{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"id": "027eaf50",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd \n",
"import numpy as np \n",
"import seaborn as sns\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.ensemble import RandomForestRegressor\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.metrics import mean_squared_error, r2_score , mean_absolute_error\n",
"from sklearn.ensemble import GradientBoostingRegressor\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d37f7293",
"metadata": {},
"outputs": [],
"source": [
"from xgboost import XGBRegressor\n",
"from catboost import CatBoostRegressor\n",
"from lightgbm import LGBMRegressor\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "39c63a9b",
"metadata": {},
"outputs": [],
"source": [
"df=pd.read_csv(\"data/archive (1)/city_day.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "b23e37ad",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" City | \n",
" Date | \n",
" PM2.5 | \n",
" PM10 | \n",
" NO | \n",
" NO2 | \n",
" NOx | \n",
" NH3 | \n",
" CO | \n",
" SO2 | \n",
" O3 | \n",
" Benzene | \n",
" Toluene | \n",
" Xylene | \n",
" AQI | \n",
" AQI_Bucket | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Ahmedabad | \n",
" 2015-01-01 | \n",
" NaN | \n",
" NaN | \n",
" 0.92 | \n",
" 18.22 | \n",
" 17.15 | \n",
" NaN | \n",
" 0.92 | \n",
" 27.64 | \n",
" 133.36 | \n",
" 0.00 | \n",
" 0.02 | \n",
" 0.00 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 1 | \n",
" Ahmedabad | \n",
" 2015-01-02 | \n",
" NaN | \n",
" NaN | \n",
" 0.97 | \n",
" 15.69 | \n",
" 16.46 | \n",
" NaN | \n",
" 0.97 | \n",
" 24.55 | \n",
" 34.06 | \n",
" 3.68 | \n",
" 5.50 | \n",
" 3.77 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 2 | \n",
" Ahmedabad | \n",
" 2015-01-03 | \n",
" NaN | \n",
" NaN | \n",
" 17.40 | \n",
" 19.30 | \n",
" 29.70 | \n",
" NaN | \n",
" 17.40 | \n",
" 29.07 | \n",
" 30.70 | \n",
" 6.80 | \n",
" 16.40 | \n",
" 2.25 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 3 | \n",
" Ahmedabad | \n",
" 2015-01-04 | \n",
" NaN | \n",
" NaN | \n",
" 1.70 | \n",
" 18.48 | \n",
" 17.97 | \n",
" NaN | \n",
" 1.70 | \n",
" 18.59 | \n",
" 36.08 | \n",
" 4.43 | \n",
" 10.14 | \n",
" 1.00 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 4 | \n",
" Ahmedabad | \n",
" 2015-01-05 | \n",
" NaN | \n",
" NaN | \n",
" 22.10 | \n",
" 21.42 | \n",
" 37.76 | \n",
" NaN | \n",
" 22.10 | \n",
" 39.33 | \n",
" 39.31 | \n",
" 7.01 | \n",
" 18.89 | \n",
" 2.78 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" City Date PM2.5 PM10 NO NO2 NOx NH3 CO SO2 \\\n",
"0 Ahmedabad 2015-01-01 NaN NaN 0.92 18.22 17.15 NaN 0.92 27.64 \n",
"1 Ahmedabad 2015-01-02 NaN NaN 0.97 15.69 16.46 NaN 0.97 24.55 \n",
"2 Ahmedabad 2015-01-03 NaN NaN 17.40 19.30 29.70 NaN 17.40 29.07 \n",
"3 Ahmedabad 2015-01-04 NaN NaN 1.70 18.48 17.97 NaN 1.70 18.59 \n",
"4 Ahmedabad 2015-01-05 NaN NaN 22.10 21.42 37.76 NaN 22.10 39.33 \n",
"\n",
" O3 Benzene Toluene Xylene AQI AQI_Bucket \n",
"0 133.36 0.00 0.02 0.00 NaN NaN \n",
"1 34.06 3.68 5.50 3.77 NaN NaN \n",
"2 30.70 6.80 16.40 2.25 NaN NaN \n",
"3 36.08 4.43 10.14 1.00 NaN NaN \n",
"4 39.31 7.01 18.89 2.78 NaN NaN "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "68c908db",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"City 0\n",
"Date 0\n",
"PM2.5 4598\n",
"PM10 11140\n",
"NO 3582\n",
"NO2 3585\n",
"NOx 4185\n",
"NH3 10328\n",
"CO 2059\n",
"SO2 3854\n",
"O3 4022\n",
"Benzene 5623\n",
"Toluene 8041\n",
"Xylene 18109\n",
"AQI 4681\n",
"AQI_Bucket 4681\n",
"dtype: int64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0cc7a877",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 29531 entries, 0 to 29530\n",
"Data columns (total 16 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 City 29531 non-null object \n",
" 1 Date 29531 non-null object \n",
" 2 PM2.5 24933 non-null float64\n",
" 3 PM10 18391 non-null float64\n",
" 4 NO 25949 non-null float64\n",
" 5 NO2 25946 non-null float64\n",
" 6 NOx 25346 non-null float64\n",
" 7 NH3 19203 non-null float64\n",
" 8 CO 27472 non-null float64\n",
" 9 SO2 25677 non-null float64\n",
" 10 O3 25509 non-null float64\n",
" 11 Benzene 23908 non-null float64\n",
" 12 Toluene 21490 non-null float64\n",
" 13 Xylene 11422 non-null float64\n",
" 14 AQI 24850 non-null float64\n",
" 15 AQI_Bucket 24850 non-null object \n",
"dtypes: float64(13), object(3)\n",
"memory usage: 3.6+ MB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "5d6591a7",
"metadata": {},
"outputs": [],
"source": [
"df = df[['PM2.5', 'NO2', 'CO', 'SO2', 'O3', 'AQI']].dropna()\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "877f636a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" PM2.5 | \n",
" NO2 | \n",
" CO | \n",
" SO2 | \n",
" O3 | \n",
" AQI | \n",
"
\n",
" \n",
" \n",
" \n",
" 28 | \n",
" 83.13 | \n",
" 28.71 | \n",
" 6.93 | \n",
" 49.52 | \n",
" 59.76 | \n",
" 209.0 | \n",
"
\n",
" \n",
" 29 | \n",
" 79.84 | \n",
" 28.68 | \n",
" 13.85 | \n",
" 48.49 | \n",
" 97.07 | \n",
" 328.0 | \n",
"
\n",
" \n",
" 30 | \n",
" 94.52 | \n",
" 32.66 | \n",
" 24.39 | \n",
" 67.39 | \n",
" 111.33 | \n",
" 514.0 | \n",
"
\n",
" \n",
" 31 | \n",
" 135.99 | \n",
" 42.08 | \n",
" 43.48 | \n",
" 75.23 | \n",
" 102.70 | \n",
" 782.0 | \n",
"
\n",
" \n",
" 32 | \n",
" 178.33 | \n",
" 35.31 | \n",
" 54.56 | \n",
" 55.04 | \n",
" 107.38 | \n",
" 914.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PM2.5 NO2 CO SO2 O3 AQI\n",
"28 83.13 28.71 6.93 49.52 59.76 209.0\n",
"29 79.84 28.68 13.85 48.49 97.07 328.0\n",
"30 94.52 32.66 24.39 67.39 111.33 514.0\n",
"31 135.99 42.08 43.48 75.23 102.70 782.0\n",
"32 178.33 35.31 54.56 55.04 107.38 914.0"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "79c84cdc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Index: 22618 entries, 28 to 29530\n",
"Data columns (total 6 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 PM2.5 22618 non-null float64\n",
" 1 NO2 22618 non-null float64\n",
" 2 CO 22618 non-null float64\n",
" 3 SO2 22618 non-null float64\n",
" 4 O3 22618 non-null float64\n",
" 5 AQI 22618 non-null float64\n",
"dtypes: float64(6)\n",
"memory usage: 1.2 MB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "0d3a6f6b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGkCAYAAADT+zRtAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWTdJREFUeJzt3QmczWX///HLetsSIUvWKPteN2mhsoaQLYXsKqncIRGiVKK90GZJ9i1aVEKyJdySLCVLbktlDeG2zf/x/tz/7/l9z3GGGc5gznk9H49zz8w5Z74zc27xmeu6Pp93iri4uDgHAAAQZVJe6m8AAAAgKVDkAACAqESRAwAAohJFDgAAiEoUOQAAICpR5AAAgKhEkQMAAKISRQ4AAIhKFDkAACAqUeQAAICodNkWOS+88IK78cYb3RVXXOGuvvpq17BhQ/fzzz8HPef33393rVq1crly5XIZM2Z0FSpUcNOmTbtk3zMAALh8XLZFzoIFC1yXLl3cd9995+bMmeNOnDjhatas6f7+++/Ac1q3bm2Fz6xZs9yaNWvcPffc45o1a+ZWrVp1Sb93AABw6aVILgGdu3fvthUdFT+33Xab3ZcpUyY3fPhwW83xZMuWzQ0ePNh16NDhEn63AADgUrtsV3JC/fXXX/b2qquuCtxXpUoVN2nSJLdv3z53+vRpN3HiRHfs2DFXrVq1S/idAgCAy0GyWMlRAXP33Xe7AwcOuEWLFgXu18fNmzd3X331lUudOrXLkCGDmzJlim1rAQCA2JbaJQM6m/PTTz8FFTjSt29fK3S+/vprlz17dvfxxx/bmZyFCxe60qVLn3Gd//73v3bz+8c//mE3AAAQXS77lZxHHnnEzZw503377beuUKFCgfs3bdrkihQpYsVPyZIlA/dXr17d7h8xYsQZ13rmmWfcgAEDgu4r5Iq7win+7/MBAMDlb87pKcn3TI5qLxU4M2bMcPPmzQsqcOTIkSP2NmXK4B8hVapUtr0VzlNPPWVne/y3Qq5YEv4UAADgUkl9OW9RjR8/3lZxNCtHM3HkyiuvdOnTp3fFihWzFZvOnTu7oUOHWleVtqvUbv7pp5+GvWa4ramUKVJdlJ8HAABcXJftdlWKFCnC3j9q1CjXpk0be3/jxo2uV69edlbn8OHDVvR07949qKX8XGqkbBqx7xkAAFw+21WXbZFzsVDkAACQ/CTrMzkAAAAXgiIHAABEJYocAAAQlZKkyNFMm/r167s8efLYAWJ1PYVav369TTFWt5QSxJU4vm3bNntMMQ1du3Z1RYsWtU6q/Pnzu0cffTQQ7eDR8+vWrWuTjpVr1aNHD3fy5Mmk+JEAAEAykyRFjpLCy5Yt695+++2wj2uQ3y233GJt4N9884378ccfbXpxunTp7PGdO3faTa3hGvY3evRo98UXX7j27dsHrnHq1CkrcI4fP+6WLFnixowZY8/r169fUvxIAAAgmUny7iqt5GigX8OGDQP33XvvvS5NmjRu7NixCb6OMqlatmxpBZRyqmbPnu3q1atnxVDOnDntOZpy/OSTT1piedq0aRN0XbqrAABIfi7L7ipNI/7ss8/c9ddf72rVqmXbTJUqVQq7peWnrarMmTNbgSNLly61fCqvwBFd7+DBg27t2rVJ/nMAAIDL20Uvcv78808b3Pfiiy+62rVrW4J4o0aN3D333OMWLFgQ9nP27Nnjnn32WdepU6fAfZqA7C9wxPvYm44MAABi10WPdfBypRo0aOC6detm75crV87O1Wi7qWrVqkHP18qMzt6UKFHCAjYvRLgU8tNxp4h2AAAgCl30lZzs2bPblpOKFr/ixYsHuqs8hw4dstUeZVfpXI/O8Xhy5crl/vjjj6Dnex/rsXBeeOEF6+by37a4DRH86QAAQMwWOToQrHbxn3/+Oej+X375xRUoUCBoBadmzZr2/FmzZgU6rzw33XSTW7NmjW1/eRTOqXM7oQWUhxRyAABiR5JsV+nMza+//hr4eMuWLe6HH35wV111lc280Tyb5s2bu9tuu83dfvvt1h7+ySefWDu5v8A5cuSI++ijj+xj3SRHjhwuVapU9riKGYVxvvTSS3YO5+mnn7b08tCkcQ8p5AAAxI4kaSFXsaLiJdQDDzxgs2xk5MiRtn20fft2G/o3YMAAO6dzts/3CqaCBQva+7/99pt76KGH7PkaKKjr60Cz14GVELSQAwCQ/JBCngAUOQAAJD+X5ZwcAACAi4EiBwAARCWKHAAAEJUiXuToMLFaxDXbRpENyqwKbRf3YhnuuOMOOzCstm91Wh09ejTw+KBBg1yVKlUsYTxLlixhvxYp5AAA4KIVOYpmUBv3d999Z3NrTpw4Ye3eCtb0Fzga8qf7v//+e7d8+XL3yCOPuJQp/+/bUbp406ZNrXsqHFLIAQDAJe2uUiK4VllU/Gi1RipXruxq1KhheVTnosLl8ccfdwcOHAi6nxRyAABi15zLobtKU4VFgwBFE4qXLVtmhY+2o1SgKK9q0aJFibouKeQAAOCSFTkK49QqzM033+xKlSpl923evNneKmyzY8eONu24QoUK7s4773QbN25M8LVJIQcAAJcshVxnc3766aegVRovhbxz586ubdu29n758uXd3LlzA1OQkwop5AAAxI4kW8nRQeJPP/3UzZ8/3+XNmzdwf+7cue1tQlLIz4YUcgAAcFGLHJ1jVoEzY8YMN2/ePFeoUKGgx5U7lSdPnnOmkJ8LKeQAAOCibldpi2r8+PFu5syZNivHOx+jVZP06dO7FClS2Dyb/v37u7Jly7py5cpZ+/eGDRvc1KlTA9fRqs6+ffvsrdrFlWIuRYoUcZkyZSKFHAAAXNwWchUx4YwaNcq1adMm8LHSwt9++20rZFTsqFC55ZZbAo/ruSp+Qmn7q1q1avY+KeQAAMSmOaSQnxtFDgAAyc9lMScHAADgUqDIAQAAUYkiBwAARCWKHAAAEJUiXuQMHz7clSlTxubV6KZ5NgrT9GzatMk1atTI5ciRwx5v1qzZGUP97r77bpc/f36XLl06Gx6oNnEFcfp9+eWXFvSpNnVdq3Hjxm7r1q2R/nEAAEAyFfEiR9ON1ca9cuVKt2LFCnfHHXe4Bg0aWGjm33//bfNt1GauQYGLFy92x48fd/Xr1w/EPcjtt9/uJk+ebAMDp02bZoVRkyZNAo9v2bLFrqlra36OCp49e/a4e+65J9I/DgAASKYuSgu5EsiHDBni8uXL5+rUqeP2799vqziiqcNZs2Z1X331latevXrYz581a5Zr2LCh5U6lSZPGhga2aNHCPk6Z8n912ieffGKFj/echKKFHACA5OeSt5BrUvHEiRNtBUfbVipAtIrjnzqsLSkVKv4QTz8NCxw3bpyrUqVKoHipWLGifY4GDOprqFAaO3asFUmJKXAAAED0SpIiR5lSil5QMfPggw9ajpUiGHSGRpOJn3zySXfkyBErfrp3726Fyq5du4KuoefoudmyZbNoB8VEeJSHpZWf3r1729fIkiWL2759u21xnY2KrIMHDwbdlEIOAACiT5IUOUWLFrWzMsuWLbPYBcUtrFu3zg4IT5kyxbaWVAQpz+rAgQOuQoUKgW0nj/KtVq1aZcVMqlSpXOvWrS38U5RT1bFjR7vu8uXL3YIFC1zatGnt3M7Zdt9IIQcAIHZclDM52kYqXLiwe+eddwL36aCwMqa0CpMrVy73xBNPWGETjlZpdJ5nyZIltu3Vt29f98UXX1iBE/qcpUuX2opRfCs5uvk1urINIZ0AAEThmZyIp5CHo86p0OIie/bs9lZdVn/++ae1jZ/t88W7hra6Qld+tNrjf244pJADABA7Il7kPPXUU9ZBpTk3hw4dcuPHj7eUcLV5iw4LFy9e3LautOry2GOPuW7dutkWl2iLSys0SiRX15Xax7Vyo5UgreJI3bp13auvvuoGDhxoXVb6OjqfU6BAAVe+fPlI/0gAACAZiniRo1UZnZ/RQWKdedFgQBU4NWrUsMc1+0aFkLqmChYs6Pr06WNFjidDhgxu+vTprn///nYwWcMAa9eu7Z5++unAKozm46h4eumll+ymz1EBpC2s9OnTR/pHAgAAydBFOZNzOWNODgAAyc8ln5MDAABwqVDkAACAqESRAwAAolLEi5xnnnnGohv8t2LFigUeP3bsmOvSpYtNMtZAQKWHh6aQa8KxOqh0oPjqq6+2+TknT54MPN6mTZszvoZuJUuWjPSPAwAAkqkkWclRsaHuKu/mz6VSJ5UmHmvysSYV79y5Myg9XBEPKnCUTq7hf2PGjHGjR492/fr1Czzn9ddfD7r+f/7zHwsBbdqUQ8QAACAJhwFqkrGmGIdSkOYHH3xg7d9qA/fPzfnuu+9sUrFiHBQB8fXXX7ucOXO6cuXKuWeffdayrLRKpPgGL5LB8/HHH1uyedu2bZPixwEAAMlQkqzkbNy40eXJk8dde+217v7777ftJ1m5cqU7ceKExTx4tJWlwYEaDCh6W7p0aStwPLVq1bIwzbVr14b9eiqcdE0NAwQAAEiSIqdSpUq2vaTBfMOHD3dbtmxxt956q00lVrCmVmKUV+WngkaPid76Cxzvce+xUNrumj17tuvQoQP/jwIAgKTbrlKkg0fTjlX0aIVl8uTJSTKNWGd2VDQ1bNjwnM8NF9B5Ou4U+VUAAEShJG8hVwFy/fXXu19//dXO6ehA8YEDB4Keo+4q7wyP3oZ2W3kfh57z0bDmkSNHulatWtkK0bm88MILgfM83m2L2xCBnxIAAMRckXP48GEL2VQGVcWKFV2aNGnc3LlzA48ry0pndrzwTb1ds2aNZWB55syZ4zJnzuxKlCgRdG11Z6l4at++fYK+F2Vm6fCz/1bI/V97OwAAiB4R367q3r27q1+/vm1R6byMgjZTpUplaeFaOVFB8q9//ctavlW4dO3a1QobdVZJzZo1rZjR6ozCN3UOR+Gcmq3jBXT6DxxrO6xUqVIJ+t70+aHXYKsKAIDoFPEiZ/v27VbQ7N271+XIkcPdcsst1h6u9+XVV191KVOmtCGAOh+jzqlhw4YFPl8F0aeffuoeeughK34yZszoHnjgATdw4MCgr6NVmGnTptnMHAAAgFCkkJNCDgBAskMKOQAAiFkUOQAAICpR5AAAgKh00VPI1U7eqFEjO4is7qpmzZqdMRenYMGCZ1zjxRdfDHrOjz/+aJOU06VL5/Lly2edWAAAAJckhfzvv/+2FnEVLfPmzXOLFy+24YBqOT99+nTQNdRN5b+GWs09yrHSddSmrjysIUOGWHH17rvvJsWPAwAAkqGLmkKuombr1q1u1apVtorjxTJkzZrVih5/cOcVV1wR9hoybtw4K4407ViTjlVU/fDDD+6VV15xnTp1SoofCQAAJDMXNYVcc3G0iuMfyKftJs3N8VZ7PNqeypYtmytfvryt1Jw8eTLwmJLKb7vttqAoB83b0fTk/fv3J8WPBAAAkpmLmkKuqcYa7vfkk0+6I0eO2PaVJiSfOnXKtqQ8jz76qJs4caKbP3++69y5s3v++eddz549A48nNqkcAADEnouaQq5IhylTptg04zfeeMNWcDQduUKFCva+R7EP/mtoxUbFjgI2Q2MZEoMUcgAAYsdFTSEXHRhWh5UCOPfs2ePGjh3rduzYYVtb8VGhpO0qnedJbFK5HynkAADEjouaQu6XPXt2K4B04FgFz9133x3vNXSoWCs9V199tX2sTKtvv/3WnThxIiipvGjRonaIOT6kkAMAEDsuagq5jBo1yhUvXtzm5OgA8WOPPea6detmBYrovmXLlrnbb7/dOqz0sR5v2bJloIC577773IABA2z7S+d7fvrpJwvqVPjn2ZBCDgBA7LjoKeTqgNKKyr59+2zoX58+fayI8agI0aFjzb3R+ZlChQrZ4/5zOtpm+uqrr1yXLl1cxYoVbVWoX79+tI8DAIAAUshJIQcAINkhhRwAAMQsihwAABCVKHIAAEBUSpIiR3Nv1A2lWIb06dO70qVLuxUrVgTNtGnTpo1FP2TIkMHVrl3boiBCqbPqjjvusCnJyrpSlMPRo0cDjw8aNMhVqVLFrqF2dAAAgCQrcpQddfPNN7s0adK42bNnu3Xr1rmXX3450P6tc84NGzZ0mzdvdjNnzrSwTrWbK5xTMQ/+AkfFj4YHfv/992758uXukUceCZqMrJDOpk2b2gRlAACAJO2u6tWrl6WNL1y4MOzjv/zyi83E0WwbpYfL6dOnbVKxMqo6dOhg9ynnqkaNGu7ZZ58959dUVtbjjz/uDhw4kOjvl+4qAACSn0vSXTVr1ix3ww032AqLJhQrRfy9994LPO5lRyl9PPBNpExp83G8JHJNQNZAQH2+tqMUvlm1atUzksoBAAAuWpGjbSilj1933XXuyy+/tK0kpYqPGTPGHi9WrJjLnz+/DQTU1pa2nAYPHmxDBL0kcl1DNBCwY8eOlmiuEM8777wz7NkdAACAJJ94rK0nreRo60m0kqOtqREjRrgHHnjAzupMnz7dIhmuuuoqi3zQeRyll3s7Z7qGKHm8bdu2gevMnTvXjRw50oI2zwcp5AAAxI6Ir+QoiLNEiRJB9ymratu2bYGPFcWg0E2dodHqjVZqFAPhJZF7YZ7nuk5ikUIOAEDsiHiRo84q5VOFHjZWB1UoFRnKtNIWlFrMGzRoYPcr00rt5Qm9TkKRQg4AQOyI+HaVwjR1WFjbVc2aNbP273fffddunilTplhxo7M5a9assSRytZWrXVxSpEjhevToYQnmZcuWdeXKlbMzPRs2bHBTp04NXEerOgr61NtTp07Z6pAUKVLEZcqU6YzvjRRyAABiR8SLnBtvvNHNmDHDVk0GDhxoKeKvvfaau//++wPP0RaVUsU1FFBbU61bt3Z9+/YNuo5awo8dO2ZFkwoZFTtz5sxxhQsXDjxHyePegWbv3I7Mnz/fVatWLdI/GgAASEZIIWdODgAAyQ4p5AAAIGZR5AAAgKhEkQMAAKISRQ4AAIhKES9y1MqtTil1VaVPn966oRSy6T/frInHahfPli2btYt7rd9+mnasz9U11G6uGTpqIQ9HgwTz5s1r1zqfkE4AABB9Il7kKIdK2VVvvfWWW79+vX380ksvuTfffDPwnL///tvdcsst9lh8NBV51KhRdg1lYKlIUmGkIiqUIiLKlCkT6R8FAAAkYxGfk7NkyRJbdalbt25gevGECRNsKKCnVatW9nbr1q3xXqdTp06B93WN5557zmbl6HP8s3JUUGn1RjNzZs+eHekfBwAAJFMRX8nRtGMFaSqCQVavXu0WLVpkAZznSys/WtXRFli+fPkC969bt84GDn744YcuZUqOFwEAgCRcyenVq5c7ePCgK1asmCWMa3tp0KBBQROPE2rYsGGuZ8+eVuQULVrUJh6nTZvWHlOaeIsWLdyQIUMsHmLz5s3nvB4p5AAAxI6IL39MnjzZjRs3zo0fP979+9//ttiFoUOHBsUvJJQKo1WrVrkFCxa466+/3rKwFPUgio1QKnnLli0TfD1SyAEAiB0Rj3XQdpJWc7p06RK4T+dpPvroozO6o3S+RltQKmQUwnk2x48fd1mzZnXvv/++reDo+Qr3VEeV6Mc4ffq0rR716dPHDRgwIEErOY2ubMNKDgAAURjrEPHtqiNHjpxxPkaFhwqQC6EiRjevSJk2bZo7evRo4PHly5e7du3auYULFwYdTPYjhRwAgNgR8SKnfv36dgZH52RKlixpqzSvvPKKFSAepYpv27bN7dy50z7++eef7W2uXLnspvM1kyZNspZxzcjZvn27e/HFF21mzl133WXPDS1k9uzZY2+1hZUlS5ZI/1gAACDWz+RoHk6TJk3cww8/bAVH9+7dbbCfBgJ6Zs2a5cqXLx9oM7/33nvt4xEjRtjH6dKlsxUZFTRFihRxzZs3d1dccYW1p1999dWR/pYBAEAUiviZnOSmRsqml/pbAAAASXAmh+EyAAAgKlHkAACAqESRAwAAolKSFDmHDh1yjz/+uCtQoIB1RCnqQS3eHh0DUtZU7ty57fHq1au7jRs3Bl1DeVWageO/qcMqnF9//dUOJtNVBQAAkrTI6dChg0UwjB071gb2qRVchcyOHTvscaWSv/HGG9ZNtWzZMpcxY0ZXq1atwDRjj3Kpdu3aFbh17dr1jK914sQJGw546623JsWPAgAAkqmIFzka0KdBfSpkbrvtNmsBf+aZZ+ytEsO1ivPaa6+5p59+2tLKy5QpYwGbmpnz8ccfB11LqzPe7BzdVAyF0nWUk6XIBwAAgCQrck6ePGmhnJp146dtKaWRb9myxf3++++2suNRhlSlSpXc0qVLgz5H21PZsmWzGToK4tS1/ebNm+emTJni3n777Uj/GAAAIJmL+MRjrb7cdNNNNvxPwwBz5szpJkyYYAWMVnNU4Iju99PH3mPy6KOPugoVKrirrrrKhgAqkFNbVpqeLHv37nVt2rSxTKzMmTMn6HsjhRwAgNiRJGdydBZH21LXXHONZUXp/I3OzYRmWp3Nv/71L1etWjXbznrwwQfdyy+/bNOUvSKlY8eO7r777rMtsYQihRwAgNiRJEWOcqUWLFjgDh8+7P7zn/+477//3g4IX3vttXa2Rv7444+gz9HH3mPhaDtL21VKLve2qoYOHepSp05tt/bt27u//vrL3h85cmTYa2g1SM/x3wq5YhH92QEAQJRuV/npoLBu+/fvd19++aUdRi5UqJAVM3PnznXlypWz5x08eNC6rB566KF4r/XDDz/YSpCXXaXtL5398cycOdMNHjzYtra0ghQOKeQAAMSOJClyVNBou6po0aI2w6ZHjx7WAdW2bVubd6MZOs8995y77rrrrOjp27evy5Mnj2vYsGGggFHRc/vtt9sZH33crVs317JlS5c1a1Z7js77+K1YscKKoFKlSiXFjwQAAJKZJClytA2kraHt27fbweHGjRu7QYMGuTRp0tjjPXv2dH///bfr1KmTO3DggLvlllvcF198EejI0mrLxIkTrfVcZ3BUCKnI0TkdAACAhCCFnBRyAACSHVLIAQBAzKLIAQAAUYkiBwAARKVLkkKumTiaVqyOqgwZMrjatWufkULeuXNnm7ejz8+RI4flXG3YEDy4LzSlXDcdWAYAALjoKeQ656xW8c2bN9tsm1WrVlkxpMfVceWpWLGiGzVqlFu/fn2gJV3X8c/GET3Hn1TutaEDAIDYFvHuKqWQa7aNCpi6desGFS116tRxrVu3tvk5P/30kytZsqQ9dvr0aRsQ+Pzzz1uBFM6PP/7oypYta3N3tMJj33yKFG7GjBkXVNjQXQUAQPJzSbqrzpVC7mVP+R/XED/NxtHj4WiFRys2mpeTL1++oMe6dOnismfP7v75z39anEOMd8QDAICkKnL8KeQ7d+60gkdJ4ZparO0kTT7Onz+/DQtU3MPx48ctjkGDA/W437Bhw1ymTJnsNnv2bNsCS5s2beDxgQMHusmTJ9v9Gjj48MMPW4gnAABAkgwD3LRpk2vXrp379ttvXapUqVyFChXc9ddf71auXGlnbPRWgZqrV6+2x3UeR6s5+lZUzPgnJ//5559W/CiMU2d6Fi9efMYqkadfv3624qNQ0HC0iuStJHkaXdmG/CoAAJKZSzYM8Gwp5N75HAVuKtJBBYwiHfbu3Rt43HPllVdavtVtt93mpk6dat1VOoNztqRyrQiFFjKeF154wa7pv21xwR1bAAAgOiTpnBwlkOfOnTuQQq42cD8VGWoPV/u4AjZDH/fTKo9u8RUwosJJAZ6hSeMebZFpdch/K+SKXcBPCAAALlcXPYVcpkyZYsWNzuaoxfyxxx6zDim1iIvayydNmmQf63lanXnxxRft8PJdd91lz/nkk09s3k7lypVt+0rnctSd1b1793i/LxU/oQUQW1UAAESnS5JCri0qJYqrSNFKj9rK+/btG/h8FS0LFy50r732mq0C5cyZ07aslixZ4q6++mp7jq719ttvWzq5CqoiRYq4V155xXXs2DEpfiQAAJDMkELOnBwAAJIdUsgBAEDMosgBAABRiSIHAABEpUQXORrwV79+fUsQV3bUxx9/HPS4jvhoKJ8OFKsbSoP+QhPGf/nlF2sXVxxD5syZ3S233OLmz58f9utpfk7evHnta2mujp/ayfv06WMBn+qaKliwoEU7AAAAJLrIUY6UgjLV2RTOSy+95N544w03YsQIt2zZMpuVU6tWLXfs2LHAc+rVq2cZV/PmzbPpx7qe7vv999/PuJ4mI5cpUybs12rWrJmbO3eu++CDD9zPP//sJkyYYG3rAAAAF9RdFZoCrktpheeJJ54IzKtRO7lawEePHu3uvfdet2fPHpt9oxWhW2+91Z5z6NAhW9HRrBut/HiGDx9u83K0MnTnnXdaO3mWLFnsMU1J1vU0U0dt6ueL7ioAAJKfi95dtWXLFluN8RcqmmqsuAUFdEq2bNlsteXDDz+0VSGt6Lzzzjs2/0ZxD55169ZZAKeep1yrULNmzXI33HCDrRxdc801lo2lwuro0aOR/JEAAEAyFdFhgN52k1Zu/PSx95hWf77++mtb/VFiuQoYFThamVEkg3fWpkWLFm7IkCE2FVmrNaF036JFi2xwoFaTtEKkFHKd4VFIJwAAiG1JMvH4bLSl1aVLFytsNNVYh5Pff/99O8y8fPlyO7CsacnFixd3LVu2jPc6p0+ftoJp3LhxtlokmnjcpEkTN2zYMLtuQlLIT8edItoBAIAoFNHtqly5ctlbxTX46WPvMR02/vTTT93EiRPdzTff7CpUqBAoSsaMGRN4jvKtUqdObTedxxF1Y/Xv39/eVzGkbSqvwBEVRiqiFCcRDinkAADEjogWOYUKFbJiRh1PnoMHD1qX1U033WQfHzly5H9fOOScjT7W6oxMmzbNrV692lLFddNKj2jlR6tAogJp586d7vDhw0Gt6bqOWs7DIYUcAIDYkejtKhUVShb3HzZWIaIOJ52fefzxx91zzz3nrrvuOit6FLypjiuvA0vFjs7ePPDAA9Y1pRWc9957z65Tt25de07hwoWDvqbO23grNV531X333eeeffZZSzYfMGCAPUdp5+3atQu7VSWkkAMAEDsSXeSsWLHC3X777YGPlSYuKlrUJt6zZ0/rmurUqZMN79OgPx0q1gFhb8tJH2uI3x133OFOnDjhSpYs6WbOnGnzchIqU6ZM1nLetWtX67JS15bm5qjAAgAAIIWcOTkAACQ7pJADAICYRZEDAACiEkUOAACIShFPIZ8+fbqrWbOmHQTW4+q8CqXpx61atbJ2cwV4alaO2sY9W7dutWBOdWepU0rdVpqPc/z48cBznnnmGbt+6E3XAwAAiHgKuR5XR9XgwYPjvUbr1q0tNVz5U2vWrHH33HOPdUatWrXKHt+wYYPNzFGm1dq1a92rr75qqea9e/cOXEM5Vbt27Qq6lShRwjVtykFiAAAQ4RRyP63GaCVGhUu5cuXOaP9WwrhWczxa+VFh1KFDh7BfSzlW+pxwOVai4YH6Ov5084SguwoAgOTnsu2uqlKlips0aZLbt2+frdgo4uHYsWOuWrVq8X6OphNr4GB8NBVZSeSJKXAAAED0uiRFzuTJk20IoFZvNIG4c+fOtiJUpEiRsM/XhOU333zTnheOCiQFdeocDwAAwCVJIRdFPWga8tdff20TkHV4WWdylE1VunTpoOfu2LHD1a5d287adOzYMez1VCAdOnTIpi6fDSnkAADEjou+krNp0yb31ltvuZEjR1q6uA4xq3NK0Qyhh5kVwKkICW1vvfvuu2fdqqpXr57LmTPnWb82KeQAAMSOi17kxJdCnipVqkAKubeCozM6FStWdKNGjTrj+R4Fe86fPz9BW1WkkAMAEDsinkKuw8Tbtm2zVRhRq7hoJo5uxYoVs7M3Ol8zdOhQO5ej7SqFbX766adBBU6BAgXsObt37w58PV3DTytCuXPndnXq1Dnn904KOQAAsSPRLeTffPNNUAq5x0sh161t27ZnPK4tKQ3wk40bN7pevXq5RYsWWdGkokdzb7yW8viuIf5vVys/KoQ0d2fQoEHufNBCDgBAdLaQk0JOkQMAQLJz2c7JAQAASGoUOQAAICpR5AAAgKhEkQMAAKJSooscBWDWr1/f5cmTxwI61f7tpw4qtYlnzJjRZc2a1VWvXt0tW7Ys6DnqhNKAvwwZMrgsWbKE/TrLly+3YYF6XNepVauWhXD6v46+fuhNXxcAACDRRc7ff/9tU4pDpxN7FJKpicZr1qyxFvGCBQu6mjVrBs26OX78uMU0PPTQQ2GvobZyRTlo7o4KJF3niiuusEJHmVeilvNdu3YF3UqUKGHXBQAAuKAWcq2cKDeqYcOG8T7n4MGDFp+gnCqtzPhpHs7jjz9uOVZ+K1ascDfeeKMNFcyXL5/dp6KpTJkyNmMnXJCnVnnKlStnK02JSSKnhRwAgOTnkreQa8VGmVMqcrT6k1BFixa1ScgffPCBXePo0aP2fvHixW1lKL78Kq0iJabAAQAA0StJihzFM2TKlMmlS5fOvfrqqxbZoLTxhNLWlCYrf/TRRy59+vR2rS+++MLNnj3bpU59ZhLFsWPH3Lhx486ZX6UEcq0s+W9KIQcAANEnSYocxT4oz2rJkiV2tqZZs2buzz//TPDna+VGBcvNN9/svvvuO7d48WJXqlQpV7duXXsslLbMDh06ZNESZ0MKOQAAsSNJihx1OOncTOXKlW2bSasveptQ48ePd1u3brX0cZ3N0XV0n8JAZ86cGXarql69ei5nzpxnvS4p5AAAxI5Ep5CfDwVpaqsooY4cOeJSpkxpB5s93se6lp8Kn/nz57tZs2ad87qkkAMAEDsSvZKj9m5tRenmFRl6X51Qai/v3bu3bTH99ttvbuXKla5du3Zux44dQa3deq73OadOnQpcT9eWGjVquP3797suXbq49evXu7Vr11oquVaEQhPQR44c6XLnzu3q1Klz4a8GAACI3ZUctXf7C41//etf9lbnYUaMGOE2bNjgxowZ4/bs2WMdUtpuWrhwoStZsmTgc/r162fP8ZQvX97eakWmWrVqNkzwk08+cQMGDHA33XSTreLoOTp8rILGo1UdtaG3adPGpUrFigwAAIjQnJxowJwcAACSn0s+JwcAAOBSocgBAABRiSIHAABEpYinkPs9+OCD9pzXXnstUSnkOkwcLmFct3BDBTUsUJ1Xyq4CAABIkhRy/xRitZKrGAp1rhTy5s2bn5EwrgTyqlWruquvvjrouQr3bN269RnhnwAAILYluoVc82jONZNGc3G6du3qvvzyS4tiCKXWcG/FJhzlVenm2b17t5s3b17YqclaLbrvvvushfxsq0oAACC2RPxMjmbXtGrVyvXo0SNoNs6F+PDDD21rq0mTJkH3K/Zh8+bNrn///hH5OgAAIHpEPNZh8ODBdj7m0Ucfjdg1tYKj1Rr/6s7GjRtdr169bNBguGRyAAAQ2yJaHSjG4fXXX3f//ve/g3KnLsTSpUst2mHs2LGB+xQFoaJH217XX399gq+l/KzQDK3TcafIrwIAIApFdLtKqyrqfsqfP7+truimDKsnnnjCFSxY8LyuqYRxdU1VrFgxcN+hQ4csXuKRRx4JfJ2BAwe61atX2/s6vxPOCy+84K688sqg2xa34bx/XgAAECMrOTqLU7169aD71BWl+xWwmVgK7Jw8ebIVJ36ZM2d2a9asCbpv2LBhVtxMnTrVFSpUKOz1nnrqqUDWlqfRlW0S/X0BAIAoLHJUePz666+Bj70U8quuuspWcBTK6ZcmTRqXK1cuV7Ro0cB9Sh/ft29fUAq5FClSxGXKlCnwvEmTJrmTJ0+6li1bBl1TgZ2lSpUKuk+t5enSpTvjfr9//OMfdgu6FltVAABEpYimkMfXEh7qXCnk/gPH99xzT9iBgQAAAGdDCjkp5AAAJDukkAMAgJhFkQMAAKISRQ4AAIhKEU8hb9OmzRnJ4bVr105UCrnf3r17Xd68ee06CuMMhxRyAABwUVLIVdT4E8QnTJiQqBRyv/bt27syZcrE+zgp5AAA4KKlkGsWjWbjxOdcKeSe4cOHWxGjlvPZs2eHfQ4p5AAA4KKdyfnmm29sOJ8GAGq1RltOibVu3TqLalACuYb/hUMKOQAAiE/E47u1VaUBfopW2LRpk+vdu7et/ChoU6stCaEQzRYtWrghQ4bYFGUVMqFIIQcAAGcT8erg3nvvDbxfunRpO09TuHBhW91J6LkZZUwVL178jDgHDynkAADgkreQX3vttS579uxBeVfnoqDNKVOmBBLGveJI19HWFCnkAADgXJJ8n2f79u12Jid37twJ/pxp06a5o0ePBj5evny5a9eunW1NaVWIFHIAAHBRU8h10xZS48aNrbtKZ3J69uxp6eK1atVKcAq5Chm/PXv22FttYXlzdUghBwAAFy2FXC3fP/74oyWMq/VbAwNr1qzpnn322aDiIqEp5AAAAOeLFHJSyAEASHZIIQcAADGLIgcAAEQlihwAABCVIp5CLuvXr3d33323zaHJmDGju/HGG62TynPs2DHXpUsXly1bNuumUjfWH3/8EXSN0CRz3SZOnBh4XMGfGgioYYCKfXj88ccT/9MDAICoFfEUcrWN33LLLa5YsWI25VjdVn379rX2bk+3bt3cJ598YgP/FixY4Hbu3GlREOGyqfxp5g0bNgw8psnFOXLkcE8//bR9PwAAABHrrtLqyowZM4KKD8U6pEmTxo0dOzbs5/z1119WnIwfP941adLE7tuwYYPNwFG+VeXKleO9dnzUdl6uXDn32muvJfpnoLsKAIDk56J3V50+fdp99tlntoWk4X8a0FepUqWgLa2VK1e6EydOuOrVqwfu06qPgjhV5PhpS0tRDv/85z/dyJEjXYx3uwMAgESIaJHz559/2kTkF1980dLIv/rqK9eoUSPbitK2lPz+++8ubdq0gcnFnpw5c9pjHmVRTZ482c2ZM8fO7Dz88MPuzTffjOS3CwAAoljqSK/kSIMGDezcjWgbacmSJW7EiBGuatWqCb6WzvH4JyLrLNCQIUPco48+et7fHynkAADEjoiu5GhrSSngJUqUCLpf52287iplWh0/ftxiH/zUXaXH4qNtL4V9hhYpiUEKOQAAsSOiRY62odQu/vPPPwfd/8svv7gCBQrY+xUrVrSDyXPnzg08ruerCLrpppvivbZCPLNmzXpGwGZiKIVcB5/9t0Ku2HlfDwAAxEgKuQ4P9+jRwzVv3tzddtttFuT5xRdfWLu42slFqyft27e3YE99TubMmV3Xrl2twPE6q/R8rezoY7We61zO888/77p37x70vXjp5fqedu/ebR+r0ApdSfKQQg4AQOxIdAu5ihV/CrlHKeSjR4+299UJpa0hbS8VLVrUDRgwwM7p+IcBPvHEE27ChAm2/aROrGHDhgW2q1QYadVFxZS+vSJFiriHHnrIdezY0Qb/Bb75FCnO+D60YrR169YE/zy0kAMAEJ0t5KSQU+QAAJDskEIOAABiFkUOAACIShQ5AAAgKl2SFHKFeGoSsjKs1F3VrFmzM1LIPTqYrIGC+lpeN5Xnyy+/tA6sK664wq6lyciJOXQMAACi10VPIdfn16xZ04qWefPmucWLF9twQBVO3sRkv549e1pBFUqt6+rYuuOOO6z4UcGzZ8+esGnmAAAg9lz0FHLlWdWpU8ft37/fVnFEQ/k06E+P+YM7Z8+ebfN0pk2b5kqWLOlWrVplqzoydepU16JFC1vp8drKNV9HhY/u0/eQEHRXAQCQ/FyWKeQqQFQc+YfyaZVHhcqiRYsC92n7SnNxVCxlyJDhjK+lycn6nFGjRrlTp05ZoaTnqkhKaIEDAACi10VPIdcZGp3TefLJJ92RI0ds+0qTjFWo7Nq1y56jxaU2bdq4Bx980N1www1hv1ahQoXs+r1797aCSanmGj6o5HIAAICIr+T4U8i1tdSrVy9Xr149SyEXHRCeMmWKbS1lypTJDicrrLNChQqBbac333zTHTp0yKYex+f333+3lR5NWl6+fLkVUYp0aNKkiRVJ4WgV6eDBg0E3pZADAIDok+jsqvNNIfdvRengsQ4o66Cwnq9VGEU6XHvttfa4DiQvXbr0jJwprercf//9bsyYMXbwWQXSSy+9FHj8o48+cvny5XPLli0L5GD5KWpCERN+hVxxV9iVjNhrAAAAYjSFPLQoUoGjokZbXWo7lzfeeMOtXr3auqZ0+/zzz+3+SZMmuUGDBtn72ury51hJqlT/C9sM16UlpJADABA7LnoKueiwsFZ3tHWlFZvHHnvMtrcU5im6jp+2taRw4cIub9689n7dunXdq6++6gYOHGhdVtre0vkcFVPly5cP+72TQg4AQOxI9ErOihUrrIjwCgm1eOv9fv362cc6aKzzN9pGKl26tHv//fetBVyzczxa6VHbuQodFSl9+vRxQ4cOTdT3ofk448ePt84tfX0ddFYBo6Iqffr0if2xAABAlCGFnDk5AAAkO6SQAwCAmEWRAwAAohJFDgAAiEoUOQAAIColusj59ttvLTFcyeDKoPLnUnkt5o888oi1eqvLSYMBvWnH/mnFrVq1sgGAinjQtGN1YHm2bt3q2rdvb9ENuoZax/v3729p5X6KcNBUZWVbqXV8yJAhiX8FAABAVEr0nBxlTZUtW9a1a9fOMqlCqaVcw/00fbhgwYKWL/Xwww9bUeQN+2vdurVFOcyaNcsGAqoVvFmzZoH29A0bNthAv3feeccVKVLE/fTTTxbhoK/ttZoroVzTjxUBoQnK69evt+eoKFKRBQAAYtsFtZBrJWfGjBk288ZTqlQpGwbYt2/foMTwOnXquOeeey4w3G/48OG2muPJli2bGzx4sOvQoUPYr6VVGn3O5s2b7eP77rvPnThxwnKwPCp4NJ9n27Zt9r0lBC3kAAAkP5ekhbxKlSq2QrNjxw4Lypw/f77FOmi1xf8cRTTs27fPVmwmTpzojh075qpVqxbvdRXBoKnK/rDNdOnSBT1HqzhKIv/tt98i/WMBAIBkJuJFjlZTdA5HZ3KUZaVJxArTVMyD/yyNVmG0eqMpxZ07d7YVIW1NhaMYCV1Xz/PUqlXLTZ8+3c2dO9cKJRVSL7/8sj22a9eusNchhRwAgNiRJEXOd999Z6s5K1eutMKjS5cu7uuvvw48R1tZOpOj+3QOR+d4dCZnzZo1Z1xPK0IqlJo2bWpnbjx6X2dv6tWrZ8WUUsfvvffe//1QIcGd/hRyJZf7b1vchki/BAAAINrO5Bw9etQKB92nAE2PztloG0m5Ups2bQocJi5ZsmTgOdWrV7f7/Z1YO3futC0sFTCjR48OW7ycOnXKurUU9qlVnbvuussSzfVxuJUc3fwaXdmGkE4AAKLwTE6iu6vORltQuoUWI6lSpbItJTly5Ii9PdtzvBUcpZjr0LJSy+NbndHnXXPNNfb+hAkT3E033RS2wBFSyAEAiB2JLnI0B0dnZDxbtmxxP/zwgx0Kzp8/v6tatarr0aOHHQLW7JoFCxa4Dz/80L3yyiv2/GLFitmKjc7XqB1c53I0a2fOnDnu008/DRQ4WsHR5+s5u3fvDnw9zdaRPXv2uKlTp9rzdGhZhZA6rfT1AAAAEr1d9c0339gKS6gHHnjAtpS0dfTUU0/ZfBx1T6lQ6dSpk+vWrVugrXvjxo2uV69ebtGiRVY0qejp3r17oKVc12nbtm3Yr+99uypyNJRQ53h0n1ZwBg0a5CpVqpSoF4AWcgAAonO76oLO5EQDihwAAJKfSzInBwAA4HJAkQMAAKISRQ4AAIhKEU8h/+OPP1ybNm3scaWDa5CfDhonJoVcdGhZAZyZM2d2WbJksVRyHVL2J5Xr64feNIgQAAAg5fmmkCuqIZTOMGswoEI0Z86c6VatWmXdVRr0p8/zKIX8559/tqnI6o5SmrkmHuv5HhU4a9euDbSWq7hSl1YoTU1WjIN301wdAACAiE48Vn5U0aJFg6YZa8CfVmyef/75QML4uVLI169fb/lXy5cvdzfccIM9rmnJmmasyclaJdJKTqFChawwKleu3Hm/AHRXAQCQ/Fz07iovMsGfDq5JxZoyrJk4CU0hX7p0qW1ReQWOaDVI11q2bFnQ17z77rvd1Vdf7W655RZbGQIAAIh4kaNpxpp6rGGA+/fvd8ePH7fVGa2++JPBz5VCrjM7Klz8UqdObVOV9Zi3GqTwT005/uyzz6zI0YoShQ4AAIh4dlWaNGnc9OnT7ZCwChLlSmkFpk6dOoFJxaEp5NmzZ7fDyzqTs3DhQle6dOkEfS19ntLLPTfeeKMFeg4ZMsRWd8IJF9B5Ou4U+VUAAEShiLeQ6+CvsqxUxGj1Rmdp9u7d66699lp7XCnkb731lhs5cqS788477RBz//79bWvKO8ysMzxKEvc7efKkbW952VXhKNLBn6sV6oUXXrCUdP9ti9sQsZ8dAADEwJwcFRBKA1f7+IoVK1yDBg0SnEKuHCoVSStXrgw8Pm/ePHv8bNlUKq5y584d7+PaRvvrr7+CboVcsQv+WQEAQAykkOuMjIobva/28Mcee8zOytSsWTPBKeTFixe3+TodO3Z0I0aMsPM7jzzyiLv33nuts0rGjBnj0qZN68qXL28fa5tMq0Pvv/9+vN+7zv/o5sdWFQAA0SnRRY5WZfwp5N65GC+FXFtUuk9DAbWqopk4OoPjP7fz+eefWwq5hgp6KeQqWtQi7hk3bpwVNtrS0qpP48aN3RtvvBH0vTz77LPut99+s0PJKp7UsdWkSZPzfS0AAEAUIYWcOTkAACQ7pJADAICYRZEDAACiEkUOAACISokqcjRnRkP3rrjiCptIrK4pBW36KZ6hS5cu1jWlqcQ6MKxDyH7KpNKBYkU3ZM2a1dWqVcutXr066Dk//viju/XWWy0iIl++fO6ll1464/tRJ5cOHOs5GiKoA80AAACJLnIWLFhgBcx3331nLd9q7VZruD9hvFu3bu6TTz6xAkTP1xRipYx71E2l9nC1mCuHSplWKppU6Oh6cvDgQbuuEsw1K0dTjJ955hn37rvvBq6zZMkS16JFC5uurJBOFVy6KRwUAADggrqrdu/ebSs6KmZuu+02G66nGTnjx48PtHJv2LDB5t4odLNy5crWgq7VoG3bttkKjWieTpkyZWxwoNrJlVDep08fy6nSLBxRy7nm6eh60rx5cyuuvNk6ousrkVyzdRKK7ioAAJKfJO+uUlEjGgQoWnXRaozyqkJDO1XkSNGiRW0r64MPPrAAz6NHj9r7KoQKFixoz9FzVTR5BY5opUdbYwr+9J7j/zrec7yvAwAAYtt5FzmKWHj88cfdzTff7EqVKmX3eSsvOmvjlzNnzkB6uLamvvnmG/fRRx+59OnT27kd5VvNnj3bhvp519HnhF7De+xsz/EeBwAAse28ixydzdH5l4kTJybq87Ryo3M0Ko50tmfx4sVWJNWtW9ceS0pKINd5H/9NKeQAACD6nFeRo7gFnYWZP3++y5s3b+B+JYRrC0rhmn7qrvLSw3VeZ+vWrW7UqFF2NkfnaHSfMrBmzpwZuE5oR5b3sXed+J5ztpRyUsgBAIgdiSpydEZZBc6MGTMsFbxQoUJBj1esWNGyqebOnRu4T+dodMhYyeJeCrmyqFKkSPF/38T//9ifQv7tt98Guq1E3Vw6z6OWc+85/q/jPcf7OuGQQg4AQOxImdgtKp2l0cqLztbo/Itu3jaTVka0FaWATq3y6CBy27ZtrfDQio3UqFHDDg/rWuvXr3dr16615+g8jhf8ed9999nZHl1Ljyt48/XXXw+EgYrSzXWW5+WXX7aOK7WYq3NLRVh8lECeOXPmoBsp5AAARKdEtZD7V1/8tPXUpk2bwDDAJ554wk2YMMHOwKjjadiwYUHbSFpxGTBggJ3p0SpO+fLl3aBBgwKFkDcMUIWQBgdmz57dde3a1T355JNBX1ezeJ5++mnb/rruuutsYKA/yTwhaCEHACA6W8hJIafIAQAg2SGFHAAAxCyKHAAAEJUocgAAQFSKeAq5QjSrVatmnUs6qBw6M8fz2WefuUqVKtnUY7WF61qe0aNH2+eGu/3555/2HAV7aqCgIiJ0DcVHvPrqq+f3KgAAgKjzvxyFRKaQq9A5efKk6927t6WFr1u3zmXMmDEwB0cp47ppLk0406ZNcx07dnTPP/+8u+OOO+xa/vRwhW/q8/3UvaXOLRVXoq+ndnEFe+p9FT2dO3e29zt16nQ+rwUAAIgiEU0h91M+lebeaCaOP8tKBY2CONVCrjk4Cf0611xzjQV5tmrVKt7n3XPPPVbkjB07NsE/A91VAAAkPxc9hTwh/v3vf7sdO3YE5uPkzp3b1alTJ2glJ9SHH37oMmTI4Jo0aRLvc1atWuWWLFniqlatmsifAgAARKOIppAnxObNm+2tJhRrkJ8ysHQmR+d49u3bF/ZztIKjKcg6exNK2VmaZHzDDTfYVlqHDh3O90cCAACxeiYnXAq5zsIkhpdP1adPH9e4cePAxGQVK5pgrHM1fkuXLrX4h/i2oBYuXOgOHz5siea9evVyRYoUcS1atAj7XE1g1i3o+4k7RbQDAABRKPWFpJArRNOfQp4Q2p6SEiVKBO7TSsy1115rQZ6h3n//fVeuXDkL/wzHCwktXbq0pZBrhSi+IkfdYToLFPT5rrgr7Eom6mcAAAAxlkKeECpWVNT4W8+VNq78qQIFCgQ9Vys0kydPTvABZa0Sha7U+JFCDgBA7Eid2C0qJZDPnDkzkELupY9752W8ZPJff/3VPl6zZo09N3/+/HZAWfNzHnzwQde/f3+XL18+K2yGDBliz23aNLjTSenj6sZq2bLlGd/L22+/bdfUfBzRqtLQoUPdo48+Gu/3r+JKNz+2qgAAiE6JKnKGDx9ub3VIOL4U8hEjRgRtCXmt5f7nqKhJnTq1tYMfPXrUhgJqZUgHkEMPHKst3N+C7l+10crMli1b7FqFCxd2gwcPPuNMDwAAiE2kkDMnBwCAZIcUcgAAELMocgAAQFSiyAEAAFGJIgcAAESlRBU5GqanBHK1hCuYs2HDhkHzbkTdTep0Ukt5jhw5XIMGDdyGDRuCnrN8+XJ35513WteUOqpq1arlVq9eHXhcaePqxNKAP3VO6euEoxDQChUqWFu4Jh2PHj06cT89AACIWokqcpQ2rlk5ilCYM2eODfGrWbOm+/vvv4OG/aldXFEMX375pQ0Q1HNOnToVGPBXu3Ztm3GzbNkyi4VQ0aRCR9cTPVdFkmbeVK9ePez3otbxunXrWtL5Dz/8YDlayq3S1wQAALigFvLdu3fbio6KH28eTqgff/zRlS1b1oYDaoVnxYoVthqkCAcNA/QGBpYpU8Zt3LjRVmT8tKJz4MAB9/HHHwfd/+STT7rPPvssKL383nvvted+8cUXCf4ZaCEHACD5SfIWcsUiiCYZh6MVHq3qKP7BK2iKFi3qsmXLZoP+jh8/bsMA9X7x4sVdwYIFE/y1FdwZusqj1SDdDwAAcN5FjiYOa4vo5ptvdqVKlQp6bNiwYS5Tpkx2mz17tm1tpU2b1h7T1pTO0nz00Ue2JaXnaOVFz9P5m4RSdETOnDmD7tPHBw8etMIpHOVa6XH/TSnkAAAg+px3kaOzOdoqmjhx4hmP3X///W7VqlW2jXX99de7Zs2a2WFiUQGiwE0VRzrbs3jxYiuSdL4mvuIkUnRwWjlb/tsWF3woGgAAxHCRoyTyTz/91M2fP9/lzZv3jMdVPFx33XV2Tmfq1KnWXaXkclHApxLHtY2lszmVK1e2+3SQWMGfCZUrVy73xx9/BN2njxUA6oWFhiKFHACA2JGogE6dUe7atasVLNpy0lmbhHyObtoqkiNHjriUKVO6FClSBJ7jfawtsIS66aab3Oeffx50n7bFdH98SCEHACB2pEzsFpXO0mjlRWdrdC5GN2+bafPmzbYltHLlSuueWrJkiWvatKmtrNx11132nBo1arj9+/fbtdRmvnbtWte2bVs7j6N2cM+6deusNXzfvn224qL3dfM8+OCD9vV69uxpK0U6BzR58mTXrVu3yL06AAAgNlrI/asvftp6Uqv3zp07bVaNihwVMjoIrC2rfv36WVeVf8VlwIABdqZHqzjly5d3gwYNsq0rjzqtfvvttzO+lv/b1WqSihoVRNo269u3r30fiUELOQAA0dlCfkFzcqIBRQ4AAMlPks/JAQAAuFxR5AAAgKhEkQMAAKJSxFPIq1WrZgeU/Td1Qvmp80rD/zJkyGDX6dGjhzt58mTQc8aNG2eZV3pO7ty5Xbt27dzevXsDjyvMc+DAgZaHlS5dOntuYjKrAABAdIt4Crl07NjR7dq1K3B76aWXAo8pYVwFjnKr1GI+ZswYN3r0aOvA8mgKcuvWrW0yslrMp0yZ4r7//nu7rufpp59277zzjnvzzTetu0qFVKNGjWzSMgAAQMRTyLWSU65cOffaa6+F/RxlVNWrV8/azb3sqREjRliquK6njKuhQ4e64cOHu02bNgU+T8XM4MGD3fbt2+3jPHnyuD59+ljR5WncuLHN5NEsn4SiuwoAgOTnkqWQa6spe/bslkmlKAVNOfYoJbx06dJB4ZpKD1dYplZtRFOL//Of/9hEY9VgimtQPIQ3UFA0QVnbVH4qcBYtWnQhPxIAAIjFWIeEpJDfd999rkCBArbS8uOPP9oKjc7tTJ8+/azp4d5jomuqUGrevLkFe+q8Tv369d3bb78dVBi98sortoKkczlz5861r6HtsPioMPLiJQI/R9wpoh0AAIhCEU8h79SpkxUgWq1RGvmHH35oWVf+radz0Rmbxx57zM7paHqyDhQr1NN/gPn111+3ENBixYrZFpdCQxUPoQnK8SGFHACA2JEkKeR+lSpVsre//vrrWdPDvce8YkSrOeq6KlOmjBVNyqYaOXKkHWSWHDlyuI8//tgOPSv+QflVmTJlctdee2283wsp5AAAxI5EFTk6H6MCRysz8+bNS1AKuReqqTZw77zNmjVr3J9//hl4jjq1MmfO7EqUKBGUVO6XKtX/tpRCz0nrXM4111xjW1rTpk1zDRo0iPd7UQK5vo7/xlYVAADRKXVit6iUQD5z5sxACrlo20eHfrUlpcd1QDhbtmx2JkcBmjo3oxUZUcu5iplWrVpZa7muoXZwXVtFiOj8jdrF1WGlVRyt3uj8zz//+U876yPLli1zO3bssE4uvX3mmWfsnJBSyQEAACKaQq6OqJYtW9pZHW0j5cuXz2bXqIjRqolH20sPPfSQpYhnzJjRPfDAA+7FF190qVOnDmoZV2v5li1bXJYsWdwdd9xhLeRatRG1resamzdvtm0qFVa6hlcEJRQt5AAAJD+kkCcARQ4AAMkPKeQAACBmUeQAAICoRJEDAACiUsRTyL3oBh0U1qFiHThWd9XRo0ftMQ31U/Cm2s/VkaVpxf3797fATj8dFVKG1fXXX29dVzpwPGjQoKDnaAJy8eLF7TpFixa1wYMAAACJbiH3UshV6GguTe/eva0lXBOKVdB4BU7t2rVt8J46pNQxtXr16sDcGw3tU6u3EsSLFClinVhqF1c3looajyYef/XVV3afpifv27fPbh61l+trvPfee/b9eCnlWbNmtRZ0AAAQ2yKeQl65cmVXo0YN9+yzzyb4OkOGDLGiRe3gsn79epurowJIKzThVKlSxaYi63M9TzzxhM3PSUxIJ91VAAAkPxc9hVxTjFVkqPBREaLgzapVq56z6NB1/Enmn3zyicUzKDpC21oFCxZ0HTp0CFrJiS+FXCs6J06cuJAfCwAARIGUkUwh91ZiNH1YW0cK1qxQoYK788473caNG8NeR5lW2tbq3Llz4D5dRwMDp0yZYudsRo8ebUGdTZo0CTxHk5Dff/99u1+LUStWrLCPVeDs2bPnfH8sAAAQi2dywqWQ+1dpVPiIChYlgkv58uXd3LlzLVxTB5f9FMeg8ztNmza1osh/Ha3UqMDRwWP54IMPXMWKFe2gs7aw+vbta5EQ2h5TkaNVI01OVlREfEnkuqZufqfjTpFfBQBAFIpoCrkXwukFbXrUAbVt27ag+3bu3Oluv/1229Z69913gx7TdXRg2StwvGuIdx1tTalwUpinOrZ0v7a11PmlhPJwVGQpZ8t/2+I2nM9LAAAAYimFXEWGsqNC28p/+eUXV6BAgaAVnGrVqtnKjHKvQldetAWm7i0FfvqvIf7rSJo0aazQUkr5xIkTXb169eJdyVE3ls7/+G+FXLHEvAQAACAWU8gV4NmjRw+be1O2bFlLCB8zZoy1jU+dOjWowFGxovZwdWh5cuXKZW+rV69uZ3natWvnXnvtNdu+0tdW15a3uqOiR4eMK1Wq5Pbv3+9eeeUV2z7T14uP5u14SecetqoAAIhOiSpy1OYtKlLCpZCLDiMfO3bMdevWzbqhVOzMmTPHhv6J3tdhY938W13idbNrJUYdVl27drXWdM3gqVOnjnv55ZcDzz116pR9rFUjreZo62vJkiW2mgQAAEAKOXNyAABIdkghBwAAMYsiBwAARCWKHAAAEJUimkKueTXqsAp30/TiUHv37rXDx3r8wIEDQY9paF+fPn2sC0sdUTpQrLk4nrVr17rGjRvb/fp8dWEBAACcV5HjpZB/99131iWlCAWlkCtBXPLly+d27doVdBswYIDLlCmTdUeFat++vQVxhtOsWTOblKxJxyqkJkyYEBTWqSGAyrd68cUXA63nAAAA59VCriwqP2VKaUVH+VFq9dZAvtCCQ4MDVbCo0AltR9fqTb9+/dzs2bPP+DoqqJRh5QV3hraGa0VJN+nVq1difgwAABADIppCHkrFzw8//GArNn7r1q1zAwcOtGyqcNOJZ82a5W644QbLobrmmmtsAGD37t3d0aNHL+TbBQAAMSR1JFPIQ2mrSZlTyqfyn7Vp0aKFGzJkiMufP38gudxP9yn4M126dLYSpFTxhx9+2M7waPAgAADARU0h99OqiyIglBYemh+lwqdly5ZnLaB0mHjcuHEWGSGKbWjSpIkbNmyYRUicD1LIAQCIHRFNIfdTVpUOB7du3TrofgV7qtNKKeO63XnnnXZ/9uzZLfPKSyHXNpVX4IgKIw1n3r59uztfpJADABA7IppCHrpVdffdd7scOXIE3T9t2jS3evVqO6uj2/vvv2/3L1y40FaHRFtgO3fudIcPHw58ngI5dX4nvqIqIUghBwAgdkQ0hdyj8M1vv/3Wff7552dcwwvq9Oi8jbdSkyVLFnv/vvvuc88++6xr27attaDrOUo3Vyq593WOHz9uB5i995VurqJJXVxFihQJ+/2TQg4AQOxIVECnzsmE408hl969e7uPPvrIhgOG657y++abbyxBfP/+/YEiRzZs2GAp5IsXL3bZsmWzNvTnnnsuUOTo2uFWkqpWrWrXTCgCOgEAiM6ATlLIKXIAAEh2SCEHAAAxiyIHAABEJYocAAAQlSKaQi7quGrVqpVlWGXMmNFVqFDB2sb9vORw/01Bm55nnnkmbJK5rudROKiiIdStpcnIZcuWPSNbCwAAxK6IppCLhv+p8FH+1Jo1a9w999xjnVGrVq0KupYKFH9auTqpPMqpCk0zL1GihGva9P8OCT/99NPunXfecW+++aa1kj/44IOuUaNGZ3wdAAAQmy6ou2r37t22oqPiRynkojk1ShjXao5HLeCDBw92HTp0CKzkKPdKt4TQ8MBy5crZ7J1bb73V7suTJ4/r06dPYICgNG7c2FrM1b6eUHRXAQCQ/CR5d1W4FHKFcU6aNMnt27fPMqgmTpzojh075qpVqxb0udqeUvFTvnx5C+s8efJkvF9HU5GVRO4VOKIMKm1T+anAiS9LCwAAxJaIp5BPnjzZNW/e3AoYZVNlyJDBYiD8U4gfffRRO6uj4mjJkiUWt6AtKYVwhlKBpKDOXr16Bd1fq1Yte75WkHQuZ+7cuW769Onu1KlT5/sjAQCAKBLxFHKljh84cMB9/fXXFrr58ccf25kcZVOVLl3anvOvf/0r8PwyZcq4tGnTus6dO9vB5tDYBRVIhw4dcg888EDQ/a+//rrr2LGjK1asmB1KVqGjGIiRI0fG+z2TQg4AQOw4rzM5CulUfpXOyPijFTZt2mQrNip+SpYsGbi/evXqdv+IESPCXm/t2rW2GqQoh6JFiwY9ppTyzJkzW7ETjlZ69u7da2d0tNqjdHRdLxx1bSkLy6+QK+4Kp/i/7xUAAMTgmZxzpZAfOXLkfxcNyatKlSqVbW/FR8Ga+hwdYvbbsmWLmz9/vmvfvn28n6tzOddcc42d6VGreoMGDeJ9LinkAADEjoimkGvrSCs22noaOnSoncvRdpXazbXCIkuXLnXLli2zUE5dQx9369bNtWzZ0mXNmjXo62nrKXfu3K5OnTpnfC+6hpLH1XWlt1qlUSHVs2fPeL9/UsgBAIgdiSpy1BouoZ1SXgp5mjRp3Oeff27bRvXr13eHDx+2omfMmDHurrvusueqyFDHlYoSnY/RapCKHP85HVHBMnr0aLuuVoLCbVNpVs7mzZutbV3XHzt2bFCSOQAAiF2kkDMnBwCAZIcUcgAAELMocgAAQFSiyAEAAFGJIgcAAEQlihwAABCVKHIAAEBUosgBAABRiSIHAABEJYocAAAQlWJ+4vHlTtEXL7zwgoWLhuZuIXF4LSOH1zIyeB0jh9cycv4bRa8lRc5l7uDBgxaAqsT0zJkzX+pvJ1njtYwcXsvI4HWMHF7LyDkYRa8l21UAACAqUeQAAICoRJEDAACiEkXOZU6Hvvr375/sD39dDngtI4fXMjJ4HSOH1zJy/hFFryUHjwEAQFRiJQcAAEQlihwAABCVKHIAAEBUosgBAABRiSInibRp08alSJHCbmnTpnVFihRxAwcOdCdPnnTffPON3Z81a1Z37NixoM9bvnx54PM8en6DBg1c7ty5XcaMGV25cuXcuHHjzvk9eNfx3yZOnOii6fV98cUXg+7/+OOPg167U6dOuVdffdWVLl3apUuXzl7zOnXquMWLFwd93vTp012NGjVcjhw5bMLnTTfd5L788ksXy37//XfXtWtXd+2111qXRb58+Vz9+vXd3LlzA89ZsmSJu+uuu+x11eur1/mVV16x1z1W7d692z300EMuf/789rrlypXL1apVK+jPXEJet61bt7r27du7QoUKufTp07vChQtbx8vx48ddLPvPf/7j2rVr5/LkyWN/txYoUMA99thjbu/evYHnPPPMM65YsWL296Ve4+rVq7tly5Zd0u8blwZFThKqXbu227Vrl9u4caN74okn7D+8IUOGBB6/4oor3IwZM4I+54MPPrC/HP30F2KZMmXctGnT3I8//ujatm3rWrdu7T799NNzfg+jRo2y78G7NWzY0EUL/eMwePBgt3///rCPq3Hw3nvvteJSfwmuX7/eCkb9Y12tWjUriDzffvutFTmff/65W7lypbv99tvtH/RVq1a5WKR/YCtWrOjmzZtnf2bXrFnjvvjiC3tdunTpYs/Rn92qVau6vHnzuvnz57sNGzbY6/zcc8/Z6x6rjZuNGze2Pzdjxoxxv/zyi5s1a5b9efP+EU7o66b7T58+7d555x23du1aK9ZHjBjhevfu7WLV5s2b3Q033GB/p06YMMH9+uuv9pqo8NYvJvv27bPnXX/99e6tt96yP7eLFi1yBQsWdDVr1rQCFM4tXbrUpUqVytWtW/eMx44ePWrFtF5DFenZs2d3TZs2tT+Dfvr3TL9wX/bUQo7Ie+CBB+IaNGgQdF+NGjXiKleuHDd//nz9LRb39NNPx1WvXj3w+JEjR+KuvPLKuL59+9rjZ3PXXXfFtW3b9qzP0TVmzJgRF62vb7169eKKFSsW16NHj8D9+nm9127ixIn2/qxZs874/HvuuScuW7ZscYcPH473a5QoUSJuwIABcbGoTp06cddcc03Y12f//v12v14/vY6h9HrrddfrH2v02uhn/+abb8I+fqGv20svvRRXqFChuFhVu3btuLx589rflX67du2Ky5AhQ9yDDz4Y9vP++usve22//vrri/SdXt7at28f99hjj8VlypQpbseOHYH7jx07FlelShV7jSdNmhS3devWuGXLlsU1bNgwLmPGjHFLly4NPLd///5xZcuWjbvcsZJzEWnJ2b/U3KpVK7dw4UK3bds2+1grNfqNo0KFCue8loLTrrrqqnM+T791qxL/5z//6UaOHBlVv13rN5Hnn3/evfnmm2779u1nPD5+/Hj7bUQrMqG0sqbfrOfMmRP22voN+tChQwl6jaONfhvWqo3+7Gi5P1SWLFncV199Za9f9+7dz3hcr7ded/2mHWsyZcpkN60SKsk51IW+bgn97z5a/1xqC/nhhx+2v0v9tCV4//33u0mTJp3xd5z+zn333XctcLJs2bIu1h0+fNheJ22paiVn9OjRgcdee+01W+XRLkGzZs1sK1D/dujfpuLFi9v2aXL7N4Qi5yLQH4qvv/7a/gO94447AvdfffXVdj7E+0OmIkR7zecyefJkO7ujbauz0TaNnqt/yLWErr8cVBBEk0aNGtmSqZZXQ2mrQP9hhuPdr+eEM3ToUPvLQP+hxxptAejPrM40xMd73eJ7ffW58b220Sx16tT237O2qlQM3nzzzba9pG3mC33d9P+L/vvt3Lmzi0XaotKfy7P9N62ta29LSv9Qq+DUtra2+vT3oH7hi3WTJ0+2P2dFixZ1LVu2DPrlV78Yats+tBhMmTKl69atm1u3bp1bvXq1S04ocpKQ/z8yFTPNmze3fUw/FTX6S1F7zaqg9dvI2WgPX8XNe++950qWLHnW5/bt29f+ki1fvrx78sknXc+ePYPOBEULncvRPyo6cxPqfH7r0H/oAwYMsL8MVIjGmsS8Zsntt7qLQb9Q7Ny5087i6FyezoFpddb/G3NiX7cdO3bYtXQ2omPHji6WJfS10/mxH374wc406rXTLyx//vmni3U696niRvS6aHVwwYIFF/yL4eWKIicJef+R6TcQHebSP8Shy/8qfvSYlgG1XJ0tW7Z4r6c/iHqOfivRwePEqlSpkm3rhFtGT85uu+0261556qmngu7X0n+4wke8+/UcP3WfdejQwQocdWTEouuuu8461HTwNT7e63a21zf0tY0l+sVGvxHrFw39I6tuQO8wZ2JfNxVM+rukSpUqtu0Sq9Shqj+XZ3vt1EmlDknR37X6nMqVK9s/7Fpl09tY9vPPP7vvv//etWjRwj7Wa6Jfvv2vy7mKSHW0JScUOUnI+49M3VL6wxSO7lfBot/2zrZVpce1f6pVi06dOp3X96OCS38JREPoWii1kn/yySe2GuZRp4oKTN0f6uWXX7aCUv8QeXQWQqtkehuu6yBW6MyHisa3337b/f3332c8fuDAAetU0fP0OobSCoZed+8vUjhXokQJey0T+7ppBUedWep0U6ektg1ilfff67Bhw+wXw9BxBxqroX+w/SMkQs/ZRdsveIn1wQcf2BgTtd/r3x7dhg8fbmdutKKjX3AS+4vhZe9Sn3yOpe4qj9ddpU4M+e9//xu3e/fuuNOnT5/RISTz5s2zzoGnnnrKugi82969ewPPmT59elzRokWDOjXee++9uDVr1sRt3LgxbtiwYXaNfv36xUXr69uqVau4dOnSBV47vZ6NGjWKy5o1a9z7778ft2XLlrjVq1fHderUKS516tRBnWfjxo2z+95+++2g1/jAgQNxsWjTpk1xuXLlsg6zqVOnxv3yyy9x69ati3v99deto02mTJkSlypVqriOHTva66rXV6+zXu8mTZoE/jzHkj179sTdfvvtcWPHjrXXZPPmzXGTJ0+Oy5kzZ1y7du0S9bpt3749rkiRInF33nmnve//cxmr9Ocwe/bscbfeemvcggUL4rZt2xY3e/bsuFKlSsVdd9119neiOtj0d6U6gdQdtGLFCutE/cc//hH3008/xcWqEydO2J/Dl19+2f5d8N8KFy4cN3z48Ljnn38+LkWKFHE//PBD0OeeOnUq7oYbbrBbcuuuosi5DIqcUKFFjq6lj0NvVatWDTxn1KhRQZ+j//DLlStnLYJq/dMfxhEjRtgf1mh9ffWPRdq0aYNeB/2HPWTIkLiSJUvaY5kzZ46rVatW3KJFi4I+V69luNdYXydW7dy5M65Lly5xBQoUsNdOLeV33323/fn1fPvtt/Z66nXVc/Q6Dx06NO7kyZNxsUgtuL169YqrUKGCjYPQLxb65UPjIvxtzwl53bz/psPdYpkKF/13qX+w06RJE5cvX764rl27WoEpR48etV9u8uTJY69t7ty57c/t999/HxfLZsyYYa9HuF/cevbsaQWMXrtKlSrZa6ri/LfffrPXTS3k+vO8du3aZFfkpND/XOrVJAAAkHTq169vW3afffbZGY/pnI7ObKpzSpO1X3jhBTuf+Ntvv9n2lo5dqOlFAyw9aqLRqAQdg7icUeQAAICwZs+ebaM6NFbjkUcecclN7J5iAwAAZ6UOYBU6Gsa4Z88el9ywkgMAAKISKzkAACAqUeQAAICoRJEDAACiEkUOAACIShQ5AAAgKlHkAACAqESRAwAAohJFDgAAiEoUOQAAwEWj/wfL1ne08XFuQgAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.heatmap(df.isnull(),cmap=\"viridis\",cbar=False)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "8ab8bcec",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGiCAYAAAB6c8WBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAg6hJREFUeJzt3QV0FFcXB/D/xt3dlYQQNAES3K1AkWKluEuB0hZKC6VQCqVIoRR3KF6CS3ArBIfgmkACcXfb/c57+2WTTTZAaGhm2fs7Zwgz83YyO5nduXOfjEgikUhACCGEEJWlVtk7QAghhJDKRcEAIYQQouIoGCCEEEJUHAUDhBBCiIqjYIAQQghRcRQMEEIIISqOggFCCCFExVEwQAghhKg4CgYIIYQQFUfBACGEEKLiKBgghBBCBOLcuXPo1KkT7OzsIBKJsHfv3re+5syZM6hTpw60tbXh4eGBDRs2lPv3UjBACCGECERGRgZq1qyJpUuXvlP5sLAwfPLJJ2jevDlu3bqFCRMmYOjQoQgODi7X7xXRg4oIIYQQ4WGZgT179qBLly5llpk8eTIOHTqEu3fvypb17t0bycnJOHr06Dv/LsoMEEIIIR9QTk4OUlNT5Sa2rCJcunQJrVq1klvWtm1bvrw8NCAQhzS9KnsXBEFy+V5l74IgrFj+uLJ3QRCMzI0qexcEwchUv7J3QRAW+R+o7F0QDJ2W/ZXmmnT1hz6YMWOG3LLp06fjp59++tfbjo6OhrW1tdwyNs8CjqysLOjq6ipXMEAIIYQIhUhTVGHbmjJlCiZOnCi3jDX2ExIKBgghhJAPiF34P9TF38bGBjExMXLL2LyRkdE7ZwUYCgYIIYSQEtQ0Ki4z8CEFBgbi8OHDcsuOHz/Ol5cHBQOEEEJICSLNymlfn56ejqdPn8p1HWRdBs3MzODk5MSrHF69eoVNmzbx9SNHjsSff/6JSZMmYfDgwTh16hR27tzJexiUBwUDhBBCiEAyA9euXeNjBhQqbGswYMAAPphQVFQUXr58KVvv6urKL/xfffUVFi9eDAcHB6xZs4b3KCgPCgYIIYQQgWjWrBneNPyPotEF2Wtu3rz5r34vBQOEEELIB+xNoAwoGCCEEEKUtAFhRaERCAkhhBAVR5kBQgghpASqJiCEEEJUnBpVExBCCCFElVRIZiAvLw+ampoVsSlCCCGk0onUKTNQJjaqUW5urmyejXrk7OwMHR0dWFhYYObMmR9iHwkhhJD/lJq6qMKmjy4z0KdPHz76kZWVFdavX49vv/2WD4FYv359PuDBnDlzYGdnh6FDh364PSaEEEJI5QUDxUdFWrFiBc8EsICA6dChAx87edmyZRQMEEIIUWoiNeW4o6+0BoQikfQAPX/+HG3atJFbx+aLP2CBEEIIUUYidbUKmz7KBoRHjx6FsbExbyeQmZkpty47O1sWLBBCCCHKSk1J6vorLRhgT04qxB6VWPyZySEhIXB3d6+4vSOEEEKIsIIBsVj8xvXW1ta8ESEhhBCizEQq1magQkcg7NixY0VujhBCCKkUaipWTaAcLRsIIYQQohzBQNWqVaGurl6RmySEEEIqZQRCUQVNKldNwNoLpKSkVOQmCSGEkP+cSE21EucVGgx06dIFQmDWyB9uXw+BcR1f6NhZ4Vr30YjZf/LNr2lSDz7zv4OBjyeyI6LwdM5yRG7aI1fGedTncJs4BNo2lkgNfYh7E35GytU7ELILx7bizIH1SEuJh52TF7oO/B5OHjUUlg29chwn965GfMxLiAvyYWHjhKafDIR/486yMmnJ8Ti4bSEeh15EVmYa3Lz90HXgD7C0dYbQfdLMFN3amsPUWANhETlYuS0Kj8OzFZZ1stNG386W8HDWgbWFFlZtj8b+k4n/aptC0TpAHx2bGsLYQB0vo/KwcX8SnkXmKSxrb6WBHm2M4GqvBUtTDWw6kIyj/6SXue1OTQ3Rp70xjlxIw+aDwr4xaFpbG23qa8NIXw2RsQXYcSIT4VEFCsvaWqihUyNdONuow9xYHTtPZuLUtRy5MqxXdcdGOqjvo8W3mZIuxqW7uTh8Udjnw/az17DxeAjiU9NRxcEa3/Vsg+ou9mWWT83Mxp/7z+DkrYdIycyGrZkxJn3WGo19Pfj69lP/xOvE0n/7Xk388H3vdh/0vZD391GGPur6ekgNfYS742a8U3ldFwfU3b8SCWcu44L/pwhbshHVV86CRetGsjK2Pdqj6rwpeDJrKS7U64q00Ieof2gttCzNIFQ3Lx3B/s2/oU330fhq9i7YOXth1a8jkJaSoLC8noExWnUdjnEzt+DruUGo27QrdqyYioe3L8hGoFy/cBwSYyMx6JslmDjnb5ha2mHl7CHIyZYfc0JoGvsbYWhPa2w7EIfxPz9HWGQ2Zk5whrGh4motbS0RouNzsTEoFonJeRWyTSEIqKGLLzqaIOhEKn5YEoOXUbn4boglv3iVdRxiEwqw/UgKklIVXygLuTloomV9fbyIKnp+iVD5eWvisxa6OPhPNmZvSOXBwJc9DWCopzilq6UhQnyyGHvOZvGLvCJt6+ugaS1tbD+eiRlrUnnZNvV00NxPG0J19Np9zN99AiM+aYztU4bAy94Ko5ZsR0JahsLyefkFGPnHVrxOSMb8Yd2xb/pITP+8A6xMDGVltkwehJNzxsumleM+58tb16kKZetNIKqg6aMMBg4fPsyHG2bPJHj48KHcuqSkJLRo0QKVLS74HB5PX4SYfSfeqbzz8N7ICovEg0lzkf7wOV4s24Lo3cFwHT9QVsZ1wiBErN2JyI1BSH/wDHdGT0dBZjYcB3aHUJ07tBEBLT5DvWZdYePgge5DpkNTSwdXzgQpLO/hUw/V67aCtb07LKyd0KR9P9g6VUHYoxt8fXz0C7x4chvdB/8IJ/fqsLJz5f/Py83BzYuHIWRdWpsj+HwyTlxMQURULpb+FYWcXDFaNzRRWP5JeDbW/x2Lc1dTkZcvqZBtCkGHRoY4fSUDZ69n4lVsPtbuTUZOrgRN/fUVln8emYetR1JwKTQL+QWKj0Nh0DCmlxnWBCUhI6vsckLRqq4O/rmdg0t3chGVIMbW4Ezk5QENqmspLP8iugBBZ7Jw7UFemcfBzV4dt5/m4e7zfCSkinHjUR7uh+fBxVa4weHmU5fRrWEtdAmsCXdbS0zt0wE6WhrYe/G2wvJ7Lt5CSmYWfh/ZA7XdHWFvbgL/Ks7wcrCWlTEz1IeFsYFsOnfnCRwtTeHv6QRloqZiDyoqVzCwdetWdO7cGdHR0bh06RJq166NLVu2yNazJxqePXsWysYkoBbiT12SWxZ3/AJMA2rx/4s0NWFcpxriT14sKiCRIP7URZgE1IYQ5efnIjLsPjx9iwaFUlNTQxXfAH5BfxuWBXh8NwRxUeFw8/aXbjNPesenoaUlt011DS1ZwCBEGurg6f5bD4rudthjNti8t7ueYLb5obG2va72mrj7NFtun9m8p7Pii+C7GvSpCW4+ysbdp/KpcyFio8M62ajjwYt82TJ2eX8Qngc3+/evOX3+qgDezhqwMpV+rdpbqsPDQQP3nhf9HiFhd/kPXkYhwMtVtkxNTYQAb1eEhkUqfM3ZO09Qw9UBc7YfRfPJi9Dt51VYc/QfFJQxBg37HYeu3OXBBo1OK2zlOvPnzZuHhQsXYty4cbJHGg8ePJgPQzxkyJB33k5OTg6fisuTiKEpqpxaC21rC+TExMstY/OaxoZQ09GGpqkx1DQ0kBMrn17PiUmAvpcbhCgjNRlicQEMjc3llhsYmyP2dViZr2PtAGaObo78/Dx+oe82aBq8ajTg61gmwNTCFoe3LcJnQ6dDS0cX5w5vQkpiNFKT4yBURgYaUFcXITlV/kuZzTvYaAtmmx+aoZ4a3+eSaW42b2ep+d7bDayhCxd7LUz7MwbKwEBPBHU1EVIz5I9DWqYENubvfxcfHJINHW0RfhpmBImYpZmBfeeyceW+MKtNktIzUSCWwNxIPitkbqiPsBjFVYmR8cl4nRCODnV9sXRML7yMTcLsHUeRX1CAkZ80KVX+1O1HSMvKRucAxe2UhEykJOn9SgkGnjx5gk6dOsnme/bsCUtLS54tyMvLQ9euXd+518GMGfL1+X1EZuirblGe3SEfgLaOPr7+dTdvA/Dk7mXs/+s3mFs78CoEdQ1NDPhqMXaumoZpwxpATU0dnr4B8K7VWHqLSVSOmbE6+ncywey18cgT5g3wf8avqibq+Whh3YEMvI4rgKO1Bnq01OXBVshdYQYE5SWWSHg1wI99O0BdTQ0+TraITUnDxuOXFAYDey7eRkMfd7k2BcpCRL0JymZkZISYmBi4uhallZo3b46DBw/y0QcjIxWnlkqaMmUKJk6cKLfslJkfKgvLArDsQHFsPi8lDeLsHOTGJ0Gcnw9tK/m7bG1rc+REy2cUhELfyIRfrEs2FkxPSYChSdlBF8sGWNhIewbYu1RFzOvnOLlvNQ8GGEe3avj61yCeQSjIz4OBkRkWT+0NB7dqEKrU9HwUFEhgYiR/urP5pBJ39pW5zQ8tLVPM99nYQP5Ljs0np7+5cWBZ3Ow1eYPJ2V9ayZax7IO3ixbaBBqg/9RXgosT0zMl/I5Y2miy6H2zxoMlswXl0a2ZHs8OsHYFzOv4XJgZqaFdgI4ggwFTAz2eIUlIlW8syBoPWpTIFhSyNDKAhroaDwQKudmYIz41g1cJaLL6s/97nZCCyw/DsHC4cNtVvYlIxTID5Qp96tWrhyNHjpRa3rRpUxw4cACLFi16p+1oa2vzwKL4VFlVBExyyC2YtwiQW2bRsgGSQm7x/0vy8pBy4x4sWgTK9SMybx6I5JCbECINDS04uPrgyd0QuWdLPLl3Gc6eNd95OxKxGAWsZVUJunqGPBCIi3qBiOf34Otf+Q1Hy5JfADx9kY2aVYu+4Fj1JZt/+CxTMNv80AoKgLBXeajmoSO3z9U8tPHkxftdrFgbgUm/R2PKHzGy6VlELv65lcn/L7RAgCkQAy+jpfX7hdjXvreLJp6/ev9ATktT2tamOLFEeoyFiF24qzrZ4vKjcNkysVjC51m7AEVquTsgIi6Jlyv0IiYRlsYGcoEAs+/SbZgZ6qGxr+cHfBekUjIDX331FS5eLNaIrphmzZrxgGDTpk0QQtdCfY+ilqt6rg4wqumN3MQUPoaA16yJ0LG3xu1Bk/n6F6u2w3l0X3jP+RYRG3bDonkA70p4tfMI2TbCFq1HzXVzkXz9LlKuhsJl3ABo6OsiYqPilvlC0OSTAdi+/Ht+N+/kUR3njmxGbk4W6jWVVudsXTYFxqZW+KTPV3yejTHA7vAtrB15A8QHN8/j+oUD6D54mmybt0OCoW9kClNzW0RFPMHejXPgW7cFvGo0hJDtPZ6Arwbb4Ul4Fh6HZeHTVubQ0VLDiX+S+fqJg+2QkJSPjXti+Tz7XnO0k9b9a2iIYG6qAVdHbWRnixEVl/dO2xSiwxfSMLKHGZ5H5vKLdvtGBnyfz16X3h2O6mmKxJQC7AhOlTU6dLCStifQUBfBzEgdzraayM4VIyahANm5EkTGyF9Ac/IkSM8Ul1ouJCeuZmPgJ/q8l0B4VD5a+Ovwi/nFO9KgaOAnekhOE2PvuWxZo0NbC+nFjt1NmxiowcFKnffEiEuWZhPuPM1D+wa6SEwVIypeDEdrdbSqq42LocLLChTq16I+pm3aj2rOtvB1tsNfp68gKycPXQKldfw/bNjPU/zjuzTn8z0b+/FxCebuOoY+zfzxMjYRa4Iv4vNm0kbGhViwsC/kNjoF1OCZBGWkpiS9AColGGAZADaVhVUZsKmyGfv5IvDkZtm8z/zv+c+ITUEIHTIF2raW0HW0la3PCo/kF36fBVPg8mV/ZEdG486IqYg/Lu1fz0TtOsLHFKgyfZx00KHbD3Cl41DklmhUKCS1A9sjIzURwX//idTkeNg7e2PYdytl1QTJ8VFyLXxzczIRtP5nJCfEQFNLG1Z2bvh8zK98O4VYQ8F9m39Deko8jEwt4de4M1p3GwmhO38tlaezv/jUEqZGGngekYMfF79Ecpo0TWxppsnv4gqZmWhiyY9Fj+Pu3taCT3ceZWDK/BfvtE0hCgnNgpF+Mj5rbQQTQ3W8eJ2HX9fFI/X/jQrNTTTkjoOpkTrmjC/qNsYGK2LT/ec5mLVKuI1G3+b6wzwY6mWhUyMd2aBDS3am80aEDEvvF7/JZxf/qYOMZPNt6uvw6fHLPCzcJh2EafuJTHRurIs+bfR4Y03WVuD8rRwc+ke4gw618/dBUnoGlh08y1P9rIvgsrG9YW5kwNdHJ6XwHgaFbMyMsHxsH8z7+zh6/LKaBwp9m9fFoDaB8ufZwzBEJabyXgTKSqRi1QQiScm8ViU5pOlV2bsgCJLL9yp7FwRhxfLHlb0LgmBkXnQBUmVGporrsFXNIv8Dlb0LgqHTsv8H3f79ri0rbFs+e948Aq7SZQbe9SFEBaxykhBCCFFSIupNUDaWRHB2dsaAAQP4gEOEEELIx0ikYtUE5QoGrly5grVr12Lx4sW8eyEbcKhv374wNTX9cHtICCGEkA+qXHkQf39/LF++HFFRUXycgD179sDBwQG9e/fG8ePHP9xeEkIIIf8hET2o6O10dHTwxRdf4OTJk7h79y5iY2PRrl07JCaWfsQrIYQQomxEKhYMvPdTOdhogxs2bOBTZmYmvv32Wz54ECGEEEKUS7mCAfZUQlY1wNoNnD9/Hu3bt+ejDrKf79rTgBBCCBE6EfUmKJutrS0MDQ15b4Jly5bByko6HnlGhvzY1pQhIIQQoszUaATCsiUlJfHp559/xqxZsxR2PWQj2tE4A4QQQpSZSEnq+islGDh9+vSH2xNCCCGECD8YaNSoEebPn4/9+/fz9gMtW7bE9OnToaur++H2kBBCCPmPiVSszUC53u3s2bPx/fffw8DAAPb29nzwoTFjxny4vSOEEEIqgUjFuhaWKxhgjydmDQeDg4Oxd+9e/sjiLVu2QCyWPvGMEEIIIcqnXMHAy5cv0aFDB9l8q1ateIPB169ff4h9I4QQQiqFSMUyA+VqM5Cfn89HHyxOU1MTeXl5Fb1fhBBCSKURqVibgXI/tXDgwIHQ1taWLcvOzsbIkSOhr1/0vPGgoKCK3UtCCCGECCMYYIMNlcSeUUAIIYR8TERKkt6vlGBg/fr1H25PCCGEEIEQqVg1gWq9W0IIIYRU3FMLCSGEkI+WiKoJCCGEEJUmojYDhBBCiGoTUZsBQgghhKgSygwQQgghJVA1ASGEEKLiRCpWTSCYYEBy+V5l74IgiOpXq+xdEISBFx5U9i4IQhWz+MreBUH455lpZe+CICTZ16jsXRAM28regY+MYIIBQgghRChEVE1ACCGEqDaRigUDqlUpQgghhJBSKDNACCGElEQNCAkhhBDVJlKx4YhVK/QhhBBCSCmUGSCEEEJKoHEGCCGEEBUnUrHeBBQMEEIIISWpWGZAtd4tIYQQQkqhzAAhhBCi4tUElBkghBBCShCJ1CpsKq+lS5fCxcUFOjo6qF+/Pq5cufLG8osWLYKXlxd0dXXh6OiIr776CtnZ2eX6nRQMEEIIIQKxY8cOTJw4EdOnT8eNGzdQs2ZNtG3bFrGxsQrLb926Fd999x0v/+DBA6xdu5Zv4/vvvy/X76VggBBCCCmJVRNU1FQOCxcuxLBhwzBo0CD4+PhgxYoV0NPTw7p16xSWv3jxIho2bIjPP/+cZxPatGmDPn36vDWbUOrtlqs0IYQQoiLjDIgqaMrJyUFqaqrcxJaVlJubi+vXr6NVq1ayZWpqanz+0qVLCvezQYMG/DWFF//nz5/j8OHD6NChQ7neLwUDhBBCyAc0Z84cGBsby01sWUnx8fEoKCiAtbW13HI2Hx0drXDbLCMwc+ZMNGrUCJqamnB3d0ezZs2omoAQQgipiN4EogqapkyZgpSUFLmJLasIZ86cwezZs7Fs2TLexiAoKAiHDh3Czz//XK7tUNdCQgghpKT36AVQFm1tbT69jYWFBdTV1RETEyO3nM3b2NgofM20adPQr18/DB06lM9Xr14dGRkZGD58OH744QdezfAuKDNACCGECICWlhb8/Pxw8uRJ2TKxWMznAwMDFb4mMzOz1AWfBRSMRCJ5599NmQFCCCFEIIMOsW6FAwYMgL+/P+rVq8fHEGB3+qx3AdO/f3/Y29vL2hx06tSJ90CoXbs2H5Pg6dOnPFvAlhcGBR8kGLh9+zYOHDgAMzMz9OzZk6c1CrEWkhMmTCizCwQhhBCiFNQqJ3Heq1cvxMXF4ccff+SNBmvVqoWjR4/KGhW+fPlSLhMwdepUiEQi/vPVq1ewtLTkgcAvv/xSrt8rkpQjj3Ds2DH+Szw9PZGWlsajlV27dqF58+ayeg07OzveGrK8Dt7IL/drPkai+tUqexcEIevCg8reBUGoYhZf2bsgCP88s6rsXRCELi63KnsXBMPWu9YH3X7a4q8rbFuG4xdA6MoV+vz000/45ptvcPfuXYSHh2PSpEno3Lkzj1oIIYQQopzKVU1w7949bN68mf+fpSVYMODg4IDPPvsM27dvR926dT/UfhJCCCH/HTXVal9frmCAdY1ITk4uNeABq79g9RwLFgg/FUIIIYS8jUjFnlpYrmCANWQ4ffo07/pQXO/evXkXBtYCUiguHNuKMwfWIy0lHnZOXug68Hs4edRQWDb0ynGc3Lsa8TEvIS7Ih4WNE5p+MhD+jTvLyqQlx+PgtoV4HHoRWZlpcPP2Q9eBP8DS1hlCZdbIH25fD4FxHV/o2FnhWvfRiNl/8s2vaVIPPvO/g4GPJ7IjovB0znJEbtojV8Z51OdwmzgE2jaWSA19iHsTfkbK1TsQupATW3D+8Dqkp8TDxtEbHfv9AEd3xefEvavHcObAKiTGvkRBfj7MbZzRqP1A1G74qVy52FfPELxzAcIeXoW4oABW9u74/MvFMLGwg1AdPRiE/UHbkJyUCGdXdwweMQGeXj5vfd0/Z09g0bwZqBvQCJOmFo2elpWViS0bVuJqyHmkpaXAytoWHTp9hjYdukDIbp/fgmun1iIzNQ4W9t5o3n0abJwVnw9Pbx/DleMrkBwv/Y4wsXSGX/NBqFq36D2y78CQI3/gzqVdyMlKhZ1rHbTo8RNMrVwgZHsOBWP73gNITEqGh4szxg0fhKpVPBSWPXLyDOb+sVxuGRv17vjff8nm5yxehuBTZ+XK1K1dE/N+Kt+IeETAwcCoUaNw7tw5hevYgxHYh2H16tWobDcvHcH+zb/hsyHT4eRRHeePbMaqX0dg8oKDMDQ2L1Vez8AYrboOh5WdK9Q1NHH/xlnsWDEVBkZm8K7ZiL+v9QvHQV1dA4O+WQIdXQOcPbwRK2cPwbfz9kNbRw9CpK6vh9TQR4jYsBv+fy99a3ldFwfU3b8SL1dtx63+38C8RSCqr5yF7Kg4xB+/wMvY9miPqvOm4O6Y6Ui+chuu4wag/qG1OFOtHXLjEiFUoSGHcXjrXHw68CceAPwTvAkb5g3DV78dhoFR6XNC18AEzTqPgKWtGz8nHt06g6DVP8DA0ByeNRrxMgkxL7FqVl/4N+2Oll3HQlvXALGvnkJD6+2Di1SWf86dxMY1f2L4mK/h4eWDQ/t24Zcfv8bilVthbGJa5utiY6Kwad0yVK1Ws9Q6tr27oTcw7utpsLS2we2bV7Fm2UKYmlugbn3psRKaRzcO49yeOWjRcwZsXGri5pmN2LN8CAb8cBR6hqXPB209Y9RrPQpm1m5Q09BE2N3TOLb1e+gamMOlamNe5trJ1bh5bjPa9v0VRmYOuHR4MfasGIL+Uw5DQ1OY58Sp8xexbN0mTBw1FFWreOLvA4fx7U+zsXnZ7zA1MVb4Gn09XWxatkg2L1JwA12vTi1MHjdKNq+lqaHSgw4pg3K9265du+L3338vcz2rMmCZg8p27tBGBLT4DPWadYWNgwe6D5kOTS0dXDkTpLC8h089VK/bCtb27rCwdkKT9v1g61QFYY9u8PXx0S/w4sltdB/8I5zcq/Oggf0/LzcHNy8ehlDFBZ/D4+mLELPvxDuVdx7eG1lhkXgwaS7SHz7Hi2VbEL07GK7jB8rKuE4YhIi1OxG5MQjpD57hzujpKMjMhuPA7hCyf45uhH+zHvBr0g1W9h48KNDU1sH1s4rPCbeq9VDNvzW/0ze3dkKDtv1h7VgF4Y+vy8oc/3sRvGo2Qbve38LOxYeXq1qnhcLgQigO7t2Blm07oXnrT+Do5IrhY76BlrYOTh0/VOZrWO+gP+bPRM++g2FlY1tq/eMHd9GsRTtUq1GbZwVat+vMMw5PHwu3R8iNM+vh26AnqgV0h7mNB1r2nAENLR3cC9mtsLyjZ3141GwNMxt3mFg4oXazAbCw88Lr59Lzgd0w3Dy7CfXbjIJ79VawtPdG2y9+Q0ZKLJ7debfPX2XYte8QPmnTEu1bNYeLkwMPCnS0tXD4xBu+x0UimJuayCYzE5NSRTQ1NeTKGBoYQOmoVc5TCyvLe4U+WVlZ2L9/P+bPn88n9n+2TAjy83MRGXYfnr5FozWxNg1VfAP4Bf1t2If68d0QxEWFw83bX7rNvFz+U0NLS26b6hpasoDhY2ASUAvxp+SfjBV3/AJMA6RdeESamjCuUw3xJy8WFZBIEH/qIkwCakOo2DnxOvwePKrJnxMePoF4+fTWO50Tz+5dQnxUOFz/f06wUcEe3T4LcxsXrP9tKGaPaYjlP/XC/evC/eLPy8vD86ePUaOWn9xxqFHLH48f3ivzdX9v3wAjY1O0bNNR4foqVX1x7co/SIiP48eKZQmiXkegZm1hNiguyM9FbMQ9OFZpIFvGniznVKUBosJvvvX17D2+fHQJSbFhsHeXvsfUhEhe3VB8m9q6hrBxromosLdvszLk5eXj0bPn8KtZXe58YPP3Hz0p83VZWdnoNXQMegwejR9+mYewlxGlyty6ex9d+g9Dv1ETsHD5GqSkpn2w90EqRrlzN+zCz8ZAZk9XKo4NPrR27Vo+DsHbsEc3lnx8Y16uOjQrIL2akZoMsbigVHWAgbE5Yl+Hlfk61g5g5ujmyM/P4x+IboOmwauG9IPNMgGmFrY4vG0RPhs6HVo6ujh3eBNSEqORmhyHj4W2tQVyYuT/rmxe09gQajra0DQ1hpqGBnJiE0qUSYC+lxuEKjNNek6UvGNn50RcVNnnRHZmGuaOb8aDCXZOdOr/Izx8G/J1GakJyM3OxLmDa9D6s3Fo2+trPAm9gK1/jMOQKRvg6l0PQpOWmsKPg7GJmdxyVj3wKvKFwtc8uBeKU8cOYd4fZQ8kNmTkBKxcMg8jB3bjI56JRGoY+eUk+Ph+2H7g7ysrIwkScUGp6gA2nxj7vMzX5WSlYc2PTXgwwYKHFj2mw9n7/+dDmvR7QF/BNjPShDlWREpqKg9qzUpUB7DqgZeRrxW+xsneDpO/HAk3F2dkZGZix94DGDt5GtYvWQArC+l7r1e7JpoE1IOttRVeRcdgzeZtmDxzDpbOnQV1deVJvYtUrJqgXMHAxYsXeTdCNrbA119/japVq/Ll9+/f5z0J2LqzZ88iICDgjdthwyjOmDFDblmf4dPw+YgfUVm0dfTx9a+7kZOdiSd3L2P/X7/B3NqBVyGwOuMBXy3GzlXTMG1YA6ipqcPTNwDetRrzO2PycdLS0cfYWUH8nHh+PwRHts2FmZUjr0IoHKuLVQs0bCetRrFzroqXT2/iyqkdggwGyisrMxNLFs7iF3Yj49Kp4EJHDuzG40f3MHnar7C0ssb9u7exZoW0zQDLOnwstLT10XfSXuTmZCLi8SWc3fsrjMwdeRWCqqjmXYVPhXy9q6D/mIk4EHwCQ/r24staNpEGSIybixPcXZzw+YhxuHX3nlwWQvDUlCO9XynBwKxZs/j4yCtXrpRb3qBBAz6NGDGCP1f58OE316OzRzey8ZeLO3n/3cdQfhN9IxN+sU5Lkb97TU9JgKFJ0dDJJbE7Pwsbac8Ae5eqiHn9HCf3rebBAOPoVg1f/xrEMwgF+Xm8ceHiqb3h4PbxjBjIsgAsO1Acm89LSYM4Owe58UkQ5+dD20r+7kfb2hw50cK8+2H0DKXnRHpq6XPCwPjN54S5tbPsQh/7+hnOHljFgwG+TXUN3qagOEs7N7x4LMyqI0MjY34cUpLlG3qmJCfBxLR0O4fo6FeIi4nCrzO/ky2TSMT8Z6/OzbB45RaYmllg66ZV+PaHX+BXV5pJc3b1QHjYE95jQYjBgK6+KURq6shMkz8f2Ly+YdnnA8sGsF4EjJVDVSTGPMPVE6t4MKBvaMmXZ7BtGFvJbZO1HxAiYyMjfo4nJqfILU9KToGZadnBX3EaGhrwdHPBq6joMsvY2VjD2MiQl1GqYEDFlCsPEhISgrFjx5a5fsyYMbh0Sb7OuazxCoyMjOSmiqgiYDQ0tODg6oMnd0Nky1gq7Mm9y3D2LN0SuiwSsRgFeXmlluvqGfJAIC7qBSKe34Ovfwt8LJJDbsG8hXxWx6JlAySFSOvVJXl5SLlxDxYtAuUbEzUPRHKIMOtFC88JO5dqeHZP/px4dj8ETh7vnsqWiCU8RVy4TQdXX8SXqGaIjw6HibkwuxWyLmBuHlVw5/Z1uePA5qt4lw5q7R2csODPjbyKoHDyr98Q1arX5v83t7BCQUE+73qpViKlyoKO8jwx7b/E2vpYOVbjd/fFP+9s3tbl3du+sMCo8HwwMneAnpGl3DZzstMR/eI2bF2F2Z6GNfLzcnfDjdA7cufD9dC78PHyfKdtFBSI8fxFBMxN39ATJT4BqWnpbywjRCI1tQqbPrrMAGskyC7cZTE2NkZ2djYqW5NPBmD78u/53TzrWnjuyGbk5mShXtOufP3WZVNgbGqFT/p8xefZGAPsDt/C2pHXDz+4eR7XLxxA98HTZNu8HRIMfSNTmJrbIiriCfZunAPfui3gVaMoJSbEroX6Hk6yeT1XBxjV9EZuYgofQ8Br1kTo2Fvj9qDJfP2LVdvhPLovvOd8y7sjWjQP4F0Jr3YeIdtG2KL1qLluLpKv30XK1VC4jBsADX1dRGxU3CpfKBq2G4Ddq6fA3tUXDm7VcfHYJn5O+DWRnhO7Vk6Gkak12vaUZqxYBsDetRrMrJx4A9LHoedw6+J+dB5QVJXVqMNg7Fj6NVy8/OHmUx+PQy/g0c0zGDJlI4SqY5deWPr7bLh7esOjSlXetTAnOwvNW3Xg65csmAUzcwv0HTgSWlracHKRbwuipy9tFV64nAUYrG3A5nXLeHkLXk1wC2dPHcWAoWXfOFS2Os0G4diWybB28oWNUw3cOLsReblZ8Knfja8P/msS9I2t0aiTdHz6K8dXwtrRl/ckYAFA2P2zeHh1P1r0/Ek2Imvtpv1x5dhynj0wNnfAxcOLeZaA9S4Qqh6ffsLHBfDycEdVT3fetTA7OwftWzXj62f//icszM0wvP/nfH7j9r95oGBva4P0jAxs33MAMXFx+KS19KYoMyubl2nSoB7vZfA6OgYrN27h5evWefebMUEQUTVBmdgDik6dOiV7lGJJ7JnLrExlqx3YHhmpiQj++0+kJsfD3tkbw75bKasmSI6P4h/eQqwOMGj9z0hOiOEZCis7N3w+5le+nUKsoeC+zb/xAWuMTC3h17gzWncbWSnv710Z+/ki8KR0+GjGZ7500I+ITUEIHTIF2raW0HUs6iqWFR7JL/w+C6bA5cv+yI6Mxp0RU2VjDDBRu45Ay9IMVaaPkw46dPsBrnQcitwSjQqFpkZAB2SkJeFk0B98ICpbp6oY+O0qWTVBSgI7J9Tkzon9G2ciJZGdEzqwtHVFjxFz+XYKsa6HnQdOx7mDq3Dwr9mwsHVFny8Xw8VLflAuIWnYpCVSU5Kx46+1fNAhFzcP/DBzPkxMpY0K4+Niyj3y2oTJP2HrxpVYPH8m0tNTYWllgz79hqFNe+EOOuRVpwOy0hNx6fAf0kGHHKqiy8g10DeSng+pSVFy/czzczNxetcMpKVEQ0NTB2ZWbmjbbx7fTiH/lsOQn5uFkzt+lA465OaHriPXCHaMAaZF4wZITk3F+q07pYMOubrgt+lTZN0FY+IT5O5s09IzMH/pKl7WwECfZxaWzv2Zd0tk1NXU8Dz8BYJPn+XBgrmZGerWqoHBfXtCS1MTSkVNOe7oK0q5nlrIxhhg7QbY8wk6dCj6EDCHDh3iIxB+//33pdoDvAt6aqEUPbVQip5aKEVPLZSipxZK0VML/7unFmZukG/k/m/oDZyOjyozMH78eN6joGPHjvDy8uK9CVgs8eDBAzx58gRdunTBhAkTPtzeEkIIIf8FkWpVE5QrD8Janu7atQvbtm1DlSpV8PDhQzx69Aje3t7YsmULdu/ezcsQQgghykxEDQjfjj2hkE2EEEIIUX7lCgbYXX/xhneKsPX5+VT/TwghRImJlOOOvlKCgT175B9lWxwbX+CPP/7g/VQJIYQQpaamWm0GyhUMfPqp/LPcGdZm4LvvvsOBAwfQt29fPgIhIYQQQpTHe+dBXr9+jWHDhqF69eq8WuDWrVvYuHEjnJ2lw3USQgghykokUquwSRmUey9TUlIwefJkeHh44N69e3ygIZYV8PX1/TB7SAghhFRGNYFaBU0fWzXBb7/9hrlz58LGxoZ3L1RUbUAIIYQQ5VKuYIC1DdDV1eVZAVYlwCZFgoKEPU49IYQQ8kYi5UjvV0ow0L9//7d2LSSEEEKUnki1rnXlCgY2bNjw4faEEEIIEQo11coMqNa7JYQQQkjFDEdMCCGEfNREqnWvTMEAIYQQUpKSdAmsKKoV+hBCCCGkFMoMEEIIISVRNQEhhBCi4kRUTUAIIYQQFUKZAUIIIUTFxxmgYIAQQggpiaoJCCGEEKJKKDNACCGElES9CQghhBAVp0bBACGEEKLaRKrVZkAwwcCK5Y8rexcEYeCFB5W9C4Kg26hqZe+CIJjc31vZuyAIW5bS54IZ9OXzyt4F4fCuVdl78FERTDBACCGECIaIqgkIIYQQ1SZSrWoC1Qp9CCGEEFIKZQYIIYSQkqg3ASGEEKLaJFRNQAghhBBVQpkBQgghpCTqTUAIIYSoOJFqBQOq9W4JIYQQUgplBgghhBAVb0BIwQAhhBCi4tUEFAwQQgghJalYZkC1Qh9CCCGElEKZAUIIIaQkGoGQEEIIUW0SqiYghBBCiCqhzAAhhBBSEvUmIIQQQlSbRMWCAdV6t4QQQggphTIDhBBCSEkq1oCQggFCCCFExasJKBgghBBCVDwzoFqhDyGEEEIqJjOwa9cubNu2DY8fP+bzVapUweeff47PPvvsfTZHCCGECItIte6Vy/VuxWIxevXqxaf79+/Dw8ODT/fu3ePLevfuDYlE8uH2lhBCCPmPRiCUVND00WUGFi9ejBMnTmD//v3o2LGj3Dq2bNCgQbzMhAkTUNk+aWaKbm3NYWqsgbCIHKzcFoXH4dkKyzrZaaNvZ0t4OOvA2kILq7ZHY//JxH+1TaEIObEF5w+vQ3pKPGwcvdGx3w9wdK+hsOy9q8dw5sAqJMa+REF+PsxtnNGo/UDUbvipXLnYV88QvHMBwh5ehbigAFb27vj8y8UwsbCDEJk18ofb10NgXMcXOnZWuNZ9NGL2n3zza5rUg8/872Dg44nsiCg8nbMckZv2yJVxHvU53CYOgbaNJVJDH+LehJ+RcvUOhG7fwcPYFbQHiUnJcHd1wZgRw+DtVUVh2eATJzF/0RK5ZZqamji8Z5fC8ov+XI5DR4MxathgdPu0M4SsWwc79OnmCDNTLTwLS8fvK5/iwZO0Mss3b2iBoV+4wsZKB5GvM7F8QxhCrpf+nmC+Ge2JLu3tsHj1U+za/wpCtv3cdWw8eRnxqRmoYm+F7z5rjeouZX+WUzOz8efBczh5+xFSMrNha2qESd1boXE1d76+QCzG8sMXcOjqPSSkZcDS2ACd61fH8LYNIFKSC6MqKldmYP369Zg3b16pQIDp3LkzfvvtN6xbtw6VrbG/EYb2tMa2A3EY//NzhEVmY+YEZxgbqissr60lQnR8LjYGxSIxOa9CtikEoSGHcXjrXLToMgZjZu6GjZMXNswbhvTUBIXldQ1M0KzzCIyYtg1f/rIXfo27Imj1D3gSekFWJiHmJVbN6gtLW1cMnbKRl2v+6ShoaGlDqNT19ZAa+gh3x814p/K6Lg6ou38lEs5cxgX/TxG2ZCOqr5wFi9aNZGVse7RH1XlT8GTWUlyo1xVpoQ9R/9BaaFmaQcjOnLuAlWvW4Ys+vbF88UK4ubpgyo8zkJScXOZr9PT0sGPzetm0Zd1qheUuXAzBg0ePYG4m7GPAtGhkibFD3bF+WziGTLiOp2HpWDizOkyMNRWW9/U2wvRvfXDwWBQGj7+O8yEJmPNDNbg66ZUq2yTAHNW8jBCXkAOhO3r9AebvOYUR7Rth+6RB8LK3wqhlO/hFXJG8/AKMXLodrxNSMH9IV+ybOgzT+7SHlbGBrMz64yHYdeEmpvRojT0/DMWEzs2w4cRlbD17HUpXTSCqoKmcli5dChcXF+jo6KB+/fq4cuXKG8snJydjzJgxsLW1hba2Nq+6P3z4cLl+Z7n28smTJ2jVqlWZ69k6VqaydWltjuDzyThxMQURUblY+lcUcnLFaN3QRGH5J+HZWP93LM5dTUVevqRCtikE/xzdCP9mPeDXpBus7D3w6cCfoKmtg+tngxSWd6taD9X8W/M7fXNrJzRo2x/WjlUQ/rjoQ3z870XwqtkE7Xp/CzsXH16uap0WMDAyh1DFBZ/D4+mLELPvxDuVdx7eG1lhkXgwaS7SHz7Hi2VbEL07GK7jB8rKuE4YhIi1OxG5MQjpD57hzujpKMjMhuPA7hCy3Xv3oX3bNmjXuiWcnRwxfswo/uURfLzsTAm7mTMzNZVNpqalz/n4+AQsXbkaU76ZCA0N4QbIhXp3ccCB4CgcPhmD8IhMzFv2BNk5YnRsbaOwfI/O9rh8IxHb9kTiRWQm1mwJx+Nn6eje0V6unIWZFiaM8MTMBQ+QX8Z3iZBsPn0F3QJroktADbjbWmBqr3bQ0dLE3kuhCsvvCQnl2YDfh3dDbTcH2JubwN/TCV4O1rIyt8JeoVl1TzTx9eDrW9f2RqC3C+6+iIIykUBUYVN57NixAxMnTsT06dNx48YN1KxZE23btkVsbKzC8rm5uWjdujXCw8Px999/49GjR1i9ejXs7eXPzQoNBnR1dXkEUpbU1FQeyVQm9j3E0v23HhRFtqwZA5v3dtcTzDY/tPz8XLwOvwePaoGyZWpqavDwCcTLp7fe+nrW9uPZvUuIjwqHq7e/rM3Io9tnYW7jgvW/DcXsMQ2x/KdeuH/93S6yysIkoBbiT12SWxZ3/AJMA2rx/4s0NWFcpxriT14sKiCRIP7URZgE1IZQ5eXl4fHTZ6hTq4bcOVGnVk3cf/iozNdlZWWj76Bh+HzgEPz482yEv3gpt56dF3MXLkKPbl3g4uwEodPQEKGKhyGu3U6S+zxfu5XE7+jLygyw9cVdvpnIlxcPmqZN9Ma2oAiEvcyE0LG7/AcR0QjwcpEtU1MT8fnQcMVVG2fvPEENF3vM2XkMzb//A91mr8Ga4Iu8aqBQLVd7XHkcjvBYaRXKo8gY3HweiUY+bv/Bu1J+CxcuxLBhw3i1u4+PD1asWMGzc2Vl3dnyxMRE7N27Fw0bNuQZhaZNm/Ig4oO1GQgMDMTy5cv5VFZqg5V5m5ycHD4VV1CQC3V1LfxbRgYaUFcXITk1X245m3ew0RbMNj+0zLRkiMUFpe7YDYzNERcVVubrsjPTMHd8Mx5MsAtFp/4/wsO3IV+XkZqA3OxMnDu4Bq0/G4e2vb7mVQhb/xiHIVM2wNW7Hj4G2tYWyImJl1vG5jWNDaGmow1NU2OoaWggJ1a+uiUnJgH6XsL9wktJTeMXblMT+Tt7UxNjRERGKnyNo709vhn/JVxdnZGRkYm/g/Zi/LffYc2yP2BpYcHL7Pg7CGrqaujauXT1oRAZG2lCQ12ExCT5KkFWRejsoDi4NzPRQlJyrtyypOQ8vrxQ3+6OKBBLsOuAsNsIFErKyOT7a26kL7fc3FAfYTGKqxIj45PxOvEFOvhXw9KRPfEyLgmzdwYjv0CMkR2k1WiDWwciPTsXXWatgrpIDQUSMb7s2BSf1K0GVR10KEfBNY9l5NhU8i7/+vXrmDJlimwZ+x5mWfdLl+RvUIq312PXXVZNsG/fPlhaWvLefZMnT4a6uvqHCQZ++OEHNGvWDAkJCfjmm2/g7e3N7yAfPHiABQsW8B05ffr0W7czZ84czJghX3/rWXs0qviNKc/ukA9AS0cfY2cFISc7E8/vh+DItrkws3LkVQiFPUVYtUDDdtKUuZ1zVbx8ehNXTu34aIIBUsSnqjefClWr6o0ho8bi0JFgDOzXF4+fPsWe/QexbPFClW4c5uVugB6dHTB4gpLVi5eTWCKBmaE+fuzTDupqavBxskFsShpvgFgYDATffIDD1+5hzoDO8LC1wMPIWMzbfULWkFBpiCouGFB0zWPVAD/99JPcsvj4eBQUFMDauqjahWHzDx8+VLjt58+f49SpU+jbty9vJ/D06VOMHj2aZwLZ7/ggwUCDBg14fcbw4cOxe/duuXWmpqZ87AGWpngbFvWwOpHiek14joqQmp6PggIJTIzk3xqbTypxZ1+Z2/zQ9AxNoKamXqqxYHpKAgyMpXd0irAo1NzaWXahj339DGcPrOLBAN+mugZvU1CcpZ0bXjy+gY8FywKw7EBxbD4vJQ3i7BzkxidBnJ8PbSv5rIu2tTlyouUzCkJibGTI/74lGwsmJafwz++70NDQgLubG15FRfP5u/fuIzklBX0HDZWVYdmHlWs3IGjfAfxVRmPDypSSmof8AgnMTOUbC5qZaCIhSf7uv1Bici5Mi2UBGFMTTb6cqVHNGKbGmti9LkC2nmUfxg52R8/ODugx9DKExlRfD+pqIiSkyjcWZI0HLUpkCwqxC7qGmhoPBAq5WZvzngis2kFTQx2/7z2Nwa0D0N7Ph6/3tLNCVGIK1h67pFzBQAVSdM0rmRV4X+zzZmVlhVWrVvFMgJ+fH169esUb+3+wYIDp2rUrb8wQHBwsayzIWi62adOG12u8C0XpkYqoImDyC4CnL7JRs6o+Qm5JuwmxGxY2f/BUomC2+aFpaGjBzqUant0LgY9fK9lJ8+x+CAJa9X3n7UjEEhTk58q26eDqi/gS1Qzx0eEwMRdmt8L3kRxyC5btm8gts2jZAEkh0rYWkrw8pNy4B4sWgUVdFEUimDcPxItlf0GoWJfAKh7uuHk7FA0DA2TnBJv/tGOHd9oGu2sJf/EC9fz8+Hyr5s1Qu0TdJOud0KpFM7Rt1RJCxBr2PX6aBr8aprxXQOHn2a+mKYIOKU7x332YCv+apnLdBOvWMuXLmeDTMaXaFCycWYMvP3RCGjgJDbtwV3W0weXH4WhRU9q1VCyW4PLjF+jduI7C19RydcCR6/d4Oda+gHkRlwhLIwO+PSY7Nw9qJbJELHhgWQVlIqnATJeia54iFhYW/IIeExMjt5zN29gobtzKehCwz3bxKoGqVasiOjqaVztoab3btbVceRCWimANGvLz83lQMGnSJD516dKFpySqVauG8+fPo7LtPZ6Ato1N0CLQGA42Whjd1xY6Wmo48Y/0jmjiYDsM6GolK8/OYVdHbT6xxkXmphr8/7aWmu+8TSFq2G4Arp3dhRvn9/KxAfZvnIHcnCz4NenK1+9aORnBOxfKyrMMwNO7/yAxNoKXv3BkPW5d3I+aDTrJyjTqMBh3Lh/F1dM7kRDzApeOb8Gjm2dQv2UfCLlroVFNbz4xeq4O/P86jrZ83mvWRNRcP1dW/sWq7dBzdYT3nG95GwDnkZ/zroRhizfIyoQtWg/HIT1h368LDLzd4Lv0J2jo6yJio+KeGkLRvcunOBx8HMdOnsKLiAj8sWwFsrOzZRfuuQsWYe2GzbLym7ftwLUbNxEVHY0nT5/h1wWLEBMbh/ZtW/P1RkZGcHVxlptYbwIzUxM4OpSvNfN/afveSHRqa4t2Lax5OwE2LoCujprswj31Ky+M6O8qK8+CgPp1THkvBCcHXQzu4wxvD0PsPigNDlLT8nmjweITCzpYpiHiVRaEql/zegi6eBv7L9/B8+h4zNoZjKycXN67gPlh0wEs3n9GVr5n49q8N8Hc3cd5A8Fzd59izbFL6NWkKHho6uuB1ccu8XWvEpL5eASs10JhwKFMbQYkFTS9K3bhZnf2J08W9e5hATubL6s9HsvGs6oBVq4QGx2YBQnvGgiUOzOwaNEi3sqRfQGUZGxsjBEjRvCWkI0bN0ZlOn8tlff//+JTS5gaaeB5RA5+XPwSyWkFfL2lmSbEEvn04JIfi1Lf3dta8OnOowxMmf/inbYpRDUCOiAjLQkng/5AWko8bJ2qYuC3q2TVBCkJURAVO1FzczKxf+NMpCTGQFNLh48l0GPEXL6dQqzrYeeB03Hu4Coc/Gs2LGxd0efLxXDxkt4pCpGxny8CTxZd4Hzmf89/RmwKQuiQKdC2tYTu/wMDJis8Elc7j4DPgilw+bI/siOjcWfEVMQfLxpvIWrXET6mQJXp46SDDt1+gCsdhyK3RKNCoWnWpBFP62/8axuSkpLg7uaK2TOny7oLxsbFQfT/Oz4mPT0dvy9ZxssaGBjA08Mdi+f9yrslKrNTF+L4mAJD+7rwQYeePk/H19Pv8EaBjLWljtx3BMsAzJj/AMO+cMXw/q6IfJ2FKb/cU4peA2/Szq8qktIzsezQecSnZfBxBpaN7iVrVBidlCp3l29jaoTlo3thXtBJ9JizFlYmhujb1B+DWhdVj3zXozWWHjqP2TuPITE9k1ctfNawNka0e3sVsqCIKqcNDKtOGDBgAPz9/VGvXj1+3c3IyOC9C5j+/fvzboOsHQIzatQo/Pnnnxg/fjy+/PJLnrGfPXs2xo0bV67fK5KUY/xgZ2dnHD16lKcgFGENHFh1wcuX8l2P3kXHYffL/ZqP0cChRY21VJluI8XnmKqpfn9vZe+CIHw+UXEfa1Vz4suKaVv1MdBpI704fiiJd4qC/3/LrHrRgGXvgl3cWZ0/S/XXqlULf/zxBx98iGGN+Fn3wQ0bijKVrKfBV199hVu3bvFAYciQIR+2NwGrt2B1E2VuTEMDcXFx5dkkIYQQ8lF3LSyvsWPH8kmRM2eKqm0KsSqEkJAQ/Bvlercs4rh7926Z60NDQ3k9BSGEEKLMJJU0AmFlKVcw0KFDB0ybNo03OCopKyuLd2NQ9NwCQgghhAhXuaoJpk6diqCgIN6VkKUwvLy8ZG0F2OiDrNsRG5iIEEIIUWaSSqwmEHwwwEZBunjxIm+9yAZRKGx7yEYeY2MPsICg5MhJhBBCiNIRKUd6v6KUe9Ah1qOADXnIuhqxvo0sIPD09HznEcwIIYQQouTBQCF28a9bt27F7g0hhBAiAJLyNalT3WCAEEII+VhJVKyaQLVCH0IIIYSUQpkBQgghpATqTUAIIYSoOImSDBZUUSgYIIQQQlQ8M6Ba75YQQgghpVBmgBBCCFHx3gQUDBBCCCEq3maAqgkIIYQQFUeZAUIIIUTFGxBSMEAIIYSUQNUEhBBCCFEplBkghBBCSqBqAkIIIUTFSaiagBBCCCGqhDIDhBBCSAlUTUAIIYSoOImKVRMIJhgwMjeq7F0QhCpm8ZW9C4Jgcn9vZe+CINzx6VLZuyAIfvOvVfYuCEKEu0tl74JgeH7g7UtUbDhi1cqDEEIIIUS4mQFCCCFEKCQS1coMUDBACCGElCBRscS5ar1bQgghhJRCmQFCCCGkBOpNQAghhKg4iYoFA1RNQAghhKg4ygwQQgghKp4ZoGCAEEIIUfFggKoJCCGEEBVHmQFCCCGkBBp0iBBCCFFxEhWrJqBggBBCCFHxYIDaDBBCCCEqjjIDhBBCiIpnBigYIIQQQlS8ASFVExBCCCEqjjIDhBBCSAliqiYghBBCVJtExYIBqiYghBBCVFy5goG8vDxMmjQJHh4eqFevHtatWye3PiYmBurq6hW9j4QQQsh/3oBQUkHTRxcM/PLLL9i0aRNGjhyJNm3aYOLEiRgxYoRcGYlEUtH7SAghhPzn1QSSCpo+ujYDW7ZswZo1a9CxY0c+P3DgQLRv3x6DBg2SZQlEIuV444QQQgh5j8zAq1ev4OvrK5tn1QVnzpzBxYsX0a9fPxQUFJRnc4QQQoggSaiaoGw2NjZ49uyZ3DJ7e3ucPn0aV69e5ZkCQgghRNlJqJqgbC1atMDWrVvRsmVLueV2dnY4deoUmjVrBqFoHaCPjk0NYWygjpdRedi4PwnPIvMUlrW30kCPNkZwtdeCpakGNh1IxtF/0svcdqemhujT3hhHLqRh88EUCNnRg0HYH7QNyUmJcHZ1x+ARE+Dp5fPW1/1z9gQWzZuBugGNMGnqHNnyrKxMbNmwEldDziMtLQVW1rbo0OkztOnQBUK37+Bh7Arag8SkZLi7umDMiGHw9qqisGzwiZOYv2iJ3DJNTU0c3rNLYflFfy7HoaPBGDVsMLp92hlCZNbIH25fD4FxHV/o2FnhWvfRiNl/8s2vaVIPPvO/g4GPJ7IjovB0znJEbtojV8Z51OdwmzgE2jaWSA19iHsTfkbK1TsQukY1NNHCTwtGeiK8ihdj95lsvIwRKyxrY6aGDoFacLBSh7mRGoLOZuPsLfnvE21NoEOgNmq4a8CAbTNWjKBzZW9TKA4e2I+g3buQlJQIV1c3jBg1Bl5e3grLnjh+DIt+n1/qc7Fn3yHZ/MV/LuDI4YN4+vQJ0tLS8MeS5XBzd4eykSjJHX2lZAamTZuGnj17KlzHMgRnz54t1cOgMgTU0MUXHU0QdCIVPyyJwcuoXHw3xBJG+orfrraWCLEJBdh+JAVJqW+u6nBz0ETL+vp4EZULofvn3ElsXPMnevQZiLmL18DZ1QO//Pg1UpKT3vi62JgobFq3DFWr1Sy1jm3v1o3LGPf1NCxa/hc++bQn1q5YhKuXL0DIzpy7gJVr1uGLPr2xfPFCuLm6YMqPM5CUnFzma/T09LBj83rZtGXdaoXlLlwMwYNHj2BuZgYhU9fXQ2roI9wdN+Odyuu6OKDu/pVIOHMZF/w/RdiSjai+chYsWjeSlbHt0R5V503Bk1lLcaFeV6SFPkT9Q2uhZSnsY1HbUwNdG2sj+HIO5m3LxOu4AozqogcDXcUXAC1NID5FggP/5CAlQ/HFvXcrHXg5qeOv4GzM/SsDD1/mY3RXPRjrC/eicu7sGaxZvRJ9Pv8Ci5csg6ubG36c9j2S3/AdwT4Xm//aLpvWbfhLbn12djZ8qvli4KCh/8E7IJUSDDg7O6Nt27ZlrmcZggEDBqCydWhkiNNXMnD2eiZexeZj7d5k5ORK0NRfX2H555F52HokBZdCs5BfUHZvCBY0jOllhjVBScjIEn6viYN7d6Bl205o3voTODq5YviYb6ClrYNTx4ui+JJYu48/5s9Ez76DYWVjW2r94wd30axFO1SrUZtnBVq368wzDk8fP4CQ7d67D+3btkG71i3h7OSI8WNGQVtbG8HHy74zZm1hzUxNZZOpqUmpMvHxCVi6cjWmfDMRGhrC7lYbF3wOj6cvQsy+E+9U3nl4b2SFReLBpLlIf/gcL5ZtQfTuYLiOL6oOdJ0wCBFrdyJyYxDSHzzDndHTUZCZDceB3SFkzepo4eK9PFy+n4+YRDF2nspBbr4EAdU0FZZnd/f7L+Tg5uN85Cu4X9BUB2p6aPAyz14X8MDh6OVcxCeL0bCG4m0Kwd49u9G2XXu0btMWTk7OGDN2PP9cHD8WXOZrWCNxUzOzosnUVG59i5ateHBRq3ZtKDNxBU4f7aBDu3btQrdu3XhjQjax///9998QAjbMgau9Ju4+zZYtY70d2byns9a/2vagT01w81E27j7NgdCxMSGeP32MGrX8ZMvU1NRQo5Y/Hj+8V+br/t6+AUbGpmjZRtpjpKQqVX1x7co/SIiP491I74beQNTrCNSsXRdCPhaPnz5DnVo15I5FnVo1cf/hozJfl5WVjb6DhuHzgUPw48+zEf7ipdx6sViMuQsXoUe3LnBxdsLHxiSgFuJPXZJbFnf8AkwDavH/izQ1YVynGuJPXiwqIJEg/tRFmAQI90KgrgY4Wqnh8cuiqzoL7dm8i837jcOmpsa2KyoVKOQVSOBmpy7YzwVL5deqVVvuc8HmHz4sO7jPysrCoAFfYGD/z/HzzOl48SIcHyOJijUgLFebAfbl16dPHx4MVKlSBd7e0nqle/fuoVevXujRowe2bdv21u6FOTk5fCquID8H6hra+LcM9dSgri5CSrp8PMbm7SzfP0IPrKELF3stTPszBsogLTUFYnEBjE3k07XGJqZ4FflC4Wse3AvFqWOHMO+Psqt6hoycgJVL5mHkwG58gCmRSA0jv5wEH1/pBUKIUlLT+LlraiJ/Z29qYoyIyEiFr3G0t8c347+Eq6szMjIy8XfQXoz/9jusWfYHLC0seJkdfwdBTV0NXTsrDpyUnba1BXJi4uWWsXlNY0Oo6WhD09QYahoayIlNKFEmAfpebhAqfV0Rv3CnZcp/R6RlSmBl9n4X7pw8IOx1AdrU00J0Yjbfll8VDbjYqCMuRZhZxNTUVP65MClxZ29iYorIiAiFr7F3cMD4r76Gq4sbMjIzeFuDb7+egGUrVsPCwvI/2nNS6cHA4sWLceLECezfv1821kAhtoyNN8DKTJgw4Y3bmTNnDmbMkK+39G34Fao3mgghMjNWR/9OJpi9Nh55+fgoZWVmYsnCWfzCbmRcOh1e6MiB3Xj86B4mT/sVllbWuH/3NtasWAhTcwuedfhY+FT15lOhalW9MWTUWBw6EoyB/fri8dOn2LP/IJYtXkhjaxBu87EsfN5KBz8PNUCBWILIWDFuPM6Hg9XHM+p71ao+fCo+P2rEUBw5fAj9+n9cvckkStILoFKCgfXr12PevHmlAgGmc+fO+O23394pGJgyZQofvbC4YTPjUBFYtF9QIIGxgfwHkM0np7/fOAhu9powNlTH7C+tZMtY9sHbRQttAg3Qf+orXhUhJIZGxlBTU0dKcqLcctZ40MTUvFT56OhXiIuJwq8zv5Mtk0ikd069OjfD4pVbYGpmga2bVuHbH36BX90GfB1rlBge9oT3WBBqMGBsZMjTnyUbCyYlp5Sq7yyLhoYG3N3c8Coqms/fvXcfySkp6FuskRS7y1q5dgOC9h3AX2U0NlQmLAvAsgPFsfm8lDSIs3OQG58EcX4+tK3kzydta3PkRMtnFISEtfdhF2uWRSxeo2uoJ0JaGY0D30VCigRLdmdBSwPQ0RIhNVOCAe11+HIhMjIy4p+L5CT5xoKs8SBrC/CunwvWUyAq6jU+NhIlSe9XSjDw5MkTtGrVqsz1bN3YsWPfuh3WQIVNxalrpKIisHGPwl7loZqHDq7dl7YbYDdu1Ty0cexixnttk7URmPS79CJQaMRnZngdl4cDZ9MEFwgUdvdx86iCO7evo15gE9nFis2369itVHl7Bycs+HOj3LLtf63mGYNBw8fD3MIKeXm5KMjPh5pIPtBiQYeQh6Fmx6KKhztu3g5Fw8AA2bFg85927PBO22ANK8NfvEA9P2kbjFbNm6F2TfneFqx3QqsWzdC2lXzXW2WVHHILlu2l504hi5YNkBRyi/9fkpeHlBv3YNEisKiLokgE8+aBeLFMvoW5kBSIgYhYMao4quPOc2mqj33ts/nzoYq7H5dHbj6bJNDVBrydpY0Khfq58PDwxO3btxDYoKHsc3H71i107NT5nT8XL8LD4Odf7wPvLRFUMKCrq4vk5GQ4OTmVWQelo6ODynb4QhpG9jDD88hcPIvIRftGBtDRUsPZ69JgYFRPUySmFGBHcKqs0aGDlbQ9gYa6CGZG6nC21UR2rhgxCQXIzpUgMka+fiAnT4L0THGp5ULSsUsvLP19Ntw9veFRpSoO7duFnOwsNG8lvQAuWTALZuYW6DtwJLS0tOHkIl/Pq6dvwH8WLmdfHqxtwOZ1y3h5C15NcAtnTx3FgKFvDwIrU/cun+K33xejiqcHvKp4Ys++A7wLVOGFe+6CRbAwN8eQgf34/OZtO1DVqwrs7WyRnp6BnUF7ERMbh/ZtW8vuqthUHOtNYGZqAkcHewi1a6G+R9FnV8/VAUY1vZGbmMLHEPCaNRE69ta4PWgyX/9i1XY4j+4L7znfImLDblg0D+BdCa92LnoeSdii9ai5bi6Sr99FytVQuIwbAA19XURsDIKQnbmRi75tdPAytgAvo8VoWlsTWpoiXL4vDQbYOtbO6ODFXFmjQzbWAKOhJs002luo8e8B1nOA8XZS51FFbJIYliZq6NxIG7GJYtk2hahL1+74feE8eHp6okoVb+zbF4TsnGy0ai3tNbZg/m8wNzfHwEFD+Py2rX/By9sbdrb2SM9I520GYmNjeY+EQmlpqYiLjUNCorQtSWSktP0By8K9a8ZBCCRUTVC2wMBALF++nE+KLF26lJepbCGhWTDST8ZnrY1gYqiOF6/z8Ou6eKT+v1GhuYkGxMVuZE2N1DFnvLVsng1WxKb7z3Mwa1XFVF9UhoZNWiI1JRk7/lrLBx1ycfPADzPnw8RU+oGMj4uBSK18J/yEyT9h68aVWDx/JtLTU2FpZYM+/YahTXthDzrUrEkjntbf+Nc2JCUlwd3NFbNnTpd1F4yNi5M7Funp6fh9yTJe1sDAAJ4e7lg871feLVFZGfv5IvDkZtm8z/zv+c+ITUEIHTIF2raW0HUs6k6aFR7JL/w+C6bA5cv+yI6Mxp0RUxF/vGhMiahdR/iYAlWmj5MOOnT7Aa50HIrcEo0Khebmk3wY6OagQ4A2H3QoMl6MFXszecM/xtSQtQIvyoCxsQIm9S3qmtzST4tPTyLz8efuLL5MR1uETg20YWIgQkaOBLef5uPQxRyIBdy3rEnTZkhJTcFfmzfxc93NzQ0zZ/4iqz6Li4uFmtznIg1LFi+Sfi4MDXhmYd6CRbxbYqHLISFyAxP9Nnc2/8m6G/b9oj+UhVi4yc4PQiQpR36XPYOAjTLYpUsXfPPNN7w3AXv5gwcPsGDBAuzbt48PTdywoTTlVB6ff6e4Vbeq+W7Iv+v++LEwgbAvJv+VOz7CDrL+K8fmX6vsXRCEsR3l2wCpMk/3ogDkQzh37/2qlRVpUk3xGDdKmxlo0KABduzYgeHDh2P37t2y5SwgMDMz490K3ycQIIQQQoREQtUEb9a1a1c+CmFwcDBvUMh4eXmhTZs2vE0BIYQQouwkKtaboFwdYC9duoSDBw/ysalZUDBp0iRYW1vzroRsqGKWMSg5mBAhhBCibCSSips+umBg5syZfLTBQnfu3MGwYcN4l8LvvvsOBw4c4AMKEUIIIUR5lCsYuHXrltzji7dv34569eph9erVfBChP/74Azt37vwQ+0kIIYT8Z8QQVdj00bUZYN1JWLVAIfbI4vbti/qX1q1bFxFljGlNCCGEKAsJtRkoGwsEwsLC+P9zc3Nx48YNBARIR3Rj0tLS+MA0hBBCCHk/bMweFxcXPohf/fr1ceXKlXd6HcvWs2elsO7/HzQY6NChA28bcP78ef58AdaQsHHjxrL1oaGhcHd3L/dOEEIIIUIiqaQGhKz7Pqt2nz59Or/hrlmzJu/Bx0Z6fJPw8HA+/k/xa/IHCwZ+/vln/mCKpk2b8nYCbNLSKhokZ926dbyLISGEEKLs4wxIKmgqj4ULF/KG+ewpwD4+PlixYgW/8WbX1zc9I6Jv3778acBsFMkP3mbAwsIC586dQ0pKCh+ilT3Pvrhdu3bx5YQQQgiRYl3uS3a7V/TAPlb9fv36dZ55L8SeLMl67LGu/W/q6WdlZYUhQ4bwzP37eK8HbRsbG5cKBBg2CmHxTAEhhBCijMSSiptYl3t23Sw+KeqGHx8fz+/yizfUZ9h8dLT8k3MLXbhwAWvXruWZ+v90BEJCCCHkYyepwN4E7E6ftQMormRW4H2wRvv9+vXjgQDL3P8bFAwQQgghH5CiKgFF2AWdZd1jYmLklrN5GxubUuWfPXvGGw526tRJtkz8/8dksvZ9jx49eudG/e9VTUAIIYR8zCSV0JuAVbP7+fnh5MmTchd3Nh8YGFiqPHtyMBsJmA0IWDh17twZzZs35/93dHz3R65TZoAQQggpobJGDmTVCQMGDIC/vz8f4XfRokXIyMjgvQuY/v37w97enrc5YOMQ+Pr6yr3exMSE/yy5/G0oGCCEEEJKqKwHDPXq1QtxcXH48ccfeaPBWrVq4ejRo7JGhS9fvuQ9DCoaBQOEEEKIgIwdO5ZPipw5c+aNr92wYcN7/U4KBgghhBAVfzYBBQOEEEJICWx8AFVCvQkIIYQQFUeZAUIIIUQgDQgrCwUDhBBCSAnlfcCQsqNqAkIIIUTFUWaAEEIIUfEGhBQMEEIIISVQm4FKYmSqX9m7IAj/PDOt7F0QhC1LH1T2LgiC3/xrlb0LgtDmG//K3gVBWKF5o7J3QTAWjK7sPfi4CCYYIIQQQoRCQpkBQgghRLWJaQRCQgghRLVJVCwzQF0LCSGEEBVHmQFCCCFExTMDFAwQQgghKj7OAFUTEEIIISqOMgOEEEJICRLqTUAIIYSoNglVExBCCCFElVBmgBBCCFHxBoQUDBBCCCElUDUBIYQQQlQKZQYIIYQQFc8MUDBACCGElEBtBgghhBAVJ1GxYIDaDBBCCCEqjjIDhBBCSAliMVQKBQOEEEJICVRNQAghhBCVQpkBQgghRMUzAxQMEEIIISretZCqCQghhBAVR5kBQgghpARJhdYTiPDRBQMJCQkIDQ1FzZo1YWZmhvj4eKxduxY5OTno0aMHqlat+mH2lBBCCPmPSFSsmqBcwcCVK1fQpk0bpKamwsTEBMePH+cBgIaGBsRiMX799VdcuHABderUQWVrWlsbbeprw0hfDZGxBdhxIhPhUQUKy9paqKFTI10426jD3FgdO09m4tS1HLkyIhHQsZEO6vto8W2mpItx6W4uDl/MhpDdPr8F106tRWZqHCzsvdG8+zTYONdQWPbp7WO4cnwFkuNfQlyQDxNLZ/g1H4SqdbvIRcshR/7AnUu7kJOVCjvXOmjR4yeYWrlA6Lp1sEOfbo4wM9XCs7B0/L7yKR48SSuzfPOGFhj6hStsrHQQ+ToTyzeEIeR6osKy34z2RJf2dli8+il27X8FIWtUQxMt/LRgpCfCq3gxdp/JxssYxZ2qbczU0CFQCw5W6jA3UkPQ2WycvZUnV0ZbE+gQqI0a7howYNuMFSPoXNnbFAKzRv5w+3oIjOv4QsfOCte6j0bM/pNvfk2TevCZ/x0MfDyRHRGFp3OWI3LTHrkyzqM+h9vEIdC2sURq6EPcm/AzUq7egZA19NVAs1qaMNQT4XWCGHvO5yIiVvHfrn5VDfh7afDzgomME+PwZfny1d3UEVhNEw6WatDXEWHBjiy+XfIRtRn44Ycf+MU/JSUF33//Pbp06YKWLVvi8ePHePr0KXr37o2ff/4Zlc3PWxOftdDFwX+yMXtDKg8GvuxpwE92RbQ0RIhPFmPP2Sx+kVekbX0dNK2lje3HMzFjTSov26aeDpr7aUOoHt04jHN75iCg7Rh8/u0eWNp5Y8/yIchMS1BYXlvPGPVaj0LvCTvwxeT9qFavG45t/R7hD87Lylw7uRo3z21Gy54/ofdXO6GppYs9K4YgP08+eBKaFo0sMXaoO9ZvC8eQCdfxNCwdC2dWh4mxpsLyvt5GmP6tDw4ei8Lg8ddxPiQBc36oBlcnvVJlmwSYo5qXEeIShH0MmNqeGujaWBvBl3Mwb1smXscVYFQXPRjolvHZ0ATiUyQ48E8OUjIUfzZ6t9KBl5M6/grOxty/MvDwZT5Gd9WDsb5wU6Pq+npIDX2Eu+NmvFN5XRcH1N2/EglnLuOC/6cIW7IR1VfOgkXrRrIytj3ao+q8KXgyayku1OuKtNCHqH9oLbQszSBUtTzU0bmhFo5dy8Pvu7LwOl6M4R11YKCruLyHvTpuPsnH8n3ZWBKUheR0MUZ00oFRsb81+z4NiyrAoUu5UPZBh8QVNH10wcD169cxceJEGBoaYvz48Xj9+jWGDRsmWz927FhcvXoVla1VXR38czsHl+7kIipBjK3BmcjLAxpU11JY/kV0AYLOZOHagzzkFyjODbnZq+P20zzcfZ6PhFQxbjzKw/3wPLjYqkOobpxZD98GPVEtoDvMbTzQsucMaGjp4F7IboXlHT3rw6Nma5jZuMPEwgm1mw2AhZ0XXj+/LssK3Dy7CfXbjIJ79VawtPdG2y9+Q0ZKLJ7dOQEh693FAQeCo3D4ZAzCIzIxb9kTZOeI0bG1jcLyPTrb4/KNRGzbE4kXkZlYsyUcj5+lo3tHe7lyFmZamDDCEzMXPEB+vvDzis3qaOHivTxcvp+PmEQxdp7KQW6+BAHVFAdF7O5+/4Uc3Hycj3wFiTVNdaCmhwYv8+x1AQ8cjl7O5cF1wxqKtykEccHn8Hj6IsTse7fz1nl4b2SFReLBpLlIf/gcL5ZtQfTuYLiOHygr4zphECLW7kTkxiCkP3iGO6OnoyAzG44Du0OomtTURMj9fFx9mI+YJAl2n81FXr4E9bwV/+22nMjBxXv5/E4/NlmCnWdyedbU06Hoe/D643wcv5aHx5GKM7HKVE0gqaDpowsGcnNzoasrDRk1NTWhp6cHCwsL2Xr2f9amoDKpqwFONup48CJftoz9LR6E58HN/v3bSz5/VQBvZw1YmUoPmb2lOjwcNHDvedHvEZKC/FzERtyDY5UGsmUiNTU4VWmAqPCbb309u/C/fHQJSbFhsHevy5elJkTy6obi29TWNYSNc01Ehb19m5VFQ0OEKh6GuHY7SbaMfUCv3Urid/RlZQbY+uIu30zkywuxL8FpE72xLSgCYS8zIXTss+FopYbHLwvkPhts3sXm/ToWqamx7YpKBQp5BRK42Qk3UC4vk4BaiD91SW5Z3PELMA2oxf8v0tSEcZ1qiD95saiARIL4UxdhElAbQj0fWCr/SWSJ8yGyAM7veD5oaUi3k5mtJFe8cnYtFFfQpAzKdXV0dHTE8+fP4eIirR/evn07bG1tZeujoqLkgoOysMaGbCquID8H6hr/PuXO6izZl1NqiZRmWqYENubv/+UUHJINHW0RfhpmBImYXViBfeeyceW+MFNhWRlJkIgLoGdoLreczSfGPi/zdTlZaVjzYxMeTLDgoUWP6XD2bsjXZaTF8Z/6CraZkRYPoTI20oSGugiJSfJ13YnJeXB2KJ32Z8xMtJCULP+3TUrO48sL9e3uiAKxBLsOCLuNQCF9XelnIy2z9GfDyuz9Phs5eUDY6wK0qaeF6MRsvi2/KhpwsVFHXIqSfAu+A21rC+TEyJ/jbF7T2BBqOtrQNDWGmoYGcmLlb4ZyYhKg7+UGIWL1+dLzQf7vlJ4lkd30vM0ngVpIyZDIBRREOZUrGGBtAmJjY2Xzn3zyidz6/fv3o169em/dzpw5czBjhnxdnV/LSfBv/R2Eyq+qJur5aGHdgQxez+porYEeLXV5G4OQu8IMCN6HlrY++k7ai9ycTEQ8voSze3+Fkbkjr0IgRbzcDdCjswMGT5BWoaiyzcey8HkrHfw81IAHR5GxYtx4nA8HKxrG5GPWorYmantoYNm+LIVVSMpO8vHEshUfDEyfPl1unnUrZAqzAayBobr62+8wpkyZwtseFPf1kopJs6ZnSvgXEmvxDxSdoazxYMlsQXl0a6bHswOsXQHzOj4XZkZqaBegI8hgQFffFCI19VKNBdm8vmHZ2RuWDWC9CBgrh6pIjHmGqydW8WBA39CSL89g2zC2ktsmaz8gVCmp0rYgZqby9aBmJppISFL8t0tMzoVpsSwAY2qiyZczNaoZw9RYE7vXBcjWs+zD2MHu6NnZAT2GXobQZGRJPxuGeuyzIZb7bKT9i89GQooES3Zn8ZSxjpYIqZkSDGivw5d/LFgWgGUHimPzeSlpEGfnIDc+CeL8fGhbyWfNtK3NkRMtzKxZRnbh+SDf0JM1Ji2ZLSipWS0NtKijiRX7sxGV8PH8nYuTVGh+X7iNaQuVO3RPTk7GmDFjeABgbW3NJ/Z/1niQtSnQ1n57qp+VMTIykpsqooqAKRADL6Ol9fvF/wzeLpp4/ur96/dZq+qSg1Cwc4XVGwuRuoYWrByr8bv7QhKxmM/burx7HaZEIuZVBoyRuQP0jCzltpmTnY7oF7dh6yrMelGGNex7/DQNfjVMZcvY382vpinuPUpV+Jq7D1PhX7OoPFO3lilfzgSfjsGAL69h0LiiifUm2LYnAhOnh0KI2GeDdQGr4