|
import pandas as pd |
|
import gradio as gr |
|
from langchain import LLMChain |
|
from langchain.prompts import ChatPromptTemplate |
|
from langchain_openai import ChatOpenAI |
|
from rapidfuzz import process, fuzz |
|
import json |
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
import os |
|
|
|
|
|
df = pd.read_csv('merged_output_compressed.bz2', compression='bz2', low_memory=False) |
|
|
|
|
|
wine_names_arr = df['name_of_wine'].str.strip().values |
|
name_to_index = {name: idx for idx, name in enumerate(wine_names_arr)} |
|
|
|
|
|
prompt = ChatPromptTemplate.from_template( |
|
"Provide only the native name of the wine in Latin characters from this user query: {query}" |
|
) |
|
model = ChatOpenAI(model="gpt-4o-mini") |
|
|
|
|
|
name_extraction_chain = LLMChain(prompt=prompt, llm=model) |
|
|
|
def find_wine_info_fast(query, secret_phrase): |
|
|
|
if secret_phrase != os.getenv("SECRET"): |
|
return {"name": "Invalid secret phrase", "rating": None, "rank": -1} |
|
|
|
extracted = name_extraction_chain.invoke({"query": query}) |
|
|
|
if 'text' not in extracted: |
|
return {"name": "Error in extraction", "rating": None, "rank": -1} |
|
|
|
query_clean = extracted['text'].strip() |
|
|
|
matches = process.extract( |
|
query_clean, |
|
wine_names_arr, |
|
scorer=fuzz.token_sort_ratio, |
|
limit=5 |
|
) |
|
|
|
top_wines = [match[0] for match in matches] |
|
|
|
verification_prompt = f""" |
|
Given the user query "{query}" and the top 5 wine matches {top_wines}, determine the rank (1 to 5) of the best matching wine. If the best match is not within the top 5, return -1. Please respond in JSON format with a key 'rank'. |
|
""" |
|
|
|
verification = name_extraction_chain.invoke({"query": verification_prompt}) |
|
|
|
rank_data = json.loads(verification['text'].strip().replace('```json','').replace('```','')) |
|
rank = rank_data.get('rank', -1) |
|
|
|
if rank == -1 or rank > len(top_wines): |
|
return {"name": "No matching wine found", "rating": None, "rank": -1} |
|
|
|
matched_wine = top_wines[rank - 1] |
|
result = df.iloc[name_to_index.get(matched_wine, -1)] |
|
|
|
if name_to_index.get(matched_wine, -1) == -1: |
|
return {"name": "No matching wine found", "rating": None, "rank": -1} |
|
|
|
return { |
|
"name": result['name_of_wine'], |
|
"rating": result['rating'], |
|
} |
|
|
|
|
|
iface = gr.Interface( |
|
fn=find_wine_info_fast, |
|
inputs=[gr.Textbox(label="Enter Wine Query"), gr.Textbox(label="Enter Secret Phrase")], |
|
outputs=gr.JSON(label="Wine Information"), |
|
title="Wine Finder", |
|
description="Enter a query to find information about a wine." |
|
) |
|
|
|
iface.launch() |