File size: 9,824 Bytes
57c742e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7243d06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c742e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7243d06
 
 
 
 
57c742e
 
 
7243d06
 
57c742e
7243d06
57c742e
 
 
7243d06
 
 
 
 
 
 
57c742e
 
7243d06
 
57c742e
 
7243d06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c742e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#!/usr/bin/env python3
# HF refact--> gguf conversion

from __future__ import annotations

import argparse
import json
import os
import sys
from pathlib import Path

import numpy as np
import torch
from transformers import AutoTokenizer  # type: ignore[import]

if "NO_LOCAL_GGUF" not in os.environ:
    sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
import gguf


def bytes_to_unicode():
    # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a significant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    bs = (
        list(range(ord("!"), ord("~") + 1))
        + list(range(ord("¡"), ord("¬") + 1))
        + list(range(ord("®"), ord("ÿ") + 1))
    )
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8 + n)
            n += 1
    return dict(zip(bs, (chr(n) for n in cs)))


def count_model_parts(dir_model: Path) -> int:
    num_parts = 0
    for filename in os.listdir(dir_model):
        if filename.startswith("pytorch_model-"):
            num_parts += 1

    if num_parts > 0:
        print("gguf: found " + str(num_parts) + " model parts")
    return num_parts


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser(
        description="Convert a Refact model to a GGML compatible file"
    )
    parser.add_argument(
        "--vocab-only",
        action="store_true",
        help="extract only the vocab",
    )
    parser.add_argument(
        "--outfile",
        type=Path,
        help="path to write to; default: based on input",
    )
    parser.add_argument(
        "model",
        type=Path,
        help="directory containing model file, or model file itself (*.bin)",
    )
    parser.add_argument(
        "ftype",
        type=int,
        choices=[0, 1],
        default=1,
        nargs="?",
        help="output format - use 0 for float32, 1 for float16",
    )
    return parser.parse_args()


args = parse_args()

dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
    print(f"Error: {args.model} is not a directory", file=sys.stderr)
    sys.exit(1)

# possible tensor data types
#   ftype == 0 -> float32
#   ftype == 1 -> float16

# map from ftype to string
ftype_str = ["f32", "f16"]

if args.outfile is not None:
    fname_out = args.outfile
else:
    # output in the same directory as the model by default
    fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"

print("gguf: loading model " + dir_model.name)

with open(dir_model / "config.json", "r", encoding="utf-8") as f:
    hparams = json.load(f)

if hparams["architectures"][0] != "GPTRefactForCausalLM":
    print("Model architecture not supported: " + hparams["architectures"][0])

    sys.exit(1)

# get number of model parts
num_parts = count_model_parts(dir_model)

ARCH = gguf.MODEL_ARCH.REFACT
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])

print("gguf: get model metadata")

# Get refact feed forward dimension
hidden_dim = hparams["n_embd"]
inner_dim = 4 * hidden_dim
hidden_dim = int(2 * inner_dim / 3)
multiple_of = 256
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)

block_count = hparams["n_layer"]

gguf_writer.add_name("Refact")
# refact uses Alibi. So this is from config.json which might be used by training.
gguf_writer.add_context_length(hparams["n_positions"])
gguf_writer.add_embedding_length(hparams["n_embd"])

gguf_writer.add_feed_forward_length(ff_dim)
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(hparams["n_head"])
gguf_writer.add_head_count_kv(1)
gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)

# TOKENIZATION

print("gguf: get tokenizer metadata")

tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []

tokenizer_json_file = dir_model / "tokenizer.json"
if not tokenizer_json_file.is_file():
    print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr)
    sys.exit(1)

# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")

with open(tokenizer_json_file, "r", encoding="utf-8") as f:
    tokenizer_json = json.load(f)

print("gguf: get gpt2 tokenizer vocab")

# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = (
    hparams["vocab_size"]
    if "vocab_size" in hparams
    else len(tokenizer_json["model"]["vocab"])
)

tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)

reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}

for i in range(vocab_size):
    if i in reverse_vocab:
        text = reverse_vocab[i]
        try:
            text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
        except KeyError:
            text = bytearray()
            for c in reverse_vocab[i]:
                if ord(c) < 256:  # single byte character
                    text.append(byte_decoder[ord(c)])
                else:  # multibyte special token character
                    text.extend(c.encode("utf-8"))
    else:
        print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
        pad_token = f"[PAD{i}]".encode("utf8")
        text = bytearray(pad_token)

    tokens.append(text)
    scores.append(0.0)  # dymmy
    toktypes.append(gguf.TokenType.NORMAL)  # dummy

gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)

special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
special_vocab.add_to_gguf(gguf_writer)

# TENSORS

tensor_map = gguf.get_tensor_name_map(ARCH, block_count)

# params for qkv transform
n_head = hparams["n_head"]
n_head_kv = 1

head_dim = hparams["n_embd"] // n_head

# tensor info
print("gguf: get tensor metadata")

if num_parts == 0:
    part_names = iter(("pytorch_model.bin",))
else:
    part_names = (
        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
    )
for part_name in part_names:
    if args.vocab_only:
        break
    print("gguf: loading model part '" + part_name + "'")
    model_part = torch.load(dir_model / part_name, map_location="cpu")

    for i in range(block_count):
        if f"transformer.h.{i}.attn.kv.weight" in model_part:
            data = model_part[f"transformer.h.{i}.attn.kv.weight"]
            model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[
                : n_head_kv * head_dim
            ]
            model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[
                n_head_kv * head_dim :
            ]
            del model_part[f"transformer.h.{i}.attn.kv.weight"]
        if f"transformer.h.{i}.attn.q.weight" in model_part:
            model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[
                f"transformer.h.{i}.attn.q.weight"
            ]
            del model_part[f"transformer.h.{i}.attn.q.weight"]
        if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part:
            data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
            model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim]
            model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:]
            del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]

    for name in model_part.keys():
        data = model_part[name]

        old_dtype = data.dtype

        # convert any unsupported data types to float32
        if data.dtype != torch.float16 and data.dtype != torch.float32:
            data = data.to(torch.float32)

        data = data.squeeze().numpy()

        # map tensor names
        new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
        if new_name is None:
            print("Can not map tensor '" + name + "'")
            sys.exit()

        n_dims = len(data.shape)
        data_dtype = data.dtype

        # if f32 desired, convert any float16 to float32
        if ftype == 0 and data_dtype == np.float16:
            data = data.astype(np.float32)

        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
            data = data.astype(np.float32)

        # if f16 desired, convert any float32 2-dim weight tensors to float16
        if (
            ftype == 1
            and data_dtype == np.float32
            and name.endswith(".weight")
            and n_dims == 2
        ):
            data = data.astype(np.float16)

        print(
            new_name
            + ", n_dims = "
            + str(n_dims)
            + ", "
            + str(old_dtype)
            + " --> "
            + str(data.dtype)
        )

        gguf_writer.add_tensor(new_name, data)


print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
    print("gguf: write tensors")
    gguf_writer.write_tensors_to_file()

gguf_writer.close()

print(f"gguf: model successfully exported to '{fname_out}'")
print("")