lgUsLPTl82HR//7Js+5+eCBgK42+OfvjkDb07yP5JBbMG9RFPgxFi0bICnkFv+/JC8PKTfuwaJFYFEBkQjmzQORHHJTsOcD6xroaS9/PrDGgC/ecD40r6WJVn5aWHUwm7+eqGBmIDExEYGBgXj16hX69u0rG2Do/v372LBhA06ePImLFy/C1FT+S/S/duJqNgZ+os97CYRH5aOFvw6/mF+8I72oDfxED8lpYuw9Jx0jgDWAsbWQfiBYHZqJgRrvV52TK0FcsvRkv/M0D+0b6CIxVYyoeDEcrdXRqq42LoYKLytQqE6zQTi2ZTKsnXxh41QDN85uRF5uFnzqd+Prg/+aBH1jazTq9DWfv3J8JawdfXlPAhYAhN0/i4dX96NFz5/4epFIhNpN++PKseU8e2Bs7oCLhxfzLAHrXSBk2/dG4oevvPHwaRoePE5Dz0/toaujhkMnovn6qV95IS4hFys3hfF5NlbAn3Nq8l4IF68loFVjK3h7GOK3Px/z9alp+XwqGXSwTEPEqywI1ZkbuejbRgcvYwvwMlqMprU1oaUpwuX70owXW8eqvg5ezJV9Ngr7lGuoAcYGarC3UENOnoT3HGC8ndT5VSQ2SQxLEzV0bqSN2ESxbJtC7Vqo7+Ekm9dzdYBRTW/kJqbwMQS8Zk2Ejr01bg+azNe/WLUdzqP7wnvOt4jYsBsWzQN4V8KrnUfIthG2aD1qrpuL5Ot3kXI1FC7jBkBDXxcRG4MgVOdu56F3C21ExIn5OdGkhibvGnjlofRv16eltE3A4RDpfPPammhXTxN/Hc9BUqoEhv/vksrOBxYMMiwYNDVQk3U3tDJlP9V4tiEtS3myCGLl2dX/PhiYOXMmtLS08OzZM54RKLmODUjEfv7++++oTNcf5sFQLwudGunIBh1asjNdlvpi6f3iN/ns4j91UFEr8Tb1dfj0+GUeFm5L58u2n8hE58a66NNGj6dZ2Rfm+Vs5OPSPcAcd8qrTAVnpibh0+A/poEMOVdFl5BroG0nTnalJUdKWkP+Xn5uJ07tmIC0lGhqaOjCzckPbfvP4dgr5txyG/NwsnNzxo3TQITc/dB25Bhqawh1vgTl1IY6PKTC0rwsfdOjp83R8Pf0ObxTIWFvqyH34WQZgxvwHGPaFK4b3d0Xk6yxM+eWeUvQaeBPWR9xANwcdArT5oEOR8WKs2Jsp+2yYGoogkRSdE2ysgEl99WXzLf20+PQkMh9/7pYGPaxhbacG2jAxECEjR4LbT/Nx6GKOoPtXG/v5IvDkZtm8z/zv+c+ITUEIHTIF2raW0HUsahydFR7JL/w+C6bA5cv+yI6Mxp0RUxF//IKsTNSuI3xMgSrTx0kHHbr9AFc6DkVuiUaFQnLraQH0dXLRtp4mjPS0+CBUqw9mIz2r6LuRZQcLNaimwavDBrbTkdtO8NVcHLsq/Sz5umigd8ui74N+bXRKlVEGEhULBkSScgzAzHoRrFy5Em3btlW4/ujRoxg5ciTCw8PLvSMj58p341JVNUukplXVlqVnK3sXBMGvVeWP5ikEbb7xr+xdEIRTi29U9i4IxoLRRUHqhzD374qLZid/pvZxZQZY18Fq1aqVud7X1xfR0dK0KyGEEKKsxCpWT1CucIU1FHzTXX9YWBh/eBEhhBCizCQ0AmHZWPUA6z7Ieg2UxAYRmjZtGtq1a1eR+0cIIYQQoTUg9Pf3h6enJ+9e6O3tzbvbPXjwAMuWLeMBwebNRY1yCCGEEGUkUZI7+koJBhwcHHDp0iWMHj2aDxxU2PaQdTlr3bo1/vzzTz5kMSGEEKLMxCoWDZT7yT2urq44cuQIkpKS8OTJE77Mw8OD2goQQgj5aEgE3DX2Q3jvx/ixgYXe5TkEhBBCCBG293+mLyGEEPKRklA1ASGEEKLaxCpWTSD8YZEIIYQQ8kFRZoAQQggpgaoJCCGEEBUnVq1YgKoJCCGEEFVHmQFCCCGkBImKpQYoGCCEEEJKULEmA1RNQAghhKg6ygwQQgghJYipmoAQQghRbRIVqyegYIAQQghR8QcVUZsBQgghRMVRZoAQQggpQaxi1QSUGSCEEEIUtBmoqKm8li5dChcXF+jo6KB+/fq4cuVKmWVXr16Nxo0bw9TUlE+tWrV6Y/myUDBACCGECMSOHTswceJETJ8+HTdu3EDNmjXRtm1bxMbGKix/5swZ9OnTB6dPn8alS5fg6OiINm3a4NWrV+X6vRQMEEIIIQq6FlbUVB4LFy7EsGHDMGjQIPj4+GDFihXQ09PDunXrFJbfsmULRo8ejVq1asHb2xtr1qyBWCzGyZMny/V7qc0AIYQQUkJFNhnIycnhU3Ha2tp8Ki43NxfXr1/HlClTZMvU1NR46p/d9b+LzMxM5OXlwczMTDmDgUX+Byp7FwQhyb5GZe+CIAz68nll74IgRLi7VPYuCMIKzRuVvQuC0GJ8ncreBeEY/QjKYs6cOZgxY4bcMlYN8NNPP8kti4+PR0FBAaytreWWs/mHDx++0++aPHky7OzseAChlMEAIYQQ8jE+qGjKlCm8HUBxJbMCFeHXX3/F9u3beTsC1viwPCgYIIQQQj5g10JFVQKKWFhYQF1dHTExMXLL2byNjc0bXzt//nweDJw4cQI1apQ/w0wNCAkhhBAB0NLSgp+fn1zjv8LGgIGBgWW+7rfffsPPP/+Mo0ePwt/f/71+N2UGCCGEkA9YTVAerDphwIAB/KJer149LFq0CBkZGbx3AdO/f3/Y29vzdgjM3Llz8eOPP2Lr1q18bILo6Gi+3MDAgE/vioIBQgghRCDBQK9evRAXF8cv8OzCzroMsjv+wkaFL1++5D0MCi1fvpz3Qvjss8/e2kDxTSgYIIQQQkqozCcYjx07lk+KsMaBxYWHh1fI76Q2A4QQQoiKo8wAIYQQIpBqgspCwQAhhBBSwvs8YEiZUTUBIYQQouIoM0AIIYSUUN4HDCk7CgYIIYSQEqiagBBCCCEqhTIDhBBCSAnUm4AQQghRcRIVCwaomoAQQghRcZQZIIQQQj7gI4yVAQUDhBBCiIpXE1AwQAghhJRAXQsJIYQQolIoM0AIIYSUQCMQvkHt2rUhEoneWu7GjRv/Zp8IIYSQSiWhYKBsXbp0+XB7QgghhBDhBwPTp0//cHtCCCGECIRExRoQvnebgdDQUDx+/BhaWlqoUqUKvL29ISTbz17DxuMhiE9NRxUHa3zXsw2qu9iXWT41Mxt/7j+Dk7ceIiUzG7Zmxpj0WWs09vXg69tP/ROvE1NKva5XEz9837sdhGrPoWBs33sAiUnJ8HBxxrjhg1C1ivQ9lXTk5BnM/WO53DJNTU0c//sv2fycxcsQfOqsXJm6tWti3k/fQ8i2n7uOjScvIz41A1XsrfDdZ61R3cXuzefDwXM4efuR9HwwNcKk7q3QuJo7X18gFmP54Qs4dPUeEtIyYGlsgM71q2N42wbvVJVWmQ4e2I+g3buQlJQIV1c3jBg1Bl5eij+/J44fw6Lf55c6J/bsOySbv/jPBRw5fBBPnz5BWloa/liyHG7u0uMkZA19NdCsliYM9UR4nSDGnvO5iIgVKyxbv6oG/L00YGMmbXMdGSfG4cvy5au7qSOwmiYcLNWgryPCgh1ZfLtCZtbIH25fD4FxHV/o2FnhWvfRiNl/8s2vaVIPPvO/g4GPJ7IjovB0znJEbtojV8Z51OdwmzgE2jaWSA19iHsTfkbK1TtQJhKxsP92lR4MXLlyBUOGDMH9+/dlkRP78qtbty42btwILy8vviwxMRFmZmaoDEev3cf83ScwtU97/oW/5dQVjFqyHft+GglzQ/1S5fPyCzDyj60wM9TD/GHdYWViiKiEFBjq6cjKbJk8SK5BydOoOIz4Yyta16kKoTp1/iKWrduEiaOGomoVT/x94DC+/Wk2Ni/7HaYmxgpfo6+ni03LFsnmFV3X6tWphcnjRsnmtTSF3Q716PUHmL/nFKb2aovqznbYcuYqRi3bgX3Thpd9PizdDjMDfcwf0hVWxgaISkyFoa62rMz64yHYdeEmfv7iE7jbWuD+y2j8uOUwDHS00beZP4Tq3NkzWLN6JcaMHQcvb2/s2xuEH6d9j5Wr1sLExFTha/T09LBy1TqUdVJkZ2fDp5ovGjVuiiV//A5lUMtDHZ0bauHvs7l4GVOAxjU0MbyjDuZuy0R6VunyHvbquPkkH+HRYuQXSNC8tiZGdNLBb9uzkJoh/V7Q0hAhLKoAt5/mo2fzonNFyNT19ZAa+ggRG3bD/++lby2v6+KAuvtX4uWq7bjV/xuYtwhE9ZWzkB0Vh/jjF3gZ2x7tUXXeFNwdMx3JV27DddwA1D+0FmeqtUNuXOJ/8K7I+yjXtzgLAFq2bImqVavir7/+4j8Ll//+++8IDAzE3bt3sXfvXh4MTJ06FZVh86nL6NawFroE1uTzU/t0wLm7T7H34m0MadugVPk9F28hJTMLG78dAE11db7M3txEroxZiYvGumMX4WhpCn9PJwjVrn2H8EmblmjfqjmfZ0FByLUbOHziNPp+Vkb7D5EI5qby770kTU2Nt5YRks2nr6BbYE10CajB56f2aodz955h76VQDGkTWKr8npBQng3YOLFfmefDrbBXaFbdE03+nzli649cv4+7L6IgZHv37Ebbdu3Ruk1bPj9m7HhcvXoFx48Fo0fP3gpfw4J90zcE9i1atuI/Y2KioSya1NREyP18XH2Yz+d3n82Fj7M66nlr4tTNvFLlt5zIkZvfeSYXNdw14OmgjuuPpNu4/lj609RQ2Jmh4uKCz/HpXTkP742ssEg8mDSXz6c/fA6zBn5wHT9QFgy4ThiEiLU7EbkxiM/fGT0dVu2bwXFgdzybtxrKQkwNCMv2008/oXXr1ti9e7dcKrRWrVro06cPunXrhubNmyMiIgJHjhxBZWB3dQ9eRmFIm6KLvpqaCAHerggNi1T4mrN3nqCGqwPmbD+K06FPYGqghw51q2FQm0Coq6kp/B2HrtxFv5b1BZsSzsvLx6Nnz/F5sYu+mpoa/GpWx/1HT8p8XVZWNnoNHcM/CFXcXTG0X2+4OjnKlbl19z669B8GQ3191K7hiyF9e8HYyBBCxM+HiGgMaR0ofz54uSA0/FXZ54OLPebsPIbTd/5/Pvj5YFDrANn5UMvVHrsv3kJ4bCJcrMzwKDIGN59H4puuLSFUeXl5PJVf/KLPzolatWrj4cMHZb4uKysLgwZ8AYlEDHcPT/QfMAjOzi5QVupq4Kn8UzeKLvrsa/9xZAGcbd5t6BUtDel2MrNV64JhElAL8acuyS2LO34BPguk1YQiTU0Y16mGZ3NXFhWQSBB/6iJMAmpDmUiozUDZTp8+zS/yii6AbNn333+P+vXr8zJNmzYtczs5OTl8Kk6SmwdtLU38W0npmSgQS2BuJH8nz9LBYTEJCl8TGZ+M1wnh6FDXF0vH9MLL2CTM3nEU+QUFGPlJk1LlT91+hLSsbHT+/52mEKWkpkIsFsOsRHUAqx54Gfla4Wuc7O0w+cuRcHNxRkZmJnbsPYCxk6dh/ZIFsLIw52Xq1a6JJgH1YGtthVfRMVizeRsmz5yDpXNnQZ19OwpMUsZ7ng+JL9DBvxqWjuyJl3FJmL0zGPkFYozs0IiXGdw6EOnZuegyaxXURWookIjxZcem+KRuNQhV6v/PCRNT+eoAVj0QGRGh8DX2Dg4Y/9XXcHVxQ0ZmBm9r8O3XE7BsxWpYWFhCGbH6fHU1EdIy5b/s07MksDJ9t3P4k0AtpGRI8CSyAKpE29oCOTHxcsvYvKaxIdR0tKFpagw1DQ3kxMp/tnJiEqDv5fYf7y35YMEAaxxkbW1d5nobGxveuKhtW2kKsixz5szBjBkz5Jb90K8Lpg7oisp6IAWrBvixbwd+5+fjZIvYlDRsPH5JYTCw5+JtNPRx520LPibVvKvwqZCvdxX0HzMRB4JP8Lt/pmWThrL1bi5OcHdxwucjxuHW3Xs86/AxkJ0Pfdr9/3ywkZ4PJy/LgoHgmw9w+No9zBnQGR62FngYGYt5u0/IGhJ+LKpW9eFT8flRI4biyOFD6Nd/IFRRi9qaqO2hgWX7spCvWrGASpGoWDVBuW7lnJ2deQPCsly+fJmXeZspU6YgJSVFbvq2T0dUBJbSZVF/QmqG3HLW4tuixN1hIUsjAzhbmclVCbjZmPOW5yzNXNzrhBRcfhjG2yQImbGREU8BJybL94BISk6B2TvW92toaMDTzQWvosquC7azseZVBG8qU5lM9d/jfDA2gLOlqfz5YC1/Pvy+9zQGtw5Aez8feNpZoVM9X3zRvC7WHpNPoQqJ0f/PieSkJLnlyclJb2wTUPKcYD0FoqIUZ5eUQUa2hGeLWC+C4gx0S2cLSmpWSwMt6mhi5YFsRCWo1sWiMAvAsgPFsfm8lDSIs3OQG58EcX4+tK3MS5QxR060fEZBGYIBSQVNH10w0Lt3b0ycOJE3Eizpzp07+Oabb3iZt9HW1uZfTMWniqgiYDQ11FHVyRaXH4XLlrH6bzbP2gUoUsvdARFxSXINRl7EJPKLAttecfsu3ea9Dhr7ekLIWCM/L3c33Agt6s7DUsTXQ+/Cx+vd9r2gQIznLyJgXiKtXFxsfAJS09LfWKYy8fPB0QaXH5c4Hx6/4O0CFKnl6oCI+BLnQ1wiDxoLz4fs3DyolaguY8GDkB97yrJ2Hh6euH37ltw5cfvWLXh7v1uvmIKCArwID4OpaeX0FKoIBWJp10BP+6LPNvtLssaAL6LL7k7WvJYmWvlpYdXBbP56VZQccgvmLQLkllm0bICkEOk5JcnLQ8qNe7BoESjfKLl5IJJDbkKZiCXiCps+umoCdkd/4sQJ3mCQNSRkvQlYI4sHDx7w5ax7IStT2fq1qI9pm/ajmrMtfJ3t8NfpK8jKyUOXQGkd/w8b9vMU//gu0lb2PRv78XEJ5u46hj7N/PEyNhFrgi/i8xJdxNjFYV/IbXQKqAENAdaPl9Tj00/4uABeHu6o6unOuxZmZ+egfatmfP3s3/+EhbkZhvf/nM9v3P43DxTsbW2QnpGB7XsOICYuDp+0bsHXZ2Zl8zJNGtSDmYkJXkfHYOXGLbx83TrSnhtC1K95PUz76yCqObHzwRZ/nbmGrJxcWe+CHzYdkJ4PnaXHpWfj2th+/jrm7j6OPk3/fz4cu4TPmxadD019PbD62CXYmBrxroUPI2N4r4VPBdyOhOnStTt+XzgPnp6eqFLFG/v2BSE7JxutWkur9hbM/w3m5uYYOGgIn9+29S/eBdHO1h7pGem8zUBsbCzvkVAoLS0VcbFxSEiU1hNHRkrbH5iamr5zxuG/du52Hnq30EZEnBgvYwvQpIYm7xp45aG0UWGfltI2AYdDpPOsK2G7epr463gOklIlMNSVBoI5eRLkSjsRgPU8NTVQg5G+dJ2VKfupxrMNaVkSwXYt1Pco6hGl5+oAo5reyE1M4WMIeM2aCB17a9weNJmvf7FqO5xH94X3nG95d0SL5gG8K+HVziNk2whbtB41181F8vW7SLkaCpdxA6Chr4uI//cuIB9BMKCjo8MbEbJuhNu2bcPZs9LBZ9gXy6xZs3jWgA1E5Ovri8rUzt8HSekZWHbwLE/tejlYY9nY3jA3MuDro5NSeIvyQjZmRlg+tg/m/X0cPX5ZzS8MfZvX5b0Jigt5GMb7mxd2WRS6Fo0bIDk1Feu37pQOOuTqgt+mT+EXciYmPgGiYqnwtPQMzF+6ipc1MNDnmYWlc3+Gi5OD7M73efgLBJ8+y4MFczMz1K1VA4P79oSWZsVkdj6Edn5VecPSZYfOIz4tA172Vlg2upesUWF0UqrcXT67wC8f3Qvzgk6ix5y10vOhqT/vTVDoux6tsfTQeczeeQyJ6Zk8i/RZw9oY0a6oTYUQNWnaDCmpKfhr8yYkJSXBzc0NM2f+wi/cTFxcrNxnIz09DUsWL+JlDQwNeGZh3oJFcHIqqg68HBIiNzDRb3Nn8599Pv8Cfb/oDyG69bQA+jq5aFtPE0Z6WngVL8bqg9myMQZMDNR474lCDappQENdhIHtisYeYYKv5uLYVWnA4Ouigd4ti8YX6NdGp1QZoTH280Xgyc2yeZ/50l4BEZuCEDpkCrRtLaHraCtbnxUeyS/8PgumwOXL/siOjMadEVNl3QqZqF1HoGVphirTx0kHHbr9AFc6DkVuiUaFQidRkvR+RRFJKqD/BGulvH37dqxduxbXrl3jqcTyyj656d/uxkchyV7Yd5b/FdOXypVS/FAi3KVZGVW3Ili+nlpVtRhfp7J3QTA+yXv0QbffZfTjCtvW3mVFDbOF6l/lus+dO4cBAwbAzs4O8+fP52MMhISEVNzeEUIIIeSDK/c4stHR0diwYQPPArCMQM+ePfmYAWzUQR+foi5IhBBCiLKSCLgxcKVnBjp16sSfPcAeUrRo0SK8fv0aS5Ys+XB7RwghhFQCsVhcYdNHlxlgIwuOGzcOo0aN4o0GCSGEEKJimYELFy7wUQj9/Pz4sMN//vkn4uOVayAJQggh5G0kNOhQ2QICArB69WpERUVhxIgRvAcBazzI0iDHjx/ngQIhhBCi7CQScYVNyuC9ehPo6+tj8ODBPFPARh78+uuv8euvv8LKygqdO3eu+L0khBBCyAfzr4fRYw0Kf/vtN0RGRvKBiAghhBBlJ1GxaoJydy0si7q6Orp06cInQgghRJlJlOQiLrhggBBCCPlYiJWkrr+iCP9pO4QQQgj5oCgzQAghhJRA1QSEEEKIipMoyciBFYWqCQghhBAVR5kBQgghpASqJiCEEEJUnIR6ExBCCCFElVBmgBBCCClBTNUEhBBCiGqTUG8CQgghhKgSygwQQgghJVBvAkIIIUTFSVSsNwEFA4QQQoiKZwaozQAhhBCi4igzQAghhKh4bwJICJednS2ZPn06/6nK6DhI0XGQouMgRcdBio7Dx0vE/qnsgEQIUlNTYWxsjJSUFBgZGUFV0XGQouMgRcdBio6DFB2Hjxe1GSCEEEJUHAUDhBBCiIqjYIAQQghRcRQM/J+2tjamT5/Of6oyOg5SdByk6DhI0XGQouPw8aIGhIQQQoiKo8wAIYQQouIoGCCEEEJUHAUDhBBCiIqjYIAQQghRcRQMEEIIISpOqYOBgQMHQiQS8UlLSwseHh6YOXMm8vPzcebMGb7c1NQU2dnZcq+7evWq7HWFWPlPP/0Utra20NfXR61atbBly5a37kPhdopP27dvh5COz6+//iq3fO/evXLvvaCgAL///juqV68OHR0dfszat2+Pf/75R+51QUFBaN26NSwtLflQpIGBgQgODoayio6Oxpdffgk3NzfeVcrR0RGdOnXCyZMnZWUuXryIDh068GPCjg07RgsXLuTHTFnFxcVh1KhRcHJy4u/bxsYGbdu2lft7v8v7Dg8Px5AhQ+Dq6gpdXV24u7vzbme5ublQVhERERg8eDDs7Oz4d4qzszPGjx+PhIQEWZmffvoJ3t7e/HuCHZ9WrVrh8uXL+FhcunQJ6urq+OSTT0qty8rK4n/jKlWq8HPHwsICPXr0wL179+TKsWPEvkOJ8lDqYIBp164doqKi8OTJE3z99df8JJw3b55svaGhIfbs2SP3mrVr1/IvwuLYl1+NGjWwe/duhIaGYtCgQejfvz8OHjz41n1Yv34934fCqUuXLhAK9kU+d+5cJCUlKVzPepb27t2bB1HsS+/Bgwc8MGIXxmbNmvHAodC5c+d4MHD48GFcv34dzZs35xfPmzdvQtmwC5mfnx9OnTrFz5c7d+7g6NGj/D2NGTOGl2HnTdOmTeHg4IDTp0/j4cOH/BjNmjWLHzNl7ZXbvXt3/jfbuHEjHj9+jP379/O/deEF713fN1suFouxcuVKfjFgAeWKFSvw/fffQxk9f/4c/v7+/Ltk27ZtePr0KX8/LDhkgW9iYiIvxy6Ef/75Jz9nLly4ABcXF7Rp04YHWR8D9v3IgmT2eX/9+rVseU5ODg981q1bx88Fdu6w7wJ281W/fn2EhIRU6n6Tf0mixAYMGCD59NNP5Za1bt1aEhAQIDl9+jT7xpJMnTpV0qpVK9n6zMxMibGxsWTatGl8/Zt06NBBMmjQoDeWYdvYs2ePRKjHp2PHjhJvb2/Jt99+K1vO9rfwvW/fvp3/f//+/aVe361bN4m5ubkkPT29zN/h4+MjmTFjhkTZtG/fXmJvb6/wvSUlJfHl7L2zY1ASO1bsmLFjp2zYe2P7fubMGYXr/+37/u233ySurq4SZdSuXTuJg4MD/44oLioqSqKnpycZOXKkwtelpKTw43LixAmJsktLS5MYGBhIHj58KOnVq5fkl19+ka379ddfJSKRSHLr1i251xQUFEj8/f35d4FYLObL2JMNa9as+Z/vP3l/Sp8ZKImlK4unKfv164fz58/j5cuXfJ7d+bNIvk6dOm/dFnsyl5mZ2VvLsTtJli6rV68ej5qFdMfI0n2zZ8/GkiVLEBkZWWr91q1b+Z0Ou8MviWVa2N3i8ePHFW6b3RWmpaW90zESEnaHx7IA7O/GUr0lmZiY4NixY/y9f/PNN6XWs2PFjhm7e1Q2BgYGfGIZH3anV9K/fd/v+pkR4jnBqrxGjx7Nv0OKY9Uoffv2xY4dO0p9ttl3zapVq/iT/GrWrAllt3PnTl4F4uXlhS+++ELu+4x9V7DMYMn3qaamhq+++gr379/H7du3K2nPyb/10QQD7IQ9ceIE/0C3aNFCttzKyorXf2/YsIHPs5Ob1Qm+y4eCtS1g1QVvwtLrrCy7YLL0K/syYRdeIenatSuvv2N1fSWxVF/VqlUVvq5wOSujyPz585Geno6ePXtCmbD0Lztf2JdeWQrfc1nHhr22rOMiZBoaGvyzwKoIWNDTsGFDntZnVWP/9n2z48rO/REjRkDZsKoBdk686bPAqtoKqwJY9SELqlg1HKseYZ9/dkPwMVQRsCCgsAqWBXdnz579198VRPiUPhgo/qFkF/1evXrxdgPFsYs/+wJkdYKscQyL8t+E1ZOyIGD16tWoVq3aG8tOmzaNf6HWrl0bkydPxqRJk+TaLAgFazfALgCsTUBJ75PJYHcJM2bM4IEQC7iUSXner5CyPBWFBa2sLpi1FWBf+KyNCMuUFQbM7/O+X716xbfFGpMNGzYMyupd3zdrW3Lr1i3e1oi9bxYQx8bGQpk9evQIV65cQZ8+fWSBI/s+ZQHCux4f1uiSKCelDwYKP5QssmctXdkFr2TqlwUJbB1r+cxSnebm5mVuj0XBrAyL9lkDwvJiDWlYOl5RCrYyNWnShLcYnzJlitxylvZVFCAwhctZmeJYb4mhQ4fyQIA1KFI2np6evDcFawBXlsL3/KZjU/K4KBMWPLOULwtm2QWN9TwpbCVe3vfNAgv2OWzQoAFPmSsj1hOJnRNvet+s5wDrScOw7xj2moCAAH6xZBfO4hdNZcT2nzUGZD0p2Pth0/Lly3nVKssQsM9Neb8riPJQ+mCg8EPJegewk1cRtpxd2Nkd0JuqCNh61p2G3UUPHz78vfaHBSbsS0OIT/ViXQwPHDjAsyOFWOtwFkix5SUtWLCAB07solGI1RezrAn7qajrkTJgddosMFq6dCkyMjJKrU9OTuatw1k5dgxKYnfU7JgV3kF9DHx8fPixKO/7ZhkB1hOB9cxgvWpY/bEyKjzPly1bxm8cSnZBZd2M2V1y8S65JdvPCO0GoDxYELBp0yb+d2ffYYUTawPAggP2eWd/d1YVW7JdAHvv7OaJ9cRg5xFRUpKPrDdBocLeBKz1NJOTkyOJi4uTtXYt3qKeOXXqFG8xPGXKFN56uHBKSEiQlQkKCpJ4eXnJta5evXq15M6dO5InT55Ili1bxrfx448/SoR6fPr16yfR0dGRvXd2PLp27SoxNTWVrFmzRhIWFia5ffu2ZPjw4RINDQ25nhJbtmzhy5YuXSp3jJKTkyXK5tmzZxIbGxveAvrvv/+WPH78WHL//n3J4sWLee8LZteuXRJ1dXXJsGHD+DFhx4YdI3asPvvsM9m5pEzi4+MlzZs3l2zevJm/p+fPn0t27twpsba2lgwePLhc7zsyMlLi4eEhadmyJf9/8XNCGbFzwMLCQtK4cWPJ2bNnJS9fvpQcOXJE4uvrK/H09OTfBay3BfuOuHTpkiQ8PFxy7do13uNIW1tbcvfuXYmyYp9zLS0thZ/lSZMm8d4CWVlZkvr160scHR35OfPixQvJlStXJF26dOE9tO7duyd7DfUmUD4qEwyUVDIYYNti8yWnpk2bysqsX79e7jXsi6JWrVq8K46+vj4/+VesWMG72gj1+LAvdvahL/4+8vLyJPPmzZNUq1aNrzMyMpK0bdtWcuHCBbnXsmOh6Bix36OMXr9+LRkzZozE2dmZv2/W1bBz58783Cl07tw5fizYMWFl2DGaP3++JD8/X6KMsrOzJd99952kTp06/AucBa8swGVdcIt3qXuX9134eVA0KSt2gWfnMwuONDU1+YXvyy+/5EEUwy6ILHi2s7Pjx8XW1pafM+yiqMxYF2TWlVqRy5cv878pCwxZMPTDDz9I3N3d+Y0BW84CwoiICLnXUDCgfETsn8rOThBCCFE+R44c4b2VWM+isWPHVvbukH9BOSv4CCGEVDrWOJsFBGychvj4+MreHfIvUGaAEEIIUXGUGSCEEEJUHAUDhBBCiIqjYIAQQghRcRQMEEIIISqOggFCCCFExVEwQAghhKg4CgYIIYQQFUfBACGEEKLiKBgghBBCoNr+B/h+Q1Sjgmx4AAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"corr= df.corr()\n",
"sns.heatmap(corr, annot=True, cmap='coolwarm', fmt='.2f')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "f0d8bd5c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean Squared Error: 3200.6305897978136\n",
"R^2 Score: 0.8340774940339487\n",
"Mean Absolute Error: 32.1811750500209\n",
"Training Accuracy: 0.8470951767525855\n",
"Testing Accuracy: 0.8340774940339487\n"
]
}
],
"source": [
"lr= LinearRegression()\n",
"x = df.drop('AQI', axis=1)\n",
"y = df['AQI']\n",
"x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)\n",
"lr.fit(x_train, y_train)\n",
"y_pred = lr.predict(x_test)\n",
"mse = mean_squared_error(y_test, y_pred)\n",
"r2 = r2_score(y_test, y_pred)\n",
"mae = mean_absolute_error(y_test, y_pred)\n",
"print(f\"Mean Squared Error: {mse}\")\n",
"print(f\"R^2 Score: {r2}\")\n",
"print(f\"Mean Absolute Error: {mae}\")\n",
"\n",
"train_accuracy = lr.score(x_train, y_train)\n",
"test_accuracy = lr.score(x_test, y_test)\n",
"print(f\"Training Accuracy: {train_accuracy}\")\n",
"print(f\"Testing Accuracy: {test_accuracy}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "537e534f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean Squared Error: 2070.2600438515124\n",
"R^2 Score: 0.8901774561298376\n",
"Mean Absolute Error: 25.888077317931238\n",
"RF Training Accuracy: 0.9023545303141055\n",
"RF Testing Accuracy: 0.8901774561298376\n"
]
}
],
"source": [
"rf= RandomForestRegressor(n_estimators=100 , max_depth=6,min_samples_split=2,min_samples_leaf=10)\n",
"x = df.drop('AQI', axis=1)\n",
"y = df['AQI']\n",
"x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=40)\n",
"rf.fit(x_train, y_train)\n",
"rf_y_pred = rf.predict(x_test)\n",
"rf_mse = mean_squared_error(y_test, rf_y_pred)\n",
"rf_r2 = r2_score(y_test, rf_y_pred)\n",
"rf_mae = mean_absolute_error(y_test, rf_y_pred)\n",
"print(f\"Mean Squared Error: {rf_mse}\")\n",
"print(f\"R^2 Score: {rf_r2}\")\n",
"print(f\"Mean Absolute Error: {rf_mae}\")\n",
"\n",
"train_accuracy = rf.score(x_train, y_train)\n",
"test_accuracy = rf.score(x_test, y_test)\n",
"print(f\"RF Training Accuracy: {train_accuracy}\")\n",
"print(f\"RF Testing Accuracy: {test_accuracy}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "97051f80",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean Squared Error: 2149.8609126731053\n",
"R^2 Score: 0.8939360369083994\n",
"Mean Absolute Error: 23.810910547022058\n",
"Training Accuracy: 0.9693882216324102\n",
"Testing Accuracy: 0.8939360369083994\n"
]
}
],
"source": [
"xgbr= XGBRegressor( n_estimators=1000, \n",
" max_depth=8, \n",
" learning_rate=0.01, \n",
" min_child_weight=1, \n",
" subsample=0.7, \n",
" colsample_bytree=0.8, \n",
" gamma=0.1, \n",
" reg_alpha=0.9, \n",
" reg_lambda=1)\n",
"\n",
"x = df.drop('AQI', axis=1)\n",
"y = df['AQI']\n",
"x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)\n",
"xgbr.fit(x_train, y_train)\n",
"y_pred = xgbr.predict(x_test)\n",
"mse = mean_squared_error(y_test, y_pred)\n",
"r2 = r2_score(y_test, y_pred)\n",
"mae = mean_absolute_error(y_test, y_pred)\n",
"print(f\"Mean Squared Error: {mse}\")\n",
"print(f\"R^2 Score: {r2}\")\n",
"print(f\"Mean Absolute Error: {mae}\")\n",
"\n",
"train_accuracy = xgbr.score(x_train, y_train)\n",
"test_accuracy = xgbr.score(x_test, y_test)\n",
"print(f\"Training Accuracy: {train_accuracy}\")\n",
"print(f\"Testing Accuracy: {test_accuracy}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "e4a7d175",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Learning rate set to 0.064695\n",
"0:\tlearn: 132.6677614\ttotal: 226ms\tremaining: 3m 45s\n",
"1:\tlearn: 125.8984000\ttotal: 255ms\tremaining: 2m 7s\n",
"2:\tlearn: 119.8995773\ttotal: 282ms\tremaining: 1m 33s\n",
"3:\tlearn: 114.2778040\ttotal: 297ms\tremaining: 1m 14s\n",
"4:\tlearn: 108.8293412\ttotal: 314ms\tremaining: 1m 2s\n",
"5:\tlearn: 103.9796646\ttotal: 330ms\tremaining: 54.7s\n",
"6:\tlearn: 99.2691355\ttotal: 345ms\tremaining: 49s\n",
"7:\tlearn: 95.0111197\ttotal: 360ms\tremaining: 44.6s\n",
"8:\tlearn: 91.0061790\ttotal: 377ms\tremaining: 41.5s\n",
"9:\tlearn: 87.2231962\ttotal: 395ms\tremaining: 39.1s\n",
"10:\tlearn: 83.7322576\ttotal: 412ms\tremaining: 37.1s\n",
"11:\tlearn: 80.4034979\ttotal: 428ms\tremaining: 35.2s\n",
"12:\tlearn: 77.4614219\ttotal: 446ms\tremaining: 33.9s\n",
"13:\tlearn: 74.5777689\ttotal: 462ms\tremaining: 32.5s\n",
"14:\tlearn: 71.9388566\ttotal: 476ms\tremaining: 31.3s\n",
"15:\tlearn: 69.5068143\ttotal: 490ms\tremaining: 30.1s\n",
