne[2] : 0; | |
const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); | |
const uint64_t nb10 = src1 ? src1->nb[0] : 0; | |
const uint64_t nb11 = src1 ? src1->nb[1] : 0; | |
const uint64_t nb12 = src1 ? src1->nb[2] : 0; | |
const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13); | |
const int64_t ne0 = dst ? dst->ne[0] : 0; | |
const int64_t ne1 = dst ? dst->ne[1] : 0; | |
const int64_t ne2 = dst ? dst->ne[2] : 0; | |
const int64_t ne3 = dst ? dst->ne[3] : 0; | |
const uint64_t nb0 = dst ? dst->nb[0] : 0; | |
const uint64_t nb1 = dst ? dst->nb[1] : 0; | |
const uint64_t nb2 = dst ? dst->nb[2] : 0; | |
const uint64_t nb3 = dst ? dst->nb[3] : 0; | |
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; | |
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; | |
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; | |
id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil; | |
id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil; | |
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil; | |
//metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op)); | |
//if (src0) { | |
// metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, | |
// ggml_is_contiguous(src0), src0->name); | |
//} | |
//if (src1) { | |
// metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, | |
// ggml_is_contiguous(src1), src1->name); | |
//} | |
//if (dst) { | |
// metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, | |
// dst->name); | |
//} | |
switch (dst->op) { | |
case GGML_OP_NONE: | |
case GGML_OP_RESHAPE: | |
case GGML_OP_VIEW: | |
case GGML_OP_TRANSPOSE: | |
case GGML_OP_PERMUTE: | |
{ | |
// noop | |
} break; | |
case GGML_OP_ADD: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
if (ggml_nelements(src1) == ne10) { | |
// src1 is a row | |
[encoder setComputePipelineState:ctx->pipeline_add_row]; | |
} else { | |
[encoder setComputePipelineState:ctx->pipeline_add]; | |
} | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:2]; | |
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; | |
const int64_t n = ggml_nelements(dst); | |
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; | |
} break; | |
case GGML_OP_MUL: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
if (ggml_nelements(src1) == ne10) { | |
// src1 is a row | |
[encoder setComputePipelineState:ctx->pipeline_mul_row]; | |
} else { | |
[encoder setComputePipelineState:ctx->pipeline_mul]; | |
} | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:2]; | |
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; | |
const int64_t n = ggml_nelements(dst); | |
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; | |
} break; | |
case GGML_OP_SCALE: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
const float scale = *(const float *) src1->data; | |
[encoder setComputePipelineState:ctx->pipeline_scale]; | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; | |
[encoder setBytes:&scale length:sizeof(scale) atIndex:2]; | |
const int64_t n = ggml_nelements(dst); | |
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; | |
} break; | |
case GGML_OP_UNARY: | |
switch (ggml_get_unary_op(gf->nodes[i])) { | |
case GGML_UNARY_OP_SILU: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
[encoder setComputePipelineState:ctx->pipeline_silu]; | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; | |
const int64_t n = ggml_nelements(dst); | |
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; | |
} break; | |
case GGML_UNARY_OP_RELU: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
[encoder setComputePipelineState:ctx->pipeline_relu]; | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; | |
const int64_t n = ggml_nelements(dst); | |
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; | |
} break; | |
case GGML_UNARY_OP_GELU: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
[encoder setComputePipelineState:ctx->pipeline_gelu]; | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; | |
const int64_t n = ggml_nelements(dst); | |
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; | |
} break; | |
default: | |
{ | |
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); | |
GGML_ASSERT(false); | |
} | |
} break; | |
case GGML_OP_SOFT_MAX: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
const int nth = 32; | |
[encoder setComputePipelineState:ctx->pipeline_soft_max]; | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; | |
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; | |
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; | |
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; | |
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; | |
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; | |
} break; | |
case GGML_OP_DIAG_MASK_INF: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
const int n_past = ((int32_t *)(dst->op_params))[0]; | |
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf]; | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; | |
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; | |
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; | |
[encoder setBytes:&n_past length:sizeof(int) atIndex:4]; | |
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; | |
} break; | |
case GGML_OP_MUL_MAT: | |
{ | |
// TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224 | |
GGML_ASSERT(ne00 == ne10); | |
// GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere | |
GGML_ASSERT(ne03 == ne13); | |
if (ggml_is_contiguous(src0) && | |
ggml_is_contiguous(src1) && | |
(src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) { | |
if (encoder != nil) { | |
[encoder endEncoding]; | |
encoder = nil; | |
} | |
MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16; | |
MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16; | |
// for F32 x F32 we use MPS | |
MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor | |
matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt]; | |
MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor | |
matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt]; | |
MPSMatrixDescriptor * desc = [MPSMatrixDescriptor | |
matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32]; | |
MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc] | |
initWithDevice:ctx->device transposeLeft:false transposeRight:true | |
resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0]; | |
