Spaces:
Build error
Build error
File size: 19,527 Bytes
f57d7c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
#!/usr/bin/env python3
from __future__ import annotations
import argparse
import math
import struct
import sys
from enum import IntEnum
from pathlib import Path
import numpy as np
import os
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
# Note: Does not support GGML_QKK_64
QK_K = 256
# Items here are (block size, type size)
GGML_QUANT_SIZES = {
gguf.GGMLQuantizationType.F32 : (1, 4),
gguf.GGMLQuantizationType.F16 : (1, 2),
gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
}
class GGMLFormat(IntEnum):
GGML = 0
GGMF = 1
GGJT = 2
class GGMLFType(IntEnum):
ALL_F32 = 0
MOSTLY_F16 = 1
MOSTLY_Q4_0 = 2
MOSTLY_Q4_1 = 3
MOSTLY_Q4_1_SOME_F16 = 4
MOSTLY_Q8_0 = 7
MOSTLY_Q5_0 = 8
MOSTLY_Q5_1 = 9
MOSTLY_Q2_K = 10
MOSTLY_Q3_K_S = 11
MOSTLY_Q3_K_M = 12
MOSTLY_Q3_K_L = 13
MOSTLY_Q4_K_S = 14
MOSTLY_Q4_K_M = 15
MOSTLY_Q5_K_S = 16
MOSTLY_Q5_K_M = 17
MOSTLY_Q6_K = 18
class Hyperparameters:
def __init__(self):
self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
self.n_layer = self.n_rot = self.n_ff = 0
self.ftype = GGMLFType.ALL_F32
def set_n_ff(self, model):
ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
ff_tensor = model.tensors[ff_tensor_idx]
self.n_ff = ff_tensor.dims[1]
def load(self, data, offset):
(
self.n_vocab,
self.n_embd,
self.n_mult,
self.n_head,
self.n_layer,
self.n_rot,
ftype,
) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
try:
self.ftype = GGMLFType(ftype)
except ValueError:
raise ValueError(f'Invalid ftype {ftype}')
return 4 * 7
def __str__(self):
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
class Vocab:
def __init__(self, load_scores = True):
self.items = []
self.load_scores = load_scores
def load(self, data, offset, n_vocab):
orig_offset = offset
for _ in range(n_vocab):
itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
assert itemlen < 4096, 'Absurd vocab item length'
offset += 4
item_text = bytes(data[offset:offset + itemlen])
offset += itemlen
if self.load_scores:
item_score = struct.unpack('<f', data[offset:offset + 4])[0]
offset += 4
else:
item_score = 0.0
self.items.append((item_text, item_score))
return offset - orig_offset
class Tensor:
def __init__(self, use_padding = True):
self.name = None
self.dims: tuple[int, ...] = ()
self.dtype = None
self.start_offset = 0
self.len_bytes = np.int64(0)
self.use_padding = use_padding
def load(self, data, offset):
orig_offset = offset
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
assert name_len < 4096, 'Absurd tensor name length'
quant = GGML_QUANT_SIZES.get(dtype)
assert quant is not None, 'Unknown tensor type'
(blksize, tysize) = quant
offset += 12
self.dtype= dtype
self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
offset += 4 * n_dims
self.name = bytes(data[offset:offset + name_len])
offset += name_len
pad = ((offset + 31) & ~31) - offset if self.use_padding else 0
offset += pad
n_elems = np.prod(self.dims)
n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
self.start_offset = offset
self.len_bytes = n_bytes
offset += n_bytes
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
return offset - orig_offset
class GGMLModel:
def __init__(self):
self.hyperparameters = None
self.vocab = None
self.tensor_map = {}
self.tensors = []
def validate_header(self, data, offset):
magic = bytes(data[offset:offset + 4])
if magic == b'GGUF':
raise ValueError('File is already in GGUF format.')