"16:\tlearn: 67.4053212\ttotal: 503ms\tremaining: 29.1s\n",
"17:\tlearn: 65.3285998\ttotal: 517ms\tremaining: 28.2s\n",
"18:\tlearn: 63.5229708\ttotal: 529ms\tremaining: 27.3s\n",
"19:\tlearn: 61.7270768\ttotal: 544ms\tremaining: 26.7s\n",
"20:\tlearn: 60.1815424\ttotal: 558ms\tremaining: 26s\n",
"21:\tlearn: 58.7640912\ttotal: 572ms\tremaining: 25.4s\n",
"22:\tlearn: 57.3548001\ttotal: 585ms\tremaining: 24.9s\n",
"23:\tlearn: 56.1252183\ttotal: 599ms\tremaining: 24.3s\n",
"24:\tlearn: 54.9732524\ttotal: 611ms\tremaining: 23.8s\n",
"25:\tlearn: 53.9536563\ttotal: 625ms\tremaining: 23.4s\n",
"26:\tlearn: 52.9821421\ttotal: 638ms\tremaining: 23s\n",
"27:\tlearn: 52.0054732\ttotal: 653ms\tremaining: 22.7s\n",
"28:\tlearn: 51.1777275\ttotal: 683ms\tremaining: 22.9s\n",
"29:\tlearn: 50.4239344\ttotal: 698ms\tremaining: 22.6s\n",
"30:\tlearn: 49.6918825\ttotal: 712ms\tremaining: 22.3s\n",
"31:\tlearn: 49.0615598\ttotal: 725ms\tremaining: 21.9s\n",
"32:\tlearn: 48.5033318\ttotal: 738ms\tremaining: 21.6s\n",
"33:\tlearn: 47.9728823\ttotal: 752ms\tremaining: 21.4s\n",
"34:\tlearn: 47.5199199\ttotal: 765ms\tremaining: 21.1s\n",
"35:\tlearn: 47.0696828\ttotal: 779ms\tremaining: 20.9s\n",
"36:\tlearn: 46.6373202\ttotal: 791ms\tremaining: 20.6s\n",
"37:\tlearn: 46.2185209\ttotal: 804ms\tremaining: 20.3s\n",
"38:\tlearn: 45.8324721\ttotal: 817ms\tremaining: 20.1s\n",
"39:\tlearn: 45.5333614\ttotal: 831ms\tremaining: 19.9s\n",
"40:\tlearn: 45.2070298\ttotal: 845ms\tremaining: 19.8s\n",
"41:\tlearn: 44.9551597\ttotal: 861ms\tremaining: 19.6s\n",
"42:\tlearn: 44.6924788\ttotal: 877ms\tremaining: 19.5s\n",
"43:\tlearn: 44.4807321\ttotal: 892ms\tremaining: 19.4s\n",
"44:\tlearn: 44.2194507\ttotal: 905ms\tremaining: 19.2s\n",
"45:\tlearn: 43.9987456\ttotal: 917ms\tremaining: 19s\n",
"46:\tlearn: 43.7721815\ttotal: 930ms\tremaining: 18.9s\n",
"47:\tlearn: 43.5760339\ttotal: 944ms\tremaining: 18.7s\n",
"48:\tlearn: 43.3953219\ttotal: 957ms\tremaining: 18.6s\n",
"49:\tlearn: 43.2217627\ttotal: 970ms\tremaining: 18.4s\n",
"50:\tlearn: 43.0563413\ttotal: 983ms\tremaining: 18.3s\n",
"51:\tlearn: 42.9281049\ttotal: 997ms\tremaining: 18.2s\n",
"52:\tlearn: 42.7646562\ttotal: 1.01s\tremaining: 18.1s\n",
"53:\tlearn: 42.6335988\ttotal: 1.02s\tremaining: 17.9s\n",
"54:\tlearn: 42.5267820\ttotal: 1.04s\tremaining: 17.9s\n",
"55:\tlearn: 42.3887264\ttotal: 1.06s\tremaining: 17.8s\n",
"56:\tlearn: 42.2542598\ttotal: 1.07s\tremaining: 17.7s\n",
"57:\tlearn: 42.1067213\ttotal: 1.09s\tremaining: 17.7s\n",
"58:\tlearn: 41.9872927\ttotal: 1.11s\tremaining: 17.7s\n",
"59:\tlearn: 41.8831045\ttotal: 1.14s\tremaining: 17.9s\n",
"60:\tlearn: 41.7754131\ttotal: 1.16s\tremaining: 17.8s\n",
"61:\tlearn: 41.6535438\ttotal: 1.17s\tremaining: 17.7s\n",
"62:\tlearn: 41.5656512\ttotal: 1.19s\tremaining: 17.7s\n",
"63:\tlearn: 41.4692356\ttotal: 1.2s\tremaining: 17.6s\n",
"64:\tlearn: 41.4217338\ttotal: 1.21s\tremaining: 17.5s\n",
"65:\tlearn: 41.3563103\ttotal: 1.23s\tremaining: 17.4s\n",
"66:\tlearn: 41.2823499\ttotal: 1.24s\tremaining: 17.3s\n",
"67:\tlearn: 41.2015442\ttotal: 1.26s\tremaining: 17.2s\n",
"68:\tlearn: 41.1539937\ttotal: 1.27s\tremaining: 17.1s\n",
"69:\tlearn: 41.0849029\ttotal: 1.29s\tremaining: 17.1s\n",
"70:\tlearn: 41.0345476\ttotal: 1.3s\tremaining: 17s\n",
"71:\tlearn: 40.9632536\ttotal: 1.32s\tremaining: 17s\n",
"72:\tlearn: 40.9080717\ttotal: 1.33s\tremaining: 16.9s\n",
"73:\tlearn: 40.8283010\ttotal: 1.34s\tremaining: 16.8s\n",
"74:\tlearn: 40.7852761\ttotal: 1.36s\tremaining: 16.7s\n",
"75:\tlearn: 40.6921924\ttotal: 1.37s\tremaining: 16.7s\n",
"76:\tlearn: 40.6500909\ttotal: 1.39s\tremaining: 16.6s\n",
"77:\tlearn: 40.5987902\ttotal: 1.4s\tremaining: 16.5s\n",
"78:\tlearn: 40.5517700\ttotal: 1.42s\tremaining: 16.5s\n",
"79:\tlearn: 40.5208229\ttotal: 1.43s\tremaining: 16.4s\n",
"80:\tlearn: 40.4698869\ttotal: 1.44s\tremaining: 16.4s\n",
"81:\tlearn: 40.4397851\ttotal: 1.46s\tremaining: 16.3s\n",
"82:\tlearn: 40.3932893\ttotal: 1.48s\tremaining: 16.3s\n",
"83:\tlearn: 40.3615013\ttotal: 1.5s\tremaining: 16.4s\n",
"84:\tlearn: 40.3203788\ttotal: 1.54s\tremaining: 16.6s\n",
"85:\tlearn: 40.2878899\ttotal: 1.56s\tremaining: 16.6s\n",
"86:\tlearn: 40.2574022\ttotal: 1.58s\tremaining: 16.6s\n",
"87:\tlearn: 40.2075030\ttotal: 1.6s\tremaining: 16.6s\n",
"88:\tlearn: 40.1685644\ttotal: 1.62s\tremaining: 16.6s\n",
"89:\tlearn: 40.1483869\ttotal: 1.64s\tremaining: 16.6s\n",
"90:\tlearn: 40.1098697\ttotal: 1.66s\tremaining: 16.6s\n",
"91:\tlearn: 40.0636052\ttotal: 1.68s\tremaining: 16.6s\n",
"92:\tlearn: 40.0043735\ttotal: 1.69s\tremaining: 16.5s\n",
"93:\tlearn: 39.9856418\ttotal: 1.72s\tremaining: 16.5s\n",
"94:\tlearn: 39.9610039\ttotal: 1.73s\tremaining: 16.5s\n",
"95:\tlearn: 39.9204715\ttotal: 1.75s\tremaining: 16.5s\n",
"96:\tlearn: 39.8865418\ttotal: 1.78s\tremaining: 16.5s\n",
"97:\tlearn: 39.8436021\ttotal: 1.81s\tremaining: 16.7s\n",
"98:\tlearn: 39.7960933\ttotal: 1.85s\tremaining: 16.8s\n",
"99:\tlearn: 39.7614427\ttotal: 1.86s\tremaining: 16.8s\n",
"100:\tlearn: 39.7440252\ttotal: 1.88s\tremaining: 16.7s\n",
"101:\tlearn: 39.7195887\ttotal: 1.9s\tremaining: 16.7s\n",
"102:\tlearn: 39.6585266\ttotal: 1.91s\tremaining: 16.6s\n",
"103:\tlearn: 39.6094778\ttotal: 1.93s\tremaining: 16.7s\n",
"104:\tlearn: 39.5812621\ttotal: 1.95s\tremaining: 16.6s\n",
"105:\tlearn: 39.5400491\ttotal: 1.97s\tremaining: 16.6s\n",
"106:\tlearn: 39.5129826\ttotal: 1.99s\tremaining: 16.6s\n",
"107:\tlearn: 39.4836302\ttotal: 2.01s\tremaining: 16.6s\n",
"108:\tlearn: 39.4430128\ttotal: 2.03s\tremaining: 16.6s\n",
"109:\tlearn: 39.4081682\ttotal: 2.04s\tremaining: 16.5s\n",
"110:\tlearn: 39.3778457\ttotal: 2.06s\tremaining: 16.5s\n",
"111:\tlearn: 39.3320479\ttotal: 2.08s\tremaining: 16.5s\n",
"112:\tlearn: 39.3068253\ttotal: 2.1s\tremaining: 16.5s\n",
"113:\tlearn: 39.2786999\ttotal: 2.12s\tremaining: 16.5s\n",
"114:\tlearn: 39.2058012\ttotal: 2.13s\tremaining: 16.4s\n",
"115:\tlearn: 39.1772291\ttotal: 2.17s\tremaining: 16.5s\n",
"116:\tlearn: 39.1482181\ttotal: 2.19s\tremaining: 16.5s\n",
"117:\tlearn: 39.0950360\ttotal: 2.21s\tremaining: 16.5s\n",
"118:\tlearn: 39.0627419\ttotal: 2.22s\tremaining: 16.5s\n",
"119:\tlearn: 39.0083439\ttotal: 2.24s\tremaining: 16.4s\n",
"120:\tlearn: 38.9609080\ttotal: 2.25s\tremaining: 16.4s\n",
"121:\tlearn: 38.8836520\ttotal: 2.27s\tremaining: 16.3s\n",
"122:\tlearn: 38.8648947\ttotal: 2.28s\tremaining: 16.3s\n",
"123:\tlearn: 38.7933509\ttotal: 2.3s\tremaining: 16.2s\n",
"124:\tlearn: 38.7506095\ttotal: 2.31s\tremaining: 16.2s\n",
"125:\tlearn: 38.7144897\ttotal: 2.33s\tremaining: 16.1s\n",
"126:\tlearn: 38.6707909\ttotal: 2.35s\tremaining: 16.2s\n",
"127:\tlearn: 38.6193386\ttotal: 2.37s\tremaining: 16.1s\n",
"128:\tlearn: 38.5641714\ttotal: 2.38s\tremaining: 16.1s\n",
"129:\tlearn: 38.5183636\ttotal: 2.4s\tremaining: 16s\n",
"130:\tlearn: 38.5047654\ttotal: 2.41s\tremaining: 16s\n",
"131:\tlearn: 38.4830227\ttotal: 2.42s\tremaining: 15.9s\n",
"132:\tlearn: 38.4622942\ttotal: 2.44s\tremaining: 15.9s\n",
"133:\tlearn: 38.4425783\ttotal: 2.45s\tremaining: 15.8s\n",
"134:\tlearn: 38.3892186\ttotal: 2.46s\tremaining: 15.8s\n",
"135:\tlearn: 38.3695744\ttotal: 2.48s\tremaining: 15.8s\n",
"136:\tlearn: 38.3374443\ttotal: 2.5s\tremaining: 15.7s\n",
"137:\tlearn: 38.2723261\ttotal: 2.51s\tremaining: 15.7s\n",
"138:\tlearn: 38.2507180\ttotal: 2.53s\tremaining: 15.7s\n",
"139:\tlearn: 38.2284117\ttotal: 2.54s\tremaining: 15.6s\n",
"140:\tlearn: 38.2042497\ttotal: 2.56s\tremaining: 15.6s\n",
"141:\tlearn: 38.1816051\ttotal: 2.57s\tremaining: 15.5s\n",
"142:\tlearn: 38.1680733\ttotal: 2.59s\tremaining: 15.5s\n",
"143:\tlearn: 38.1257358\ttotal: 2.6s\tremaining: 15.5s\n",
"144:\tlearn: 38.1108079\ttotal: 2.62s\tremaining: 15.4s\n",
"145:\tlearn: 38.0515537\ttotal: 2.63s\tremaining: 15.4s\n",
"146:\tlearn: 38.0288852\ttotal: 2.65s\tremaining: 15.4s\n",
"147:\tlearn: 38.0088055\ttotal: 2.67s\tremaining: 15.4s\n",
"148:\tlearn: 37.9451242\ttotal: 2.69s\tremaining: 15.4s\n",
"149:\tlearn: 37.8617930\ttotal: 2.7s\tremaining: 15.3s\n",
"150:\tlearn: 37.8437991\ttotal: 2.72s\tremaining: 15.3s\n",
"151:\tlearn: 37.8221367\ttotal: 2.74s\tremaining: 15.3s\n",
"152:\tlearn: 37.8028980\ttotal: 2.76s\tremaining: 15.3s\n",
"153:\tlearn: 37.7323854\ttotal: 2.77s\tremaining: 15.2s\n",
"154:\tlearn: 37.7057335\ttotal: 2.79s\tremaining: 15.2s\n",
"155:\tlearn: 37.6489208\ttotal: 2.81s\tremaining: 15.2s\n",
"156:\tlearn: 37.6384708\ttotal: 2.84s\tremaining: 15.2s\n",
"157:\tlearn: 37.5924514\ttotal: 2.85s\tremaining: 15.2s\n",
"158:\tlearn: 37.5662773\ttotal: 2.87s\tremaining: 15.2s\n",
"159:\tlearn: 37.5182466\ttotal: 2.89s\tremaining: 15.2s\n",
"160:\tlearn: 37.4815589\ttotal: 2.9s\tremaining: 15.1s\n",
"161:\tlearn: 37.4607705\ttotal: 2.92s\tremaining: 15.1s\n",
"162:\tlearn: 37.4387875\ttotal: 2.93s\tremaining: 15.1s\n",
"163:\tlearn: 37.4123270\ttotal: 2.95s\tremaining: 15s\n",
"164:\tlearn: 37.3657982\ttotal: 2.96s\tremaining: 15s\n",
"165:\tlearn: 37.3118538\ttotal: 2.98s\tremaining: 15s\n",
"166:\tlearn: 37.2652291\ttotal: 3s\tremaining: 15s\n",
"167:\tlearn: 37.2427206\ttotal: 3.02s\tremaining: 15s\n",
"168:\tlearn: 37.2087214\ttotal: 3.04s\tremaining: 14.9s\n",
"169:\tlearn: 37.1755821\ttotal: 3.05s\tremaining: 14.9s\n",
"170:\tlearn: 37.1037062\ttotal: 3.07s\tremaining: 14.9s\n",
"171:\tlearn: 37.0763029\ttotal: 3.08s\tremaining: 14.8s\n",
"172:\tlearn: 37.0513760\ttotal: 3.1s\tremaining: 14.8s\n",
"173:\tlearn: 37.0272421\ttotal: 3.11s\tremaining: 14.8s\n",
"174:\tlearn: 37.0059725\ttotal: 3.13s\tremaining: 14.7s\n",
"175:\tlearn: 36.9377533\ttotal: 3.16s\tremaining: 14.8s\n",
"176:\tlearn: 36.9016824\ttotal: 3.18s\tremaining: 14.8s\n",
"177:\tlearn: 36.8826205\ttotal: 3.2s\tremaining: 14.8s\n",
"178:\tlearn: 36.8234224\ttotal: 3.21s\tremaining: 14.7s\n",
"179:\tlearn: 36.8011934\ttotal: 3.23s\tremaining: 14.7s\n",
"180:\tlearn: 36.7669183\ttotal: 3.25s\tremaining: 14.7s\n",
"181:\tlearn: 36.7418039\ttotal: 3.26s\tremaining: 14.7s\n",
"182:\tlearn: 36.7266249\ttotal: 3.28s\tremaining: 14.6s\n",
"183:\tlearn: 36.6833396\ttotal: 3.29s\tremaining: 14.6s\n",
"184:\tlearn: 36.6698770\ttotal: 3.31s\tremaining: 14.6s\n",
"185:\tlearn: 36.6430026\ttotal: 3.32s\tremaining: 14.5s\n",
"186:\tlearn: 36.6254494\ttotal: 3.34s\tremaining: 14.5s\n",
"187:\tlearn: 36.6013688\ttotal: 3.35s\tremaining: 14.5s\n",
"188:\tlearn: 36.5610847\ttotal: 3.38s\tremaining: 14.5s\n",
"189:\tlearn: 36.5049326\ttotal: 3.4s\tremaining: 14.5s\n",
"190:\tlearn: 36.4674555\ttotal: 3.42s\tremaining: 14.5s\n",
"191:\tlearn: 36.4220279\ttotal: 3.45s\tremaining: 14.5s\n",
"192:\tlearn: 36.3844808\ttotal: 3.47s\tremaining: 14.5s\n",
"193:\tlearn: 36.3267825\ttotal: 3.48s\tremaining: 14.5s\n",
"194:\tlearn: 36.3009965\ttotal: 3.51s\tremaining: 14.5s\n",
"195:\tlearn: 36.2413228\ttotal: 3.53s\tremaining: 14.5s\n",
"196:\tlearn: 36.2251221\ttotal: 3.55s\tremaining: 14.5s\n",
"197:\tlearn: 36.1974953\ttotal: 3.56s\tremaining: 14.4s\n",
"198:\tlearn: 36.1751012\ttotal: 3.58s\tremaining: 14.4s\n",
"199:\tlearn: 36.1327044\ttotal: 3.59s\tremaining: 14.4s\n",
"200:\tlearn: 36.0862112\ttotal: 3.61s\tremaining: 14.3s\n",
"201:\tlearn: 36.0497185\ttotal: 3.62s\tremaining: 14.3s\n",
"202:\tlearn: 36.0324348\ttotal: 3.64s\tremaining: 14.3s\n",
"203:\tlearn: 36.0002656\ttotal: 3.66s\tremaining: 14.3s\n",
"204:\tlearn: 35.9703540\ttotal: 3.68s\tremaining: 14.3s\n",
"205:\tlearn: 35.9510256\ttotal: 3.7s\tremaining: 14.3s\n",
"206:\tlearn: 35.9147460\ttotal: 3.71s\tremaining: 14.2s\n",
"207:\tlearn: 35.8962952\ttotal: 3.73s\tremaining: 14.2s\n",
"208:\tlearn: 35.8793237\ttotal: 3.74s\tremaining: 14.2s\n",
"209:\tlearn: 35.8625530\ttotal: 3.76s\tremaining: 14.1s\n",
"210:\tlearn: 35.8234526\ttotal: 3.77s\tremaining: 14.1s\n",
"211:\tlearn: 35.7814868\ttotal: 3.79s\tremaining: 14.1s\n",
"212:\tlearn: 35.7425744\ttotal: 3.8s\tremaining: 14.1s\n",
"213:\tlearn: 35.6979448\ttotal: 3.82s\tremaining: 14s\n",
"214:\tlearn: 35.6828161\ttotal: 3.84s\tremaining: 14s\n",
"215:\tlearn: 35.6496746\ttotal: 3.85s\tremaining: 14s\n",
"216:\tlearn: 35.6354845\ttotal: 3.88s\tremaining: 14s\n",
"217:\tlearn: 35.5963965\ttotal: 3.9s\tremaining: 14s\n",
"218:\tlearn: 35.5778319\ttotal: 3.92s\tremaining: 14s\n",
"219:\tlearn: 35.5584442\ttotal: 3.94s\tremaining: 14s\n",
"220:\tlearn: 35.5401751\ttotal: 3.95s\tremaining: 13.9s\n",
"221:\tlearn: 35.5053702\ttotal: 3.97s\tremaining: 13.9s\n",
"222:\tlearn: 35.4709231\ttotal: 3.99s\tremaining: 13.9s\n",
"223:\tlearn: 35.4380221\ttotal: 4.01s\tremaining: 13.9s\n",
"224:\tlearn: 35.4233240\ttotal: 4.03s\tremaining: 13.9s\n",
"225:\tlearn: 35.4050410\ttotal: 4.04s\tremaining: 13.8s\n",
"226:\tlearn: 35.3875942\ttotal: 4.06s\tremaining: 13.8s\n",
"227:\tlearn: 35.3537186\ttotal: 4.07s\tremaining: 13.8s\n",
"228:\tlearn: 35.3203761\ttotal: 4.09s\tremaining: 13.8s\n",
"229:\tlearn: 35.3037954\ttotal: 4.1s\tremaining: 13.7s\n",
"230:\tlearn: 35.2617229\ttotal: 4.12s\tremaining: 13.7s\n",
"231:\tlearn: 35.2381102\ttotal: 4.14s\tremaining: 13.7s\n",
"232:\tlearn: 35.1993290\ttotal: 4.16s\tremaining: 13.7s\n",
"233:\tlearn: 35.1796222\ttotal: 4.18s\tremaining: 13.7s\n",
"234:\tlearn: 35.1407796\ttotal: 4.19s\tremaining: 13.6s\n",
"235:\tlearn: 35.1192730\ttotal: 4.21s\tremaining: 13.6s\n",
"236:\tlearn: 35.1073337\ttotal: 4.22s\tremaining: 13.6s\n",
"237:\tlearn: 35.0775004\ttotal: 4.24s\tremaining: 13.6s\n",
"238:\tlearn: 35.0435351\ttotal: 4.25s\tremaining: 13.5s\n",
"239:\tlearn: 35.0113082\ttotal: 4.27s\tremaining: 13.5s\n",
"240:\tlearn: 34.9789572\ttotal: 4.28s\tremaining: 13.5s\n",
"241:\tlearn: 34.9437472\ttotal: 4.3s\tremaining: 13.5s\n",
"242:\tlearn: 34.9071979\ttotal: 4.32s\tremaining: 13.4s\n",
"243:\tlearn: 34.8702648\ttotal: 4.33s\tremaining: 13.4s\n",
"244:\tlearn: 34.8522757\ttotal: 4.35s\tremaining: 13.4s\n",
"245:\tlearn: 34.8341320\ttotal: 4.37s\tremaining: 13.4s\n",
"246:\tlearn: 34.8021652\ttotal: 4.38s\tremaining: 13.4s\n",
"247:\tlearn: 34.7843234\ttotal: 4.4s\tremaining: 13.3s\n",
"248:\tlearn: 34.7638250\ttotal: 4.41s\tremaining: 13.3s\n",
"249:\tlearn: 34.7449774\ttotal: 4.43s\tremaining: 13.3s\n",
"250:\tlearn: 34.7133353\ttotal: 4.44s\tremaining: 13.3s\n",
"251:\tlearn: 34.6841250\ttotal: 4.46s\tremaining: 13.2s\n",
"252:\tlearn: 34.6626892\ttotal: 4.47s\tremaining: 13.2s\n",
"253:\tlearn: 34.6473722\ttotal: 4.48s\tremaining: 13.2s\n",
"254:\tlearn: 34.6118045\ttotal: 4.5s\tremaining: 13.1s\n",
"255:\tlearn: 34.5881092\ttotal: 4.51s\tremaining: 13.1s\n",
"256:\tlearn: 34.5574369\ttotal: 4.53s\tremaining: 13.1s\n",
"257:\tlearn: 34.5455633\ttotal: 4.55s\tremaining: 13.1s\n",
"258:\tlearn: 34.5171266\ttotal: 4.56s\tremaining: 13.1s\n",
"259:\tlearn: 34.4986080\ttotal: 4.58s\tremaining: 13s\n",
"260:\tlearn: 34.4809072\ttotal: 4.59s\tremaining: 13s\n",
"261:\tlearn: 34.4515952\ttotal: 4.61s\tremaining: 13s\n",
"262:\tlearn: 34.4393227\ttotal: 4.62s\tremaining: 13s\n",
"263:\tlearn: 34.4228474\ttotal: 4.69s\tremaining: 13.1s\n",
"264:\tlearn: 34.4042669\ttotal: 4.77s\tremaining: 13.2s\n",
"265:\tlearn: 34.3708460\ttotal: 4.79s\tremaining: 13.2s\n",
"266:\tlearn: 34.3436147\ttotal: 4.88s\tremaining: 13.4s\n",
"267:\tlearn: 34.3215119\ttotal: 4.96s\tremaining: 13.6s\n",
"268:\tlearn: 34.3101067\ttotal: 4.99s\tremaining: 13.6s\n",
"269:\tlearn: 34.2939480\ttotal: 5.04s\tremaining: 13.6s\n",
"270:\tlearn: 34.2750556\ttotal: 5.07s\tremaining: 13.6s\n",
"271:\tlearn: 34.2597629\ttotal: 5.1s\tremaining: 13.6s\n",
"272:\tlearn: 34.2406250\ttotal: 5.12s\tremaining: 13.6s\n",
"273:\tlearn: 34.2197527\ttotal: 5.14s\tremaining: 13.6s\n",
"274:\tlearn: 34.2089365\ttotal: 5.16s\tremaining: 13.6s\n",
"275:\tlearn: 34.1969696\ttotal: 5.17s\tremaining: 13.6s\n",
"276:\tlearn: 34.1865041\ttotal: 5.19s\tremaining: 13.5s\n",
"277:\tlearn: 34.1664814\ttotal: 5.22s\tremaining: 13.5s\n",
"278:\tlearn: 34.1498966\ttotal: 5.25s\tremaining: 13.6s\n",
"279:\tlearn: 34.1240645\ttotal: 5.26s\tremaining: 13.5s\n",
"280:\tlearn: 34.0964487\ttotal: 5.28s\tremaining: 13.5s\n",
"281:\tlearn: 34.0756983\ttotal: 5.3s\tremaining: 13.5s\n",
"282:\tlearn: 34.0568447\ttotal: 5.32s\tremaining: 13.5s\n",
"283:\tlearn: 34.0439627\ttotal: 5.35s\tremaining: 13.5s\n",
"284:\tlearn: 34.0286839\ttotal: 5.38s\tremaining: 13.5s\n",
"285:\tlearn: 34.0103947\ttotal: 5.41s\tremaining: 13.5s\n",
"286:\tlearn: 33.9947697\ttotal: 5.43s\tremaining: 13.5s\n",
"287:\tlearn: 33.9747780\ttotal: 5.45s\tremaining: 13.5s\n",
"288:\tlearn: 33.9617226\ttotal: 5.47s\tremaining: 13.5s\n",
"289:\tlearn: 33.9379585\ttotal: 5.49s\tremaining: 13.4s\n",
"290:\tlearn: 33.9242329\ttotal: 5.51s\tremaining: 13.4s\n",
"291:\tlearn: 33.9025562\ttotal: 5.53s\tremaining: 13.4s\n",
"292:\tlearn: 33.8897965\ttotal: 5.55s\tremaining: 13.4s\n",
"293:\tlearn: 33.8800748\ttotal: 5.58s\tremaining: 13.4s\n",
"294:\tlearn: 33.8644833\ttotal: 5.61s\tremaining: 13.4s\n",
"295:\tlearn: 33.8413857\ttotal: 5.66s\tremaining: 13.5s\n",
"296:\tlearn: 33.8226387\ttotal: 5.69s\tremaining: 13.5s\n",
"297:\tlearn: 33.7997814\ttotal: 5.71s\tremaining: 13.5s\n",
"298:\tlearn: 33.7901020\ttotal: 5.74s\tremaining: 13.5s\n",
"299:\tlearn: 33.7756027\ttotal: 5.79s\tremaining: 13.5s\n",
"300:\tlearn: 33.7570133\ttotal: 5.81s\tremaining: 13.5s\n",
"301:\tlearn: 33.7379606\ttotal: 5.83s\tremaining: 13.5s\n",
"302:\tlearn: 33.7217814\ttotal: 5.84s\tremaining: 13.4s\n",
