File size: 19,527 Bytes
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#!/usr/bin/env python3
from __future__ import annotations

import argparse
import math
import struct
import sys
from enum import IntEnum
from pathlib import Path

import numpy as np

import os
if 'NO_LOCAL_GGUF' not in os.environ:
    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf

# Note: Does not support GGML_QKK_64
QK_K = 256
# Items here are (block size, type size)
GGML_QUANT_SIZES = {
    gguf.GGMLQuantizationType.F32  : (1, 4),
    gguf.GGMLQuantizationType.F16  : (1, 2),
    gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
    gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
    gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
    gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
    gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
    gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
    gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
    gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
    gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
    gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
    gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
    gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
}

class GGMLFormat(IntEnum):
    GGML = 0
    GGMF = 1
    GGJT = 2

class GGMLFType(IntEnum):
    ALL_F32              = 0
    MOSTLY_F16           = 1
    MOSTLY_Q4_0          = 2
    MOSTLY_Q4_1          = 3
    MOSTLY_Q4_1_SOME_F16 = 4
    MOSTLY_Q8_0          = 7
    MOSTLY_Q5_0          = 8
    MOSTLY_Q5_1          = 9
    MOSTLY_Q2_K          = 10
    MOSTLY_Q3_K_S        = 11
    MOSTLY_Q3_K_M        = 12
    MOSTLY_Q3_K_L        = 13
    MOSTLY_Q4_K_S        = 14
    MOSTLY_Q4_K_M        = 15
    MOSTLY_Q5_K_S        = 16
    MOSTLY_Q5_K_M        = 17
    MOSTLY_Q6_K          = 18

class Hyperparameters:
    def __init__(self):
        self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
        self.n_layer = self.n_rot = self.n_ff = 0
        self.ftype = GGMLFType.ALL_F32

    def set_n_ff(self, model):
        ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
        assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
        ff_tensor = model.tensors[ff_tensor_idx]
        self.n_ff = ff_tensor.dims[1]

    def load(self, data, offset):
        (
            self.n_vocab,
            self.n_embd,
            self.n_mult,
            self.n_head,
            self.n_layer,
            self.n_rot,
            ftype,
        ) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
        try:
            self.ftype = GGMLFType(ftype)
        except ValueError:
            raise ValueError(f'Invalid ftype {ftype}')
        return 4 * 7

    def __str__(self):
        return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'

class Vocab:
    def __init__(self, load_scores = True):
        self.items = []
        self.load_scores = load_scores

    def load(self, data, offset, n_vocab):
        orig_offset = offset
        for _ in range(n_vocab):
            itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
            assert itemlen < 4096, 'Absurd vocab item length'
            offset += 4
            item_text = bytes(data[offset:offset + itemlen])
            offset += itemlen
            if self.load_scores:
                item_score = struct.unpack('<f', data[offset:offset + 4])[0]
                offset += 4
            else:
                item_score = 0.0
            self.items.append((item_text, item_score))
        return offset - orig_offset

class Tensor:
    def __init__(self, use_padding = True):
        self.name = None
        self.dims: tuple[int, ...] = ()
        self.dtype = None
        self.start_offset = 0
        self.len_bytes = np.int64(0)
        self.use_padding = use_padding

    def load(self, data, offset):
        orig_offset = offset
        (n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
        assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
        assert name_len < 4096, 'Absurd tensor name length'
        quant = GGML_QUANT_SIZES.get(dtype)
        assert quant is not None, 'Unknown tensor type'
        (blksize, tysize) = quant
        offset += 12
        self.dtype= dtype
        self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
        offset += 4 * n_dims
        self.name = bytes(data[offset:offset + name_len])
        offset += name_len
        pad = ((offset + 31) & ~31) - offset if self.use_padding else 0
        offset += pad
        n_elems = np.prod(self.dims)
        n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
        self.start_offset = offset
        self.len_bytes = n_bytes
        offset += n_bytes
        # print(n_dims, name_len, dtype, self.dims, self.name, pad)
        return offset - orig_offset

class GGMLModel:
    def __init__(self):
        self.hyperparameters = None
        self.vocab = None
        self.tensor_map = {}
        self.tensors = []

    def validate_header(self, data, offset):
        magic = bytes(data[offset:offset + 4])
        if magic == b'GGUF':
            raise ValueError('File is already in GGUF format.')
        if magic == b'lmgg':
            self.file_format = GGMLFormat.GGML
            self.format_version = 1
            return 4
        version = struct.unpack('<I', data[offset + 4:offset + 8])[0]
        if magic == b'fmgg':
            if version != 1:
                raise ValueError(f'Cannot handle unexpected GGMF file version {version}')
            self.file_format = GGMLFormat.GGMF
            self.format_version = version
            return 8
        if magic == b'tjgg':
            if version < 1 or version > 3:
                raise ValueError(f'Cannot handle unexpected GGJT file version {version}')
            self.file_format = GGMLFormat.GGJT
            self.format_version = version
            return 8
        raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.")