if magic == b'lmgg':
self.file_format = GGMLFormat.GGML
self.format_version = 1
return 4
version = struct.unpack('<I', data[offset + 4:offset + 8])[0]
if magic == b'fmgg':
if version != 1:
raise ValueError(f'Cannot handle unexpected GGMF file version {version}')
self.file_format = GGMLFormat.GGMF
self.format_version = version
return 8
if magic == b'tjgg':
if version < 1 or version > 3:
raise ValueError(f'Cannot handle unexpected GGJT file version {version}')
self.file_format = GGMLFormat.GGJT
self.format_version = version
return 8
raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.")
def validate_conversion(self, ftype):
err = ''
if (self.file_format < GGMLFormat.GGJT or self.format_version < 2):
if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
if ftype in ( GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
err = 'Q4 and Q8 quantizations changed in GGJTv3.'
if len(err) > 0:
raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
def load(self, data, offset):
offset += self.validate_header(data, offset)
hp = Hyperparameters()
offset += hp.load(data, offset)
print(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
self.validate_conversion(hp.ftype)
vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML)
offset += vocab.load(data, offset, hp.n_vocab)
tensors: list[Tensor] = []
tensor_map = {}
while offset < len(data):
tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF)
offset += tensor.load(data, offset)
tensor_map[tensor.name] = len(tensors)
tensors.append(tensor)
self.hyperparameters = hp
self.vocab = vocab
self.tensors = tensors
self.tensor_map = tensor_map
hp.set_n_ff(self)
return offset
class GGMLToGGUF:
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
hp = ggml_model.hyperparameters
self.model = ggml_model
self.data = data
self.cfg = cfg
self.params_override = params_override
self.vocab_override = vocab_override
self.special_vocab = special_vocab
if params_override is not None:
n_kv_head = params_override.n_head_kv
else:
if cfg.gqa == 1:
n_kv_head = hp.n_head
else:
gqa = float(cfg.gqa)
n_kv_head = None
for x in range(1, 256):
if float(hp.n_head) / float(x) == gqa:
n_kv_head = x
assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
self.n_kv_head = n_kv_head
self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
def save(self):
print('* Preparing to save GGUF file')
gguf_writer = gguf.GGUFWriter(
self.cfg.output,
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
use_temp_file = False )
self.add_params(gguf_writer)
self.add_vocab(gguf_writer)
if self.special_vocab is not None:
self.special_vocab.add_to_gguf(gguf_writer)
self.add_tensors(gguf_writer)
print(" gguf: write header")
gguf_writer.write_header_to_file()
print(" gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print(" gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
def add_params(self, gguf_writer):
hp = self.model.hyperparameters
cfg = self.cfg
if cfg.desc is not None:
desc = cfg.desc
else:
desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format'
try:
# Filenames aren't necessarily valid UTF8.
name = cfg.name if cfg.name is not None else cfg.input.name
except UnicodeDecodeError:
name = None
print('* Adding model parameters and KV items')
if name is not None:
gguf_writer.add_name(name)
gguf_writer.add_description(desc)
gguf_writer.add_file_type(int(hp.ftype))
if self.params_override is not None:
po = self.params_override
assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
gguf_writer.add_context_length (po.n_ctx)
gguf_writer.add_embedding_length (po.n_embd)
gguf_writer.add_block_count (po.n_layer)
gguf_writer.add_feed_forward_length (po.n_ff)
gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
gguf_writer.add_head_count (po.n_head)
gguf_writer.add_head_count_kv (po.n_head_kv)
gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps)
return
gguf_writer.add_context_length(cfg.context_length)
gguf_writer.add_embedding_length(hp.n_embd)
gguf_writer.add_block_count(hp.n_layer)
gguf_writer.add_feed_forward_length(hp.n_ff)
gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
gguf_writer.add_head_count(hp.n_head)
gguf_writer.add_head_count_kv(self.n_kv_head)
gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
def add_vocab(self, gguf_writer):
hp = self.model.hyperparameters
gguf_writer.add_tokenizer_model('llama')
tokens = []
scores = []
toktypes = []
if self.vocab_override is not None:
vo = self.vocab_override
print('* Adding vocab item(s)')
for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
tokens.append(vbytes)
scores.append(score)
toktypes.append(ttype)
assert len(tokens) == hp.n_vocab, \
f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
if len(toktypes) > 0:
gguf_writer.add_token_types(toktypes)
return
print(f'* Adding {hp.n_vocab} vocab item(s)')
assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
tt = 1 # Normal
# Special handling for UNK, BOS, EOS tokens.
if tokid <= 2:
if tokid == 0:
vbytes = b'<unk>'
tt = 2
elif tokid == 1:
vbytes = b'<s>'
tt = 3
else:
vbytes = b'</s>'
tt = 3
elif len(vbytes) == 0:
tt = 3 # Control
elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
tt = 6 # Byte
else:
vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
toktypes.append(tt)
tokens.append(vbytes)
scores.append(vscore)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
gguf_writer.add_unk_token_id(0)
gguf_writer.add_bos_token_id(1)
gguf_writer.add_eos_token_id(2)
def add_tensors(self, gguf_writer):
tensor_map = self.name_map
data = self.data
print(f'* Adding {len(self.model.tensors)} tensor(s)')
for tensor in self.model.tensors:
name = str(tensor.name, 'UTF-8')
mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
assert mapped_name is not None, f'Bad name {name}'
tempdims = list(tensor.dims[:])
if len(tempdims) > 1:
temp = tempdims[1]
tempdims[1] = tempdims[0]
tempdims[0] = temp
# print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
gguf_writer.add_tensor(
mapped_name,
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
raw_shape = tempdims,
raw_dtype = tensor.dtype )
def handle_metadata(cfg, hp):
import convert
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
hf_config_path = cfg.model_metadata_dir / "config.json"
orig_config_path = cfg.model_metadata_dir / "params.json"
# We pass a fake model here. "original" mode will check the shapes of some
# tensors if information is missing in the .json file: other than that, the
# model data isn't used so this should be safe (at least for now).
fakemodel = {
'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
}
fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
if hf_config_path.exists():
params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
elif orig_config_path.exists():
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
else:
raise ValueError('Unable to load metadata')
vocab = convert.load_vocab(
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
cfg.vocabtype )
# FIXME: Respect cfg.vocab_dir?
svocab = gguf.SpecialVocab(cfg.model_metadata_dir)
convert.check_vocab_size(params, vocab)
return (params, vocab, svocab)
def handle_args():
parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
parser.add_argument('--input', '-i', type = Path, required = True,
help = 'Input GGMLv3 filename')
parser.add_argument('--output', '-o', type = Path, required = True,
help ='Output GGUF filename')
parser.add_argument('--name',
help = 'Set model name')
parser.add_argument('--desc',
help = 'Set model description')
parser.add_argument('--gqa', type = int, default = 1,
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
parser.add_argument('--eps', default = '5.0e-06',
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
parser.add_argument('--context-length', '-c', type=int, default = 2048,
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
parser.add_argument('--model-metadata-dir', '-m', type = Path,
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
parser.add_argument("--vocab-dir", type=Path,
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
return parser.parse_args()
def main():
cfg = handle_args()
print(f'* Using config: {cfg}')
print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'):
print('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
data = np.memmap(cfg.input, mode = 'r')
model = GGMLModel()
print('* Scanning GGML input file')
offset = model.load(data, 0)
print(f'* GGML model hyperparameters: {model.hyperparameters}')
vocab_override = None
params_override = None
special_vocab = None
if cfg.model_metadata_dir is not None:
(params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
print(f'* Overriding params: {params_override}')
print(f'* Overriding vocab: {vocab_override}')
print(f'* Special vocab: {special_vocab}')
else:
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
if model.file_format == GGMLFormat.GGML:
print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
converter = GGMLToGGUF(model, data, cfg,
params_override = params_override,
vocab_override = vocab_override,
special_vocab = special_vocab )
converter.save()
print(f'* Successful completion. Output saved to: {cfg.output}')
if __name__ == '__main__':
main()
|