"303:\tlearn: 33.7072325\ttotal: 5.86s\tremaining: 13.4s\n",
"304:\tlearn: 33.6928685\ttotal: 5.88s\tremaining: 13.4s\n",
"305:\tlearn: 33.6769137\ttotal: 5.9s\tremaining: 13.4s\n",
"306:\tlearn: 33.6619345\ttotal: 5.92s\tremaining: 13.4s\n",
"307:\tlearn: 33.6547006\ttotal: 5.94s\tremaining: 13.3s\n",
"308:\tlearn: 33.6340292\ttotal: 5.96s\tremaining: 13.3s\n",
"309:\tlearn: 33.6159163\ttotal: 5.98s\tremaining: 13.3s\n",
"310:\tlearn: 33.5996366\ttotal: 5.99s\tremaining: 13.3s\n",
"311:\tlearn: 33.5826956\ttotal: 6.01s\tremaining: 13.3s\n",
"312:\tlearn: 33.5561977\ttotal: 6.03s\tremaining: 13.2s\n",
"313:\tlearn: 33.5408089\ttotal: 6.04s\tremaining: 13.2s\n",
"314:\tlearn: 33.5174440\ttotal: 6.06s\tremaining: 13.2s\n",
"315:\tlearn: 33.4930276\ttotal: 6.08s\tremaining: 13.2s\n",
"316:\tlearn: 33.4721922\ttotal: 6.1s\tremaining: 13.1s\n",
"317:\tlearn: 33.4564201\ttotal: 6.11s\tremaining: 13.1s\n",
"318:\tlearn: 33.4412756\ttotal: 6.13s\tremaining: 13.1s\n",
"319:\tlearn: 33.4230278\ttotal: 6.15s\tremaining: 13.1s\n",
"320:\tlearn: 33.4094622\ttotal: 6.16s\tremaining: 13s\n",
"321:\tlearn: 33.3947943\ttotal: 6.18s\tremaining: 13s\n",
"322:\tlearn: 33.3796201\ttotal: 6.19s\tremaining: 13s\n",
"323:\tlearn: 33.3556521\ttotal: 6.2s\tremaining: 12.9s\n",
"324:\tlearn: 33.3361396\ttotal: 6.22s\tremaining: 12.9s\n",
"325:\tlearn: 33.3134823\ttotal: 6.23s\tremaining: 12.9s\n",
"326:\tlearn: 33.2956413\ttotal: 6.24s\tremaining: 12.8s\n",
"327:\tlearn: 33.2672392\ttotal: 6.26s\tremaining: 12.8s\n",
"328:\tlearn: 33.2501477\ttotal: 6.28s\tremaining: 12.8s\n",
"329:\tlearn: 33.2333718\ttotal: 6.29s\tremaining: 12.8s\n",
"330:\tlearn: 33.2139542\ttotal: 6.3s\tremaining: 12.7s\n",
"331:\tlearn: 33.1902194\ttotal: 6.32s\tremaining: 12.7s\n",
"332:\tlearn: 33.1729703\ttotal: 6.33s\tremaining: 12.7s\n",
"333:\tlearn: 33.1555121\ttotal: 6.35s\tremaining: 12.7s\n",
"334:\tlearn: 33.1349428\ttotal: 6.36s\tremaining: 12.6s\n",
"335:\tlearn: 33.1171657\ttotal: 6.37s\tremaining: 12.6s\n",
"336:\tlearn: 33.0864958\ttotal: 6.39s\tremaining: 12.6s\n",
"337:\tlearn: 33.0692418\ttotal: 6.4s\tremaining: 12.5s\n",
"338:\tlearn: 33.0597833\ttotal: 6.42s\tremaining: 12.5s\n",
"339:\tlearn: 33.0431026\ttotal: 6.43s\tremaining: 12.5s\n",
"340:\tlearn: 33.0293653\ttotal: 6.44s\tremaining: 12.5s\n",
"341:\tlearn: 33.0157619\ttotal: 6.46s\tremaining: 12.4s\n",
"342:\tlearn: 33.0086038\ttotal: 6.47s\tremaining: 12.4s\n",
"343:\tlearn: 32.9929057\ttotal: 6.49s\tremaining: 12.4s\n",
"344:\tlearn: 32.9700247\ttotal: 6.51s\tremaining: 12.4s\n",
"345:\tlearn: 32.9497416\ttotal: 6.52s\tremaining: 12.3s\n",
"346:\tlearn: 32.9371544\ttotal: 6.54s\tremaining: 12.3s\n",
"347:\tlearn: 32.9090009\ttotal: 6.55s\tremaining: 12.3s\n",
"348:\tlearn: 32.8799907\ttotal: 6.57s\tremaining: 12.2s\n",
"349:\tlearn: 32.8656285\ttotal: 6.58s\tremaining: 12.2s\n",
"350:\tlearn: 32.8488542\ttotal: 6.59s\tremaining: 12.2s\n",
"351:\tlearn: 32.8250731\ttotal: 6.61s\tremaining: 12.2s\n",
"352:\tlearn: 32.8074437\ttotal: 6.62s\tremaining: 12.1s\n",
"353:\tlearn: 32.7898778\ttotal: 6.64s\tremaining: 12.1s\n",
"354:\tlearn: 32.7757097\ttotal: 6.65s\tremaining: 12.1s\n",
"355:\tlearn: 32.7614581\ttotal: 6.67s\tremaining: 12.1s\n",
"356:\tlearn: 32.7491569\ttotal: 6.69s\tremaining: 12s\n",
"357:\tlearn: 32.7381893\ttotal: 6.7s\tremaining: 12s\n",
"358:\tlearn: 32.7209427\ttotal: 6.72s\tremaining: 12s\n",
"359:\tlearn: 32.7036210\ttotal: 6.73s\tremaining: 12s\n",
"360:\tlearn: 32.6893669\ttotal: 6.75s\tremaining: 11.9s\n",
"361:\tlearn: 32.6799011\ttotal: 6.76s\tremaining: 11.9s\n",
"362:\tlearn: 32.6529135\ttotal: 6.77s\tremaining: 11.9s\n",
"363:\tlearn: 32.6383440\ttotal: 6.79s\tremaining: 11.9s\n",
"364:\tlearn: 32.6262112\ttotal: 6.8s\tremaining: 11.8s\n",
"365:\tlearn: 32.5975224\ttotal: 6.82s\tremaining: 11.8s\n",
"366:\tlearn: 32.5770630\ttotal: 6.83s\tremaining: 11.8s\n",
"367:\tlearn: 32.5598392\ttotal: 6.85s\tremaining: 11.8s\n",
"368:\tlearn: 32.5429327\ttotal: 6.86s\tremaining: 11.7s\n",
"369:\tlearn: 32.5295026\ttotal: 6.89s\tremaining: 11.7s\n",
"370:\tlearn: 32.5119686\ttotal: 6.92s\tremaining: 11.7s\n",
"371:\tlearn: 32.4949620\ttotal: 6.95s\tremaining: 11.7s\n",
"372:\tlearn: 32.4759474\ttotal: 6.96s\tremaining: 11.7s\n",
"373:\tlearn: 32.4621893\ttotal: 6.98s\tremaining: 11.7s\n",
"374:\tlearn: 32.4529011\ttotal: 7s\tremaining: 11.7s\n",
"375:\tlearn: 32.4448859\ttotal: 7.01s\tremaining: 11.6s\n",
"376:\tlearn: 32.4280410\ttotal: 7.03s\tremaining: 11.6s\n",
"377:\tlearn: 32.4151648\ttotal: 7.04s\tremaining: 11.6s\n",
"378:\tlearn: 32.3983481\ttotal: 7.06s\tremaining: 11.6s\n",
"379:\tlearn: 32.3728177\ttotal: 7.07s\tremaining: 11.5s\n",
"380:\tlearn: 32.3610310\ttotal: 7.08s\tremaining: 11.5s\n",
"381:\tlearn: 32.3445440\ttotal: 7.1s\tremaining: 11.5s\n",
"382:\tlearn: 32.3386818\ttotal: 7.11s\tremaining: 11.5s\n",
"383:\tlearn: 32.3249795\ttotal: 7.14s\tremaining: 11.5s\n",
"384:\tlearn: 32.3141138\ttotal: 7.16s\tremaining: 11.4s\n",
"385:\tlearn: 32.2991475\ttotal: 7.23s\tremaining: 11.5s\n",
"386:\tlearn: 32.2881097\ttotal: 7.25s\tremaining: 11.5s\n",
"387:\tlearn: 32.2652851\ttotal: 7.27s\tremaining: 11.5s\n",
"388:\tlearn: 32.2562168\ttotal: 7.3s\tremaining: 11.5s\n",
"389:\tlearn: 32.2401207\ttotal: 7.35s\tremaining: 11.5s\n",
"390:\tlearn: 32.2273460\ttotal: 7.4s\tremaining: 11.5s\n",
"391:\tlearn: 32.2161737\ttotal: 7.46s\tremaining: 11.6s\n",
"392:\tlearn: 32.2008964\ttotal: 7.48s\tremaining: 11.5s\n",
"393:\tlearn: 32.1892541\ttotal: 7.5s\tremaining: 11.5s\n",
"394:\tlearn: 32.1731037\ttotal: 7.52s\tremaining: 11.5s\n",
"395:\tlearn: 32.1553388\ttotal: 7.54s\tremaining: 11.5s\n",
"396:\tlearn: 32.1403533\ttotal: 7.55s\tremaining: 11.5s\n",
"397:\tlearn: 32.1261440\ttotal: 7.57s\tremaining: 11.5s\n",
"398:\tlearn: 32.1037531\ttotal: 7.59s\tremaining: 11.4s\n",
"399:\tlearn: 32.0865100\ttotal: 7.61s\tremaining: 11.4s\n",
"400:\tlearn: 32.0742989\ttotal: 7.64s\tremaining: 11.4s\n",
"401:\tlearn: 32.0701044\ttotal: 7.66s\tremaining: 11.4s\n",
"402:\tlearn: 32.0581719\ttotal: 7.67s\tremaining: 11.4s\n",
"403:\tlearn: 32.0440705\ttotal: 7.68s\tremaining: 11.3s\n",
"404:\tlearn: 32.0289054\ttotal: 7.7s\tremaining: 11.3s\n",
"405:\tlearn: 32.0107577\ttotal: 7.71s\tremaining: 11.3s\n",
"406:\tlearn: 31.9998764\ttotal: 7.73s\tremaining: 11.3s\n",
"407:\tlearn: 31.9924396\ttotal: 7.74s\tremaining: 11.2s\n",
"408:\tlearn: 31.9834553\ttotal: 7.76s\tremaining: 11.2s\n",
"409:\tlearn: 31.9718856\ttotal: 7.78s\tremaining: 11.2s\n",
"410:\tlearn: 31.9571033\ttotal: 7.8s\tremaining: 11.2s\n",
"411:\tlearn: 31.9501576\ttotal: 7.82s\tremaining: 11.2s\n",
"412:\tlearn: 31.9280371\ttotal: 7.84s\tremaining: 11.1s\n",
"413:\tlearn: 31.9085220\ttotal: 7.86s\tremaining: 11.1s\n",
"414:\tlearn: 31.8882172\ttotal: 7.87s\tremaining: 11.1s\n",
"415:\tlearn: 31.8795347\ttotal: 7.89s\tremaining: 11.1s\n",
"416:\tlearn: 31.8644077\ttotal: 7.91s\tremaining: 11.1s\n",
"417:\tlearn: 31.8564927\ttotal: 7.93s\tremaining: 11s\n",
"418:\tlearn: 31.8484828\ttotal: 7.95s\tremaining: 11s\n",
"419:\tlearn: 31.8417364\ttotal: 7.97s\tremaining: 11s\n",
"420:\tlearn: 31.8240501\ttotal: 7.99s\tremaining: 11s\n",
"421:\tlearn: 31.8044617\ttotal: 8.01s\tremaining: 11s\n",
"422:\tlearn: 31.7892059\ttotal: 8.02s\tremaining: 10.9s\n",
"423:\tlearn: 31.7810439\ttotal: 8.04s\tremaining: 10.9s\n",
"424:\tlearn: 31.7721757\ttotal: 8.05s\tremaining: 10.9s\n",
"425:\tlearn: 31.7553259\ttotal: 8.07s\tremaining: 10.9s\n",
"426:\tlearn: 31.7374073\ttotal: 8.09s\tremaining: 10.8s\n",
"427:\tlearn: 31.7234917\ttotal: 8.1s\tremaining: 10.8s\n",
"428:\tlearn: 31.7141668\ttotal: 8.13s\tremaining: 10.8s\n",
"429:\tlearn: 31.6875817\ttotal: 8.14s\tremaining: 10.8s\n",
"430:\tlearn: 31.6591678\ttotal: 8.16s\tremaining: 10.8s\n",
"431:\tlearn: 31.6487751\ttotal: 8.18s\tremaining: 10.8s\n",
"432:\tlearn: 31.6388658\ttotal: 8.2s\tremaining: 10.7s\n",
"433:\tlearn: 31.6301486\ttotal: 8.21s\tremaining: 10.7s\n",
"434:\tlearn: 31.6213188\ttotal: 8.23s\tremaining: 10.7s\n",
"435:\tlearn: 31.6044610\ttotal: 8.25s\tremaining: 10.7s\n",
"436:\tlearn: 31.5925510\ttotal: 8.27s\tremaining: 10.7s\n",
"437:\tlearn: 31.5728802\ttotal: 8.28s\tremaining: 10.6s\n",
"438:\tlearn: 31.5608815\ttotal: 8.3s\tremaining: 10.6s\n",
"439:\tlearn: 31.5375217\ttotal: 8.32s\tremaining: 10.6s\n",
"440:\tlearn: 31.5286000\ttotal: 8.33s\tremaining: 10.6s\n",
"441:\tlearn: 31.5087488\ttotal: 8.35s\tremaining: 10.5s\n",
"442:\tlearn: 31.4967476\ttotal: 8.45s\tremaining: 10.6s\n",
"443:\tlearn: 31.4867287\ttotal: 8.46s\tremaining: 10.6s\n",
"444:\tlearn: 31.4789890\ttotal: 8.47s\tremaining: 10.6s\n",
"445:\tlearn: 31.4650612\ttotal: 8.49s\tremaining: 10.5s\n",
"446:\tlearn: 31.4581113\ttotal: 8.5s\tremaining: 10.5s\n",
"447:\tlearn: 31.4461872\ttotal: 8.52s\tremaining: 10.5s\n",
"448:\tlearn: 31.4241169\ttotal: 8.53s\tremaining: 10.5s\n",
"449:\tlearn: 31.4097797\ttotal: 8.54s\tremaining: 10.4s\n",
"450:\tlearn: 31.3870984\ttotal: 8.56s\tremaining: 10.4s\n",
"451:\tlearn: 31.3733807\ttotal: 8.57s\tremaining: 10.4s\n",
"452:\tlearn: 31.3648485\ttotal: 8.59s\tremaining: 10.4s\n",
"453:\tlearn: 31.3440449\ttotal: 8.6s\tremaining: 10.3s\n",
"454:\tlearn: 31.3269410\ttotal: 8.62s\tremaining: 10.3s\n",
"455:\tlearn: 31.3078206\ttotal: 8.64s\tremaining: 10.3s\n",
"456:\tlearn: 31.2926824\ttotal: 8.65s\tremaining: 10.3s\n",
"457:\tlearn: 31.2827517\ttotal: 8.67s\tremaining: 10.3s\n",
"458:\tlearn: 31.2721214\ttotal: 8.69s\tremaining: 10.2s\n",
"459:\tlearn: 31.2503748\ttotal: 8.71s\tremaining: 10.2s\n",
"460:\tlearn: 31.2369283\ttotal: 8.73s\tremaining: 10.2s\n",
"461:\tlearn: 31.2297650\ttotal: 8.74s\tremaining: 10.2s\n",
"462:\tlearn: 31.2175673\ttotal: 8.76s\tremaining: 10.2s\n",
"463:\tlearn: 31.2024803\ttotal: 8.78s\tremaining: 10.1s\n",
"464:\tlearn: 31.1902909\ttotal: 8.79s\tremaining: 10.1s\n",
"465:\tlearn: 31.1753195\ttotal: 8.81s\tremaining: 10.1s\n",
"466:\tlearn: 31.1581125\ttotal: 8.82s\tremaining: 10.1s\n",
"467:\tlearn: 31.1505298\ttotal: 8.84s\tremaining: 10s\n",
"468:\tlearn: 31.1369366\ttotal: 8.85s\tremaining: 10s\n",
"469:\tlearn: 31.1296339\ttotal: 8.87s\tremaining: 10s\n",
"470:\tlearn: 31.1125103\ttotal: 8.89s\tremaining: 9.99s\n",
"471:\tlearn: 31.0937284\ttotal: 8.91s\tremaining: 9.97s\n",
"472:\tlearn: 31.0753981\ttotal: 8.92s\tremaining: 9.94s\n",
"473:\tlearn: 31.0605626\ttotal: 8.94s\tremaining: 9.92s\n",
"474:\tlearn: 31.0538761\ttotal: 8.96s\tremaining: 9.9s\n",
"475:\tlearn: 31.0318666\ttotal: 8.97s\tremaining: 9.87s\n",
"476:\tlearn: 31.0119386\ttotal: 8.98s\tremaining: 9.85s\n",
"477:\tlearn: 31.0037796\ttotal: 9s\tremaining: 9.83s\n",
"478:\tlearn: 30.9864484\ttotal: 9.02s\tremaining: 9.8s\n",
"479:\tlearn: 30.9665535\ttotal: 9.03s\tremaining: 9.78s\n",
"480:\tlearn: 30.9551030\ttotal: 9.05s\tremaining: 9.77s\n",
"481:\tlearn: 30.9436637\ttotal: 9.08s\tremaining: 9.76s\n",
"482:\tlearn: 30.9324230\ttotal: 9.1s\tremaining: 9.74s\n",
"483:\tlearn: 30.9132878\ttotal: 9.12s\tremaining: 9.72s\n",
"484:\tlearn: 30.9014410\ttotal: 9.18s\tremaining: 9.75s\n",
"485:\tlearn: 30.8923426\ttotal: 9.22s\tremaining: 9.75s\n",
"486:\tlearn: 30.8811041\ttotal: 9.26s\tremaining: 9.76s\n",
"487:\tlearn: 30.8707446\ttotal: 9.32s\tremaining: 9.78s\n",
"488:\tlearn: 30.8572775\ttotal: 9.35s\tremaining: 9.77s\n",
"489:\tlearn: 30.8457952\ttotal: 9.4s\tremaining: 9.78s\n",
"490:\tlearn: 30.8381073\ttotal: 9.42s\tremaining: 9.77s\n",
"491:\tlearn: 30.8294670\ttotal: 9.44s\tremaining: 9.75s\n",
"492:\tlearn: 30.8186624\ttotal: 9.46s\tremaining: 9.73s\n",
"493:\tlearn: 30.8117523\ttotal: 9.48s\tremaining: 9.71s\n",
"494:\tlearn: 30.7961129\ttotal: 9.5s\tremaining: 9.69s\n",
"495:\tlearn: 30.7788115\ttotal: 9.51s\tremaining: 9.67s\n",
"496:\tlearn: 30.7710544\ttotal: 9.53s\tremaining: 9.65s\n",
"497:\tlearn: 30.7496972\ttotal: 9.56s\tremaining: 9.64s\n",
"498:\tlearn: 30.7388557\ttotal: 9.6s\tremaining: 9.63s\n",
"499:\tlearn: 30.7242976\ttotal: 9.62s\tremaining: 9.62s\n",
"500:\tlearn: 30.7172358\ttotal: 9.65s\tremaining: 9.62s\n",
"501:\tlearn: 30.7061464\ttotal: 9.68s\tremaining: 9.6s\n",
"502:\tlearn: 30.6933176\ttotal: 9.72s\tremaining: 9.6s\n",
"503:\tlearn: 30.6811336\ttotal: 9.74s\tremaining: 9.59s\n",
"504:\tlearn: 30.6737246\ttotal: 9.76s\tremaining: 9.57s\n",
"505:\tlearn: 30.6552384\ttotal: 9.79s\tremaining: 9.56s\n",
"506:\tlearn: 30.6430118\ttotal: 9.81s\tremaining: 9.54s\n",
"507:\tlearn: 30.6340757\ttotal: 9.83s\tremaining: 9.52s\n",
"508:\tlearn: 30.6242456\ttotal: 9.85s\tremaining: 9.5s\n",
"509:\tlearn: 30.6102671\ttotal: 9.86s\tremaining: 9.47s\n",
"510:\tlearn: 30.5935847\ttotal: 9.88s\tremaining: 9.45s\n",
"511:\tlearn: 30.5790591\ttotal: 9.89s\tremaining: 9.43s\n",
"512:\tlearn: 30.5689470\ttotal: 9.9s\tremaining: 9.4s\n",
"513:\tlearn: 30.5440777\ttotal: 9.92s\tremaining: 9.38s\n",
"514:\tlearn: 30.5321078\ttotal: 9.93s\tremaining: 9.35s\n",
"515:\tlearn: 30.5222854\ttotal: 9.95s\tremaining: 9.33s\n",
"516:\tlearn: 30.5131315\ttotal: 9.96s\tremaining: 9.31s\n",
"517:\tlearn: 30.5007459\ttotal: 9.98s\tremaining: 9.29s\n",
"518:\tlearn: 30.4902781\ttotal: 9.99s\tremaining: 9.26s\n",
"519:\tlearn: 30.4776614\ttotal: 10s\tremaining: 9.24s\n",
"520:\tlearn: 30.4728720\ttotal: 10s\tremaining: 9.21s\n",
"521:\tlearn: 30.4609299\ttotal: 10s\tremaining: 9.19s\n",
"522:\tlearn: 30.4436847\ttotal: 10.1s\tremaining: 9.17s\n",
"523:\tlearn: 30.4298325\ttotal: 10.1s\tremaining: 9.14s\n",
"524:\tlearn: 30.4111408\ttotal: 10.1s\tremaining: 9.12s\n",
"525:\tlearn: 30.3883550\ttotal: 10.1s\tremaining: 9.1s\n",
"526:\tlearn: 30.3785847\ttotal: 10.1s\tremaining: 9.08s\n",
"527:\tlearn: 30.3636853\ttotal: 10.1s\tremaining: 9.06s\n",
"528:\tlearn: 30.3503995\ttotal: 10.1s\tremaining: 9.03s\n",
"529:\tlearn: 30.3428673\ttotal: 10.2s\tremaining: 9.01s\n",
"530:\tlearn: 30.3324174\ttotal: 10.2s\tremaining: 8.99s\n",
"531:\tlearn: 30.3255468\ttotal: 10.2s\tremaining: 8.98s\n",
"532:\tlearn: 30.3141742\ttotal: 10.2s\tremaining: 8.96s\n",
"533:\tlearn: 30.3055825\ttotal: 10.2s\tremaining: 8.94s\n",
"534:\tlearn: 30.2953147\ttotal: 10.3s\tremaining: 8.92s\n",
"535:\tlearn: 30.2905287\ttotal: 10.3s\tremaining: 8.89s\n",
"536:\tlearn: 30.2811480\ttotal: 10.3s\tremaining: 8.87s\n",
"537:\tlearn: 30.2729747\ttotal: 10.3s\tremaining: 8.85s\n",
"538:\tlearn: 30.2649967\ttotal: 10.3s\tremaining: 8.82s\n",
"539:\tlearn: 30.2600182\ttotal: 10.3s\tremaining: 8.8s\n",
"540:\tlearn: 30.2410056\ttotal: 10.3s\tremaining: 8.78s\n",
"541:\tlearn: 30.2324594\ttotal: 10.4s\tremaining: 8.76s\n",
"542:\tlearn: 30.2198559\ttotal: 10.4s\tremaining: 8.73s\n",
"543:\tlearn: 30.2073411\ttotal: 10.4s\tremaining: 8.71s\n",
"544:\tlearn: 30.1980647\ttotal: 10.4s\tremaining: 8.69s\n",
"545:\tlearn: 30.1796239\ttotal: 10.4s\tremaining: 8.67s\n",
"546:\tlearn: 30.1594903\ttotal: 10.4s\tremaining: 8.65s\n",
"547:\tlearn: 30.1524205\ttotal: 10.5s\tremaining: 8.63s\n",
"548:\tlearn: 30.1410224\ttotal: 10.5s\tremaining: 8.6s\n",
"549:\tlearn: 30.1237077\ttotal: 10.5s\tremaining: 8.58s\n",
"550:\tlearn: 30.1043916\ttotal: 10.5s\tremaining: 8.56s\n",
"551:\tlearn: 30.0861199\ttotal: 10.5s\tremaining: 8.54s\n",
"552:\tlearn: 30.0761496\ttotal: 10.5s\tremaining: 8.52s\n",
"553:\tlearn: 30.0706855\ttotal: 10.6s\tremaining: 8.5s\n",
"554:\tlearn: 30.0520914\ttotal: 10.6s\tremaining: 8.48s\n",
"555:\tlearn: 30.0471198\ttotal: 10.6s\tremaining: 8.46s\n",
"556:\tlearn: 30.0281263\ttotal: 10.6s\tremaining: 8.44s\n",
"557:\tlearn: 30.0191135\ttotal: 10.6s\tremaining: 8.42s\n",
"558:\tlearn: 29.9971963\ttotal: 10.6s\tremaining: 8.39s\n",
"559:\tlearn: 29.9851251\ttotal: 10.7s\tremaining: 8.37s\n",
"560:\tlearn: 29.9793229\ttotal: 10.7s\tremaining: 8.35s\n",
"561:\tlearn: 29.9725259\ttotal: 10.7s\tremaining: 8.33s\n",
"562:\tlearn: 29.9588692\ttotal: 10.7s\tremaining: 8.3s\n",
"563:\tlearn: 29.9516101\ttotal: 10.7s\tremaining: 8.28s\n",
"564:\tlearn: 29.9335893\ttotal: 10.7s\tremaining: 8.26s\n",
"565:\tlearn: 29.9250103\ttotal: 10.7s\tremaining: 8.23s\n",
"566:\tlearn: 29.9074889\ttotal: 10.8s\tremaining: 8.21s\n",
"567:\tlearn: 29.8921840\ttotal: 10.8s\tremaining: 8.19s\n",
"568:\tlearn: 29.8825610\ttotal: 10.8s\tremaining: 8.16s\n",
"569:\tlearn: 29.8739126\ttotal: 10.8s\tremaining: 8.14s\n",
"570:\tlearn: 29.8547570\ttotal: 10.8s\tremaining: 8.12s\n",
"571:\tlearn: 29.8467406\ttotal: 10.8s\tremaining: 8.11s\n",
"572:\tlearn: 29.8327916\ttotal: 10.9s\tremaining: 8.09s\n",
"573:\tlearn: 29.8237789\ttotal: 10.9s\tremaining: 8.06s\n",
"574:\tlearn: 29.8140211\ttotal: 10.9s\tremaining: 8.04s\n",
"575:\tlearn: 29.8041436\ttotal: 10.9s\tremaining: 8.02s\n",
"576:\tlearn: 29.7921786\ttotal: 10.9s\tremaining: 8s\n",
"577:\tlearn: 29.7787525\ttotal: 10.9s\tremaining: 7.98s\n",
"578:\tlearn: 29.7680941\ttotal: 10.9s\tremaining: 7.96s\n",
"579:\tlearn: 29.7613003\ttotal: 11s\tremaining: 7.94s\n",
"580:\tlearn: 29.7543261\ttotal: 11s\tremaining: 7.92s\n",
"581:\tlearn: 29.7459622\ttotal: 11s\tremaining: 7.9s\n",
"582:\tlearn: 29.7355581\ttotal: 11s\tremaining: 7.88s\n",
"583:\tlearn: 29.7180040\ttotal: 11.1s\tremaining: 7.88s\n",
"584:\tlearn: 29.7099618\ttotal: 11.1s\tremaining: 7.86s\n",
"585:\tlearn: 29.7001500\ttotal: 11.1s\tremaining: 7.84s\n",
"586:\tlearn: 29.6890981\ttotal: 11.1s\tremaining: 7.82s\n",
"587:\tlearn: 29.6783230\ttotal: 11.1s\tremaining: 7.79s\n",