    def validate_conversion(self, ftype):
        err = ''
        if (self.file_format < GGMLFormat.GGJT or self.format_version < 2):
            if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
                err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
        elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
            if ftype in ( GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
                          GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
                err = 'Q4 and Q8 quantizations changed in GGJTv3.'
        if len(err) > 0:
            raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')

    def load(self, data, offset):
        offset += self.validate_header(data, offset)
        hp = Hyperparameters()
        offset += hp.load(data, offset)
        print(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
        self.validate_conversion(hp.ftype)
        vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML)
        offset += vocab.load(data, offset, hp.n_vocab)
        tensors: list[Tensor] = []
        tensor_map = {}
        while offset < len(data):
            tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF)
            offset += tensor.load(data, offset)
            tensor_map[tensor.name] = len(tensors)
            tensors.append(tensor)
        self.hyperparameters = hp
        self.vocab = vocab
        self.tensors = tensors
        self.tensor_map = tensor_map
        hp.set_n_ff(self)
        return offset

class GGMLToGGUF:
    def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
        hp = ggml_model.hyperparameters
        self.model = ggml_model
        self.data = data
        self.cfg = cfg
        self.params_override = params_override
        self.vocab_override = vocab_override
        self.special_vocab = special_vocab
        if params_override is not None:
            n_kv_head = params_override.n_head_kv
        else:
            if cfg.gqa == 1:
                n_kv_head = hp.n_head
            else:
                gqa = float(cfg.gqa)
                n_kv_head = None
                for x in range(1, 256):
                    if float(hp.n_head) / float(x) == gqa:
                        n_kv_head = x
                assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
                print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
        self.n_kv_head = n_kv_head
        self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)

    def save(self):
        print('* Preparing to save GGUF file')
        gguf_writer = gguf.GGUFWriter(
            self.cfg.output,
            gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
            use_temp_file = False )
        self.add_params(gguf_writer)
        self.add_vocab(gguf_writer)
        if self.special_vocab is not None:
            self.special_vocab.add_to_gguf(gguf_writer)
        self.add_tensors(gguf_writer)
        print("    gguf: write header")
        gguf_writer.write_header_to_file()
        print("    gguf: write metadata")
        gguf_writer.write_kv_data_to_file()
        print("    gguf: write tensors")
        gguf_writer.write_tensors_to_file()
        gguf_writer.close()

    def add_params(self, gguf_writer):
        hp = self.model.hyperparameters
        cfg = self.cfg
        if cfg.desc is not None:
            desc = cfg.desc
        else:
            desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format'
        try:
            # Filenames aren't necessarily valid UTF8.
            name = cfg.name if cfg.name is not None else cfg.input.name
        except UnicodeDecodeError:
            name = None
        print('* Adding model parameters and KV items')
        if name is not None:
            gguf_writer.add_name(name)
        gguf_writer.add_description(desc)
        gguf_writer.add_file_type(int(hp.ftype))
        if self.params_override is not None:
            po = self.params_override
            assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
            assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
            assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
            gguf_writer.add_context_length      (po.n_ctx)
            gguf_writer.add_embedding_length    (po.n_embd)
            gguf_writer.add_block_count         (po.n_layer)
            gguf_writer.add_feed_forward_length (po.n_ff)
            gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
            gguf_writer.add_head_count          (po.n_head)
            gguf_writer.add_head_count_kv       (po.n_head_kv)
            gguf_writer.add_layer_norm_rms_eps  (po.f_norm_eps)
            return
        gguf_writer.add_context_length(cfg.context_length)
        gguf_writer.add_embedding_length(hp.n_embd)
        gguf_writer.add_block_count(hp.n_layer)
        gguf_writer.add_feed_forward_length(hp.n_ff)
        gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
        gguf_writer.add_head_count(hp.n_head)
        gguf_writer.add_head_count_kv(self.n_kv_head)
        gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))