// we need to do ne12 multiplications | |
// TODO: is there a way to do this in parallel - currently very slow .. | |
// TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS | |
for (int64_t i02 = 0; i02 < ne12; ++i02) { | |
size_t offs_src0_cur = offs_src0 + i02/(ne12/ne02)*nb02; // gqa not used for now | |
size_t offs_src1_cur = offs_src1 + i02*nb12; | |
size_t offs_dst_cur = offs_dst + i02*nb2; | |
MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0]; | |
MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1]; | |
MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ]; | |
[mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst]; | |
} | |
} else { | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
int nth0 = 32; | |
int nth1 = 1; | |
// use custom matrix x vector kernel | |
switch (src0t) { | |
case GGML_TYPE_F16: | |
{ | |
nth0 = 64; | |
nth1 = 1; | |
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32]; | |
} break; | |
case GGML_TYPE_Q4_0: | |
{ | |
GGML_ASSERT(ne02 == 1); | |
GGML_ASSERT(ne12 == 1); | |
nth0 = 8; | |
nth1 = 8; | |
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32]; | |
} break; | |
case GGML_TYPE_Q4_1: | |
{ | |
GGML_ASSERT(ne02 == 1); | |
GGML_ASSERT(ne12 == 1); | |
nth0 = 8; | |
nth1 = 8; | |
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32]; | |
} break; | |
case GGML_TYPE_Q2_K: | |
{ | |
GGML_ASSERT(ne02 == 1); | |
GGML_ASSERT(ne12 == 1); | |
nth0 = 2; | |
nth1 = 32; | |
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32]; | |
} break; | |
case GGML_TYPE_Q3_K: | |
{ | |
GGML_ASSERT(ne02 == 1); | |
GGML_ASSERT(ne12 == 1); | |
nth0 = 2; | |
nth1 = 32; | |
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32]; | |
} break; | |
case GGML_TYPE_Q4_K: | |
{ | |
GGML_ASSERT(ne02 == 1); | |
GGML_ASSERT(ne12 == 1); | |
nth0 = 2; | |
nth1 = 32; | |
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32]; | |
} break; | |
case GGML_TYPE_Q5_K: | |
{ | |
GGML_ASSERT(ne02 == 1); | |
GGML_ASSERT(ne12 == 1); | |
nth0 = 2; | |
nth1 = 32; | |
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32]; | |
} break; | |
case GGML_TYPE_Q6_K: | |
{ | |
GGML_ASSERT(ne02 == 1); | |
GGML_ASSERT(ne12 == 1); | |
nth0 = 2; | |
nth1 = 32; | |
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32]; | |
} break; | |
default: | |
{ | |
fprintf(stderr, "Asserting on type %d\n",(int)src0t); | |
GGML_ASSERT(false && "not implemented"); | |
} | |
}; | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:2]; | |
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; | |
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; | |
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; | |
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; | |
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; | |
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; | |
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9]; | |
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10]; | |
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11]; | |
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12]; | |
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13]; | |
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14]; | |
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15]; | |
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16]; | |
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || | |
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) { | |
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; | |
} | |
else if (src0t == GGML_TYPE_Q3_K) { | |
#ifdef GGML_QKK_64 | |
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; | |
#else | |
[encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; | |
#endif | |
} | |
else if (src0t == GGML_TYPE_Q5_K) { | |
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; | |
} | |
else if (src0t == GGML_TYPE_Q6_K) { | |
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; | |
} else { | |
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0]; | |
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; | |
} | |
} | |
} break; | |
case GGML_OP_GET_ROWS: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
switch (src0->type) { | |
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break; | |
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; | |
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break; | |
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break; | |
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break; | |
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break; | |
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break; | |
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break; | |
default: GGML_ASSERT(false && "not implemented"); | |
} | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:2]; | |
[encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3]; | |
[encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4]; | |
[encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5]; | |
const int64_t n = ggml_nelements(src1); | |
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; | |
} break; | |
case GGML_OP_RMS_NORM: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
float eps; | |
memcpy(&eps, dst->op_params, sizeof(float)); | |
const int nth = 512; | |
[encoder setComputePipelineState:ctx->pipeline_rms_norm]; | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; | |
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; | |
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; | |
[encoder setBytes:&eps length:sizeof( float) atIndex:4]; | |
[encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0]; | |
const int64_t nrows = ggml_nrows(src0); | |
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; | |
} break; | |
case GGML_OP_NORM: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
const float eps = 1e-5f; | |
const int nth = 256; | |
[encoder setComputePipelineState:ctx->pipeline_norm]; | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; | |
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; | |
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; | |
[encoder setBytes:&eps length:sizeof( float) atIndex:4]; | |
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; | |
const int64_t nrows = ggml_nrows(src0); | |
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; | |
} break; | |
case GGML_OP_ALIBI: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
GGML_ASSERT((src0t == GGML_TYPE_F32)); | |
const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past); | |
const int n_head = ((int32_t *) dst->op_params)[1]; | |
float max_bias; | |
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); | |
if (__builtin_popcount(n_head) != 1) { | |
GGML_ASSERT(false && "only power-of-two n_head implemented"); | |
} | |
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); | |
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); | |
[encoder setComputePipelineState:ctx->pipeline_alibi_f32]; | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; | |
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; | |
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; | |
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; | |
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; | |
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; | |
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; | |
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; | |
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; | |
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; | |
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; | |
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; | |
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; | |
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; | |
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; | |
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; | |
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; | |
[encoder setBytes:&m0 length:sizeof( float) atIndex:18]; | |
const int nth = 32; | |
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; | |
} break; | |
case GGML_OP_ROPE: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
const int n_past = ((int32_t *) dst->op_params)[0]; | |
const int n_dims = ((int32_t *) dst->op_params)[1]; | |
const int mode = ((int32_t *) dst->op_params)[2]; | |
float freq_base; | |
float freq_scale; | |
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float)); | |
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float)); | |
[encoder setComputePipelineState:ctx->pipeline_rope]; | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; | |
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; | |
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; | |
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; | |
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; | |
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; | |
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; | |
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; | |
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; | |
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; | |
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; | |
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; | |
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; | |
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; | |
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; | |
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; | |
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; | |
[encoder setBytes:&n_past length:sizeof( int) atIndex:18]; | |
[encoder setBytes:&n_dims length:sizeof( int) atIndex:19]; | |
[encoder setBytes:&mode length:sizeof( int) atIndex:20]; | |
[encoder setBytes:&freq_base length:sizeof(float) atIndex:21]; | |
[encoder setBytes:&freq_scale length:sizeof(float) atIndex:22]; | |
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; | |
} break; | |
case GGML_OP_DUP: | |
case GGML_OP_CPY: | |
case GGML_OP_CONT: | |
{ | |
if (encoder == nil) { | |
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; | |
} | |
const int nth = 32; | |
switch (src0t) { | |
case GGML_TYPE_F32: | |
{ | |
switch (dstt) { | |
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break; | |
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break; | |
default: GGML_ASSERT(false && "not implemented"); | |
}; | |
} break; | |
case GGML_TYPE_F16: | |
{ | |
switch (dstt) { | |
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break; | |
case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break; | |
default: GGML_ASSERT(false && "not implemented"); | |
}; | |
} break; | |
default: GGML_ASSERT(false && "not implemented"); | |
} | |
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; | |
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; | |
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; | |
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; | |
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; | |
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; | |
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; | |
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; | |
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; | |
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; | |
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; | |
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; | |
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; | |
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; | |
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; | |
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; | |
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; | |
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; | |
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; | |
} break; | |
default: | |
{ | |
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); | |
GGML_ASSERT(false); | |
} | |
} | |
} | |
if (encoder != nil) { | |
[encoder endEncoding]; | |
encoder = nil; | |
} | |
[command_buffer commit]; | |
}); | |
} | |
// wait for all threads to finish | |
dispatch_barrier_sync(queue, ^{}); | |
[command_buffers[n_cb - 1] waitUntilCompleted]; | |
// check status of command buffers | |
// needed to detect if the device ran out-of-memory for example (#1881) | |
for (int i = 0; i < n_cb; i++) { | |
MTLCommandBufferStatus status = (MTLCommandBufferStatus) [command_buffers[i] status]; | |
if (status != MTLCommandBufferStatusCompleted) { | |
fprintf(stderr, "%s: command buffer %d failed with status %lu\n", __func__, i, status); | |
GGML_ASSERT(false); | |
} | |
} | |
} | |