"588:\tlearn: 29.6689496\ttotal: 11.1s\tremaining: 7.77s\n",
"589:\tlearn: 29.6618282\ttotal: 11.2s\tremaining: 7.75s\n",
"590:\tlearn: 29.6511784\ttotal: 11.2s\tremaining: 7.73s\n",
"591:\tlearn: 29.6302233\ttotal: 11.2s\tremaining: 7.71s\n",
"592:\tlearn: 29.6219009\ttotal: 11.2s\tremaining: 7.68s\n",
"593:\tlearn: 29.6134803\ttotal: 11.2s\tremaining: 7.66s\n",
"594:\tlearn: 29.6027952\ttotal: 11.2s\tremaining: 7.64s\n",
"595:\tlearn: 29.5877883\ttotal: 11.2s\tremaining: 7.62s\n",
"596:\tlearn: 29.5792170\ttotal: 11.3s\tremaining: 7.6s\n",
"597:\tlearn: 29.5720023\ttotal: 11.3s\tremaining: 7.58s\n",
"598:\tlearn: 29.5646120\ttotal: 11.3s\tremaining: 7.55s\n",
"599:\tlearn: 29.5508813\ttotal: 11.3s\tremaining: 7.53s\n",
"600:\tlearn: 29.5413669\ttotal: 11.3s\tremaining: 7.51s\n",
"601:\tlearn: 29.5283496\ttotal: 11.3s\tremaining: 7.49s\n",
"602:\tlearn: 29.5195495\ttotal: 11.4s\tremaining: 7.47s\n",
"603:\tlearn: 29.5119725\ttotal: 11.4s\tremaining: 7.45s\n",
"604:\tlearn: 29.5041955\ttotal: 11.4s\tremaining: 7.43s\n",
"605:\tlearn: 29.4862625\ttotal: 11.4s\tremaining: 7.42s\n",
"606:\tlearn: 29.4769101\ttotal: 11.4s\tremaining: 7.39s\n",
"607:\tlearn: 29.4665585\ttotal: 11.4s\tremaining: 7.38s\n",
"608:\tlearn: 29.4584786\ttotal: 11.5s\tremaining: 7.36s\n",
"609:\tlearn: 29.4495375\ttotal: 11.5s\tremaining: 7.34s\n",
"610:\tlearn: 29.4406878\ttotal: 11.5s\tremaining: 7.32s\n",
"611:\tlearn: 29.4303613\ttotal: 11.5s\tremaining: 7.29s\n",
"612:\tlearn: 29.4151365\ttotal: 11.5s\tremaining: 7.27s\n",
"613:\tlearn: 29.4010977\ttotal: 11.5s\tremaining: 7.25s\n",
"614:\tlearn: 29.3892962\ttotal: 11.6s\tremaining: 7.23s\n",
"615:\tlearn: 29.3697006\ttotal: 11.6s\tremaining: 7.21s\n",
"616:\tlearn: 29.3619584\ttotal: 11.6s\tremaining: 7.19s\n",
"617:\tlearn: 29.3549641\ttotal: 11.6s\tremaining: 7.17s\n",
"618:\tlearn: 29.3473103\ttotal: 11.6s\tremaining: 7.16s\n",
"619:\tlearn: 29.3379668\ttotal: 11.7s\tremaining: 7.14s\n",
"620:\tlearn: 29.3316062\ttotal: 11.7s\tremaining: 7.12s\n",
"621:\tlearn: 29.3218326\ttotal: 11.7s\tremaining: 7.1s\n",
"622:\tlearn: 29.3127033\ttotal: 11.7s\tremaining: 7.08s\n",
"623:\tlearn: 29.2967323\ttotal: 11.7s\tremaining: 7.06s\n",
"624:\tlearn: 29.2844206\ttotal: 11.7s\tremaining: 7.04s\n",
"625:\tlearn: 29.2765392\ttotal: 11.8s\tremaining: 7.02s\n",
"626:\tlearn: 29.2662087\ttotal: 11.8s\tremaining: 7s\n",
"627:\tlearn: 29.2572161\ttotal: 11.8s\tremaining: 6.98s\n",
"628:\tlearn: 29.2526355\ttotal: 11.8s\tremaining: 6.97s\n",
"629:\tlearn: 29.2379908\ttotal: 11.8s\tremaining: 6.95s\n",
"630:\tlearn: 29.2328032\ttotal: 11.8s\tremaining: 6.93s\n",
"631:\tlearn: 29.2151835\ttotal: 11.9s\tremaining: 6.91s\n",
"632:\tlearn: 29.2083811\ttotal: 11.9s\tremaining: 6.89s\n",
"633:\tlearn: 29.2018046\ttotal: 11.9s\tremaining: 6.87s\n",
"634:\tlearn: 29.1852793\ttotal: 11.9s\tremaining: 6.85s\n",
"635:\tlearn: 29.1768011\ttotal: 11.9s\tremaining: 6.83s\n",
"636:\tlearn: 29.1666332\ttotal: 12s\tremaining: 6.81s\n",
"637:\tlearn: 29.1601112\ttotal: 12s\tremaining: 6.79s\n",
"638:\tlearn: 29.1475597\ttotal: 12s\tremaining: 6.77s\n",
"639:\tlearn: 29.1390580\ttotal: 12s\tremaining: 6.75s\n",
"640:\tlearn: 29.1250366\ttotal: 12s\tremaining: 6.73s\n",
"641:\tlearn: 29.1097853\ttotal: 12s\tremaining: 6.71s\n",
"642:\tlearn: 29.1011238\ttotal: 12s\tremaining: 6.69s\n",
"643:\tlearn: 29.0812326\ttotal: 12.1s\tremaining: 6.67s\n",
"644:\tlearn: 29.0741732\ttotal: 12.1s\tremaining: 6.65s\n",
"645:\tlearn: 29.0682374\ttotal: 12.1s\tremaining: 6.63s\n",
"646:\tlearn: 29.0530873\ttotal: 12.1s\tremaining: 6.62s\n",
"647:\tlearn: 29.0447524\ttotal: 12.1s\tremaining: 6.59s\n",
"648:\tlearn: 29.0381501\ttotal: 12.2s\tremaining: 6.57s\n",
"649:\tlearn: 29.0289158\ttotal: 12.2s\tremaining: 6.56s\n",
"650:\tlearn: 29.0206489\ttotal: 12.2s\tremaining: 6.54s\n",
"651:\tlearn: 29.0144823\ttotal: 12.2s\tremaining: 6.52s\n",
"652:\tlearn: 29.0073022\ttotal: 12.2s\tremaining: 6.5s\n",
"653:\tlearn: 28.9991074\ttotal: 12.2s\tremaining: 6.48s\n",
"654:\tlearn: 28.9901479\ttotal: 12.3s\tremaining: 6.46s\n",
"655:\tlearn: 28.9841537\ttotal: 12.3s\tremaining: 6.43s\n",
"656:\tlearn: 28.9799725\ttotal: 12.3s\tremaining: 6.42s\n",
"657:\tlearn: 28.9756932\ttotal: 12.3s\tremaining: 6.4s\n",
"658:\tlearn: 28.9658455\ttotal: 12.3s\tremaining: 6.38s\n",
"659:\tlearn: 28.9555768\ttotal: 12.3s\tremaining: 6.36s\n",
"660:\tlearn: 28.9410539\ttotal: 12.4s\tremaining: 6.34s\n",
"661:\tlearn: 28.9310398\ttotal: 12.4s\tremaining: 6.32s\n",
"662:\tlearn: 28.9221683\ttotal: 12.4s\tremaining: 6.29s\n",
"663:\tlearn: 28.9097787\ttotal: 12.4s\tremaining: 6.27s\n",
"664:\tlearn: 28.8940108\ttotal: 12.4s\tremaining: 6.25s\n",
"665:\tlearn: 28.8810450\ttotal: 12.4s\tremaining: 6.23s\n",
"666:\tlearn: 28.8741817\ttotal: 12.4s\tremaining: 6.21s\n",
"667:\tlearn: 28.8707902\ttotal: 12.5s\tremaining: 6.19s\n",
"668:\tlearn: 28.8586849\ttotal: 12.5s\tremaining: 6.17s\n",
"669:\tlearn: 28.8522687\ttotal: 12.5s\tremaining: 6.15s\n",
"670:\tlearn: 28.8438512\ttotal: 12.5s\tremaining: 6.13s\n",
"671:\tlearn: 28.8381727\ttotal: 12.5s\tremaining: 6.11s\n",
"672:\tlearn: 28.8285776\ttotal: 12.5s\tremaining: 6.09s\n",
"673:\tlearn: 28.8203077\ttotal: 12.5s\tremaining: 6.07s\n",
"674:\tlearn: 28.8138133\ttotal: 12.6s\tremaining: 6.05s\n",
"675:\tlearn: 28.7963994\ttotal: 12.6s\tremaining: 6.03s\n",
"676:\tlearn: 28.7834954\ttotal: 12.6s\tremaining: 6s\n",
"677:\tlearn: 28.7725171\ttotal: 12.6s\tremaining: 5.98s\n",
"678:\tlearn: 28.7631118\ttotal: 12.6s\tremaining: 5.96s\n",
"679:\tlearn: 28.7567806\ttotal: 12.6s\tremaining: 5.94s\n",
"680:\tlearn: 28.7466100\ttotal: 12.6s\tremaining: 5.92s\n",
"681:\tlearn: 28.7378097\ttotal: 12.7s\tremaining: 5.9s\n",
"682:\tlearn: 28.7283031\ttotal: 12.7s\tremaining: 5.88s\n",
"683:\tlearn: 28.7220643\ttotal: 12.7s\tremaining: 5.86s\n",
"684:\tlearn: 28.7094064\ttotal: 12.7s\tremaining: 5.84s\n",
"685:\tlearn: 28.6961263\ttotal: 12.7s\tremaining: 5.82s\n",
"686:\tlearn: 28.6847478\ttotal: 12.7s\tremaining: 5.8s\n",
"687:\tlearn: 28.6710743\ttotal: 12.7s\tremaining: 5.78s\n",
"688:\tlearn: 28.6585410\ttotal: 12.8s\tremaining: 5.75s\n",
"689:\tlearn: 28.6508594\ttotal: 12.8s\tremaining: 5.74s\n",
"690:\tlearn: 28.6441596\ttotal: 12.8s\tremaining: 5.71s\n",
"691:\tlearn: 28.6312531\ttotal: 12.8s\tremaining: 5.69s\n",
"692:\tlearn: 28.6232879\ttotal: 12.8s\tremaining: 5.67s\n",
"693:\tlearn: 28.6125260\ttotal: 12.8s\tremaining: 5.65s\n",
"694:\tlearn: 28.6031850\ttotal: 12.8s\tremaining: 5.63s\n",
"695:\tlearn: 28.5932231\ttotal: 12.9s\tremaining: 5.61s\n",
"696:\tlearn: 28.5800482\ttotal: 12.9s\tremaining: 5.6s\n",
"697:\tlearn: 28.5725015\ttotal: 12.9s\tremaining: 5.58s\n",
"698:\tlearn: 28.5601082\ttotal: 12.9s\tremaining: 5.56s\n",
"699:\tlearn: 28.5513030\ttotal: 12.9s\tremaining: 5.54s\n",
"700:\tlearn: 28.5456528\ttotal: 12.9s\tremaining: 5.52s\n",
"701:\tlearn: 28.5383494\ttotal: 12.9s\tremaining: 5.5s\n",
"702:\tlearn: 28.5293133\ttotal: 13s\tremaining: 5.48s\n",
"703:\tlearn: 28.5230571\ttotal: 13s\tremaining: 5.46s\n",
"704:\tlearn: 28.5166913\ttotal: 13s\tremaining: 5.43s\n",
"705:\tlearn: 28.5070792\ttotal: 13s\tremaining: 5.42s\n",
"706:\tlearn: 28.4965767\ttotal: 13s\tremaining: 5.4s\n",
"707:\tlearn: 28.4872744\ttotal: 13s\tremaining: 5.38s\n",
"708:\tlearn: 28.4780060\ttotal: 13.1s\tremaining: 5.36s\n",
"709:\tlearn: 28.4693643\ttotal: 13.1s\tremaining: 5.34s\n",
"710:\tlearn: 28.4586813\ttotal: 13.1s\tremaining: 5.32s\n",
"711:\tlearn: 28.4487409\ttotal: 13.1s\tremaining: 5.31s\n",
"712:\tlearn: 28.4417498\ttotal: 13.1s\tremaining: 5.29s\n",
"713:\tlearn: 28.4332566\ttotal: 13.2s\tremaining: 5.27s\n",
"714:\tlearn: 28.4236357\ttotal: 13.2s\tremaining: 5.25s\n",
"715:\tlearn: 28.4143926\ttotal: 13.2s\tremaining: 5.23s\n",
"716:\tlearn: 28.4086045\ttotal: 13.2s\tremaining: 5.21s\n",
"717:\tlearn: 28.4047448\ttotal: 13.2s\tremaining: 5.19s\n",
"718:\tlearn: 28.3897913\ttotal: 13.2s\tremaining: 5.17s\n",
"719:\tlearn: 28.3812044\ttotal: 13.2s\tremaining: 5.15s\n",
"720:\tlearn: 28.3740147\ttotal: 13.3s\tremaining: 5.13s\n",
"721:\tlearn: 28.3605476\ttotal: 13.3s\tremaining: 5.11s\n",
"722:\tlearn: 28.3481211\ttotal: 13.3s\tremaining: 5.09s\n",
"723:\tlearn: 28.3414307\ttotal: 13.3s\tremaining: 5.07s\n",
"724:\tlearn: 28.3327078\ttotal: 13.3s\tremaining: 5.05s\n",
"725:\tlearn: 28.3240764\ttotal: 13.3s\tremaining: 5.03s\n",
"726:\tlearn: 28.3161249\ttotal: 13.4s\tremaining: 5.01s\n",
"727:\tlearn: 28.3095252\ttotal: 13.4s\tremaining: 4.99s\n",
"728:\tlearn: 28.3008510\ttotal: 13.4s\tremaining: 4.97s\n",
"729:\tlearn: 28.2909754\ttotal: 13.4s\tremaining: 4.95s\n",
"730:\tlearn: 28.2815878\ttotal: 13.4s\tremaining: 4.93s\n",
"731:\tlearn: 28.2747451\ttotal: 13.4s\tremaining: 4.91s\n",
"732:\tlearn: 28.2679775\ttotal: 13.4s\tremaining: 4.89s\n",
"733:\tlearn: 28.2540898\ttotal: 13.4s\tremaining: 4.87s\n",
"734:\tlearn: 28.2471311\ttotal: 13.5s\tremaining: 4.85s\n",
"735:\tlearn: 28.2422737\ttotal: 13.5s\tremaining: 4.83s\n",
"736:\tlearn: 28.2320015\ttotal: 13.5s\tremaining: 4.81s\n",
"737:\tlearn: 28.2220362\ttotal: 13.5s\tremaining: 4.79s\n",
"738:\tlearn: 28.2138486\ttotal: 13.5s\tremaining: 4.77s\n",
"739:\tlearn: 28.2046259\ttotal: 13.5s\tremaining: 4.75s\n",
"740:\tlearn: 28.1942023\ttotal: 13.5s\tremaining: 4.73s\n",
"741:\tlearn: 28.1861915\ttotal: 13.6s\tremaining: 4.71s\n",
"742:\tlearn: 28.1756657\ttotal: 13.6s\tremaining: 4.69s\n",
"743:\tlearn: 28.1688259\ttotal: 13.6s\tremaining: 4.67s\n",
"744:\tlearn: 28.1622339\ttotal: 13.6s\tremaining: 4.65s\n",
"745:\tlearn: 28.1468957\ttotal: 13.6s\tremaining: 4.63s\n",
"746:\tlearn: 28.1332862\ttotal: 13.6s\tremaining: 4.62s\n",
"747:\tlearn: 28.1262060\ttotal: 13.6s\tremaining: 4.6s\n",
"748:\tlearn: 28.1184429\ttotal: 13.7s\tremaining: 4.58s\n",
"749:\tlearn: 28.1091678\ttotal: 13.7s\tremaining: 4.56s\n",
"750:\tlearn: 28.1032513\ttotal: 13.7s\tremaining: 4.54s\n",
"751:\tlearn: 28.0963422\ttotal: 13.7s\tremaining: 4.52s\n",
"752:\tlearn: 28.0870964\ttotal: 13.7s\tremaining: 4.5s\n",
"753:\tlearn: 28.0754776\ttotal: 13.7s\tremaining: 4.48s\n",
"754:\tlearn: 28.0677448\ttotal: 13.8s\tremaining: 4.46s\n",
"755:\tlearn: 28.0567292\ttotal: 13.8s\tremaining: 4.44s\n",
"756:\tlearn: 28.0470983\ttotal: 13.8s\tremaining: 4.42s\n",
"757:\tlearn: 28.0380272\ttotal: 13.8s\tremaining: 4.41s\n",
"758:\tlearn: 28.0255343\ttotal: 13.8s\tremaining: 4.39s\n",
"759:\tlearn: 28.0142503\ttotal: 13.8s\tremaining: 4.37s\n",
"760:\tlearn: 27.9980114\ttotal: 13.8s\tremaining: 4.35s\n",
"761:\tlearn: 27.9915502\ttotal: 13.9s\tremaining: 4.33s\n",
"762:\tlearn: 27.9785021\ttotal: 13.9s\tremaining: 4.31s\n",
"763:\tlearn: 27.9691914\ttotal: 13.9s\tremaining: 4.29s\n",
"764:\tlearn: 27.9612252\ttotal: 13.9s\tremaining: 4.27s\n",
"765:\tlearn: 27.9525113\ttotal: 13.9s\tremaining: 4.25s\n",
"766:\tlearn: 27.9381897\ttotal: 13.9s\tremaining: 4.24s\n",
"767:\tlearn: 27.9282490\ttotal: 14s\tremaining: 4.22s\n",
"768:\tlearn: 27.9239241\ttotal: 14s\tremaining: 4.2s\n",
"769:\tlearn: 27.9147207\ttotal: 14s\tremaining: 4.18s\n",
"770:\tlearn: 27.9046312\ttotal: 14s\tremaining: 4.16s\n",
"771:\tlearn: 27.8978243\ttotal: 14s\tremaining: 4.14s\n",
"772:\tlearn: 27.8896739\ttotal: 14s\tremaining: 4.12s\n",
"773:\tlearn: 27.8757931\ttotal: 14s\tremaining: 4.1s\n",
"774:\tlearn: 27.8680702\ttotal: 14.1s\tremaining: 4.08s\n",
"775:\tlearn: 27.8628793\ttotal: 14.1s\tremaining: 4.06s\n",
"776:\tlearn: 27.8560497\ttotal: 14.1s\tremaining: 4.04s\n",
"777:\tlearn: 27.8487015\ttotal: 14.1s\tremaining: 4.02s\n",
"778:\tlearn: 27.8361181\ttotal: 14.1s\tremaining: 4s\n",
"779:\tlearn: 27.8256881\ttotal: 14.1s\tremaining: 3.98s\n",
"780:\tlearn: 27.8113315\ttotal: 14.1s\tremaining: 3.96s\n",
"781:\tlearn: 27.8043803\ttotal: 14.2s\tremaining: 3.94s\n",
"782:\tlearn: 27.7956597\ttotal: 14.2s\tremaining: 3.93s\n",
"783:\tlearn: 27.7901363\ttotal: 14.2s\tremaining: 3.91s\n",
"784:\tlearn: 27.7803498\ttotal: 14.2s\tremaining: 3.89s\n",
"785:\tlearn: 27.7700983\ttotal: 14.2s\tremaining: 3.87s\n",
"786:\tlearn: 27.7651417\ttotal: 14.2s\tremaining: 3.85s\n",
"787:\tlearn: 27.7574084\ttotal: 14.2s\tremaining: 3.83s\n",
"788:\tlearn: 27.7535991\ttotal: 14.3s\tremaining: 3.81s\n",
"789:\tlearn: 27.7460605\ttotal: 14.3s\tremaining: 3.79s\n",
"790:\tlearn: 27.7392647\ttotal: 14.3s\tremaining: 3.77s\n",
"791:\tlearn: 27.7292048\ttotal: 14.3s\tremaining: 3.75s\n",
"792:\tlearn: 27.7226869\ttotal: 14.3s\tremaining: 3.73s\n",
"793:\tlearn: 27.7156159\ttotal: 14.3s\tremaining: 3.71s\n",
"794:\tlearn: 27.7097293\ttotal: 14.3s\tremaining: 3.7s\n",
"795:\tlearn: 27.7042886\ttotal: 14.3s\tremaining: 3.68s\n",
"796:\tlearn: 27.6974339\ttotal: 14.4s\tremaining: 3.66s\n",
"797:\tlearn: 27.6915955\ttotal: 14.4s\tremaining: 3.64s\n",
"798:\tlearn: 27.6888705\ttotal: 14.4s\tremaining: 3.62s\n",
"799:\tlearn: 27.6750928\ttotal: 14.4s\tremaining: 3.6s\n",
"800:\tlearn: 27.6673662\ttotal: 14.4s\tremaining: 3.58s\n",
"801:\tlearn: 27.6600458\ttotal: 14.4s\tremaining: 3.56s\n",
"802:\tlearn: 27.6504956\ttotal: 14.4s\tremaining: 3.54s\n",
"803:\tlearn: 27.6436132\ttotal: 14.5s\tremaining: 3.52s\n",
"804:\tlearn: 27.6362272\ttotal: 14.5s\tremaining: 3.5s\n",
"805:\tlearn: 27.6213856\ttotal: 14.5s\tremaining: 3.48s\n",
"806:\tlearn: 27.6159936\ttotal: 14.5s\tremaining: 3.47s\n",
"807:\tlearn: 27.6083989\ttotal: 14.5s\tremaining: 3.45s\n",
"808:\tlearn: 27.5995530\ttotal: 14.5s\tremaining: 3.43s\n",
"809:\tlearn: 27.5913062\ttotal: 14.5s\tremaining: 3.41s\n",
"810:\tlearn: 27.5820591\ttotal: 14.5s\tremaining: 3.39s\n",
"811:\tlearn: 27.5749143\ttotal: 14.6s\tremaining: 3.37s\n",
"812:\tlearn: 27.5691156\ttotal: 14.6s\tremaining: 3.35s\n",
"813:\tlearn: 27.5618853\ttotal: 14.6s\tremaining: 3.33s\n",
"814:\tlearn: 27.5554782\ttotal: 14.6s\tremaining: 3.31s\n",
"815:\tlearn: 27.5502194\ttotal: 14.6s\tremaining: 3.3s\n",
"816:\tlearn: 27.5439159\ttotal: 14.6s\tremaining: 3.28s\n",
"817:\tlearn: 27.5350749\ttotal: 14.6s\tremaining: 3.26s\n",
"818:\tlearn: 27.5289271\ttotal: 14.7s\tremaining: 3.24s\n",
"819:\tlearn: 27.5195408\ttotal: 14.7s\tremaining: 3.22s\n",
"820:\tlearn: 27.5127045\ttotal: 14.7s\tremaining: 3.2s\n",
"821:\tlearn: 27.5042391\ttotal: 14.7s\tremaining: 3.18s\n",
"822:\tlearn: 27.4943081\ttotal: 14.7s\tremaining: 3.16s\n",
"823:\tlearn: 27.4841716\ttotal: 14.7s\tremaining: 3.15s\n",
"824:\tlearn: 27.4745474\ttotal: 14.7s\tremaining: 3.13s\n",
"825:\tlearn: 27.4651493\ttotal: 14.8s\tremaining: 3.11s\n",
"826:\tlearn: 27.4579239\ttotal: 14.8s\tremaining: 3.09s\n",
"827:\tlearn: 27.4520653\ttotal: 14.8s\tremaining: 3.07s\n",
"828:\tlearn: 27.4445067\ttotal: 14.8s\tremaining: 3.05s\n",
"829:\tlearn: 27.4343515\ttotal: 14.8s\tremaining: 3.03s\n",
"830:\tlearn: 27.4246563\ttotal: 14.8s\tremaining: 3.02s\n",
"831:\tlearn: 27.4118452\ttotal: 14.8s\tremaining: 3s\n",
"832:\tlearn: 27.4014234\ttotal: 14.9s\tremaining: 2.98s\n",
"833:\tlearn: 27.3931219\ttotal: 14.9s\tremaining: 2.96s\n",
"834:\tlearn: 27.3830867\ttotal: 14.9s\tremaining: 2.94s\n",
"835:\tlearn: 27.3748928\ttotal: 14.9s\tremaining: 2.92s\n",
"836:\tlearn: 27.3666671\ttotal: 14.9s\tremaining: 2.9s\n",
"837:\tlearn: 27.3619356\ttotal: 14.9s\tremaining: 2.88s\n",
"838:\tlearn: 27.3536462\ttotal: 14.9s\tremaining: 2.87s\n",
"839:\tlearn: 27.3477597\ttotal: 15s\tremaining: 2.85s\n",
"840:\tlearn: 27.3425325\ttotal: 15s\tremaining: 2.83s\n",
"841:\tlearn: 27.3325277\ttotal: 15s\tremaining: 2.81s\n",
"842:\tlearn: 27.3230890\ttotal: 15s\tremaining: 2.79s\n",
"843:\tlearn: 27.3126191\ttotal: 15s\tremaining: 2.77s\n",
"844:\tlearn: 27.3030881\ttotal: 15s\tremaining: 2.76s\n",
"845:\tlearn: 27.2989126\ttotal: 15s\tremaining: 2.74s\n",
"846:\tlearn: 27.2924051\ttotal: 15.1s\tremaining: 2.72s\n",
"847:\tlearn: 27.2837050\ttotal: 15.1s\tremaining: 2.7s\n",
"848:\tlearn: 27.2712321\ttotal: 15.1s\tremaining: 2.68s\n",
"849:\tlearn: 27.2623122\ttotal: 15.1s\tremaining: 2.67s\n",
"850:\tlearn: 27.2508330\ttotal: 15.1s\tremaining: 2.65s\n",
"851:\tlearn: 27.2390599\ttotal: 15.1s\tremaining: 2.63s\n",
"852:\tlearn: 27.2339665\ttotal: 15.1s\tremaining: 2.61s\n",
"853:\tlearn: 27.2268038\ttotal: 15.2s\tremaining: 2.59s\n",
"854:\tlearn: 27.2212320\ttotal: 15.2s\tremaining: 2.57s\n",
"855:\tlearn: 27.2100725\ttotal: 15.2s\tremaining: 2.55s\n",
"856:\tlearn: 27.2047963\ttotal: 15.2s\tremaining: 2.54s\n",
"857:\tlearn: 27.1987099\ttotal: 15.2s\tremaining: 2.52s\n",
"858:\tlearn: 27.1938407\ttotal: 15.2s\tremaining: 2.5s\n",
"859:\tlearn: 27.1832924\ttotal: 15.2s\tremaining: 2.48s\n",
"860:\tlearn: 27.1768855\ttotal: 15.3s\tremaining: 2.46s\n",
"861:\tlearn: 27.1696660\ttotal: 15.3s\tremaining: 2.44s\n",
"862:\tlearn: 27.1624596\ttotal: 15.3s\tremaining: 2.43s\n",
"863:\tlearn: 27.1569874\ttotal: 15.3s\tremaining: 2.41s\n",
"864:\tlearn: 27.1533439\ttotal: 15.3s\tremaining: 2.39s\n",
"865:\tlearn: 27.1420916\ttotal: 15.3s\tremaining: 2.37s\n",
"866:\tlearn: 27.1329980\ttotal: 15.3s\tremaining: 2.35s\n",
"867:\tlearn: 27.1249518\ttotal: 15.4s\tremaining: 2.33s\n",
"868:\tlearn: 27.1177953\ttotal: 15.4s\tremaining: 2.32s\n",
"869:\tlearn: 27.1084109\ttotal: 15.4s\tremaining: 2.3s\n",
"870:\tlearn: 27.1040493\ttotal: 15.4s\tremaining: 2.28s\n",
"871:\tlearn: 27.0962863\ttotal: 15.4s\tremaining: 2.26s\n",
"872:\tlearn: 27.0917118\ttotal: 15.4s\tremaining: 2.24s\n",
"873:\tlearn: 27.0863000\ttotal: 