    def add_vocab(self, gguf_writer):
        hp = self.model.hyperparameters
        gguf_writer.add_tokenizer_model('llama')
        tokens = []
        scores = []
        toktypes = []
        if self.vocab_override is not None:
            vo = self.vocab_override
            print('* Adding vocab item(s)')
            for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
                tokens.append(vbytes)
                scores.append(score)
                toktypes.append(ttype)
            assert len(tokens) == hp.n_vocab, \
                f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
            gguf_writer.add_token_list(tokens)
            gguf_writer.add_token_scores(scores)
            if len(toktypes) > 0:
                gguf_writer.add_token_types(toktypes)
            return
        print(f'* Adding {hp.n_vocab} vocab item(s)')
        assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
        for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
            tt = 1 # Normal
            # Special handling for UNK, BOS, EOS tokens.
            if tokid <= 2:
                if tokid == 0:
                    vbytes = b'<unk>'
                    tt = 2
                elif tokid == 1:
                    vbytes = b'<s>'
                    tt = 3
                else:
                    vbytes = b'</s>'
                    tt = 3
            elif len(vbytes) == 0:
                tt = 3 # Control
            elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
                vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
                tt = 6 # Byte
            else:
                vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
            toktypes.append(tt)
            tokens.append(vbytes)
            scores.append(vscore)
        gguf_writer.add_token_list(tokens)
        gguf_writer.add_token_scores(scores)
        gguf_writer.add_token_types(toktypes)
        gguf_writer.add_unk_token_id(0)
        gguf_writer.add_bos_token_id(1)
        gguf_writer.add_eos_token_id(2)

    def add_tensors(self, gguf_writer):
        tensor_map = self.name_map
        data = self.data
        print(f'* Adding {len(self.model.tensors)} tensor(s)')
        for tensor in self.model.tensors:
            name = str(tensor.name, 'UTF-8')
            mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
            assert mapped_name is not None, f'Bad name {name}'
            tempdims = list(tensor.dims[:])
            if len(tempdims) > 1:
                temp = tempdims[1]
                tempdims[1] = tempdims[0]
                tempdims[0] = temp
            # print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
            gguf_writer.add_tensor(
                mapped_name,
                data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
                raw_shape = tempdims,
                raw_dtype = tensor.dtype )

def handle_metadata(cfg, hp):
    import convert
    assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
    hf_config_path   = cfg.model_metadata_dir / "config.json"
    orig_config_path = cfg.model_metadata_dir / "params.json"
    # We pass a fake model here. "original" mode will check the shapes of some
    # tensors if information is missing in the .json file: other than that, the
    # model data isn't used so this should be safe (at least for now).
    fakemodel = {
        'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
        'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
    }
    fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
    fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
    if hf_config_path.exists():
        params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
    elif orig_config_path.exists():
        params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
    else:
        raise ValueError('Unable to load metadata')
    vocab = convert.load_vocab(
        cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
        cfg.vocabtype )
    # FIXME: Respect cfg.vocab_dir?
    svocab = gguf.SpecialVocab(cfg.model_metadata_dir)
    convert.check_vocab_size(params, vocab)
    return (params, vocab, svocab)

def handle_args():
    parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
    parser.add_argument('--input', '-i', type = Path, required = True,
        help = 'Input GGMLv3 filename')
    parser.add_argument('--output', '-o', type = Path, required = True,
        help ='Output GGUF filename')
    parser.add_argument('--name',
        help = 'Set model name')
    parser.add_argument('--desc',
        help = 'Set model description')
    parser.add_argument('--gqa', type = int, default = 1,
        help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
    parser.add_argument('--eps', default = '5.0e-06',
        help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
    parser.add_argument('--context-length', '-c', type=int, default = 2048,
        help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
    parser.add_argument('--model-metadata-dir', '-m', type = Path,
        help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
    parser.add_argument("--vocab-dir", type=Path,
        help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
    parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
        help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
    return parser.parse_args()

def main():
    cfg = handle_args()
    print(f'* Using config: {cfg}')
    print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
    if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'):
        print('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
    data = np.memmap(cfg.input, mode = 'r')
    model = GGMLModel()
    print('* Scanning GGML input file')
    offset = model.load(data, 0)
    print(f'* GGML model hyperparameters: {model.hyperparameters}')
    vocab_override = None
    params_override = None
    special_vocab = None
    if cfg.model_metadata_dir is not None:
        (params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
        print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
        print(f'* Overriding params: {params_override}')
        print(f'* Overriding vocab: {vocab_override}')
        print(f'* Special vocab: {special_vocab}')
    else:
        print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
        if model.file_format == GGMLFormat.GGML:
            print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
    converter = GGMLToGGUF(model, data, cfg,
        params_override = params_override,
        vocab_override = vocab_override,
        special_vocab = special_vocab )
    converter.save()
    print(f'* Successful completion. Output saved to: {cfg.output}')

if __name__ == '__main__':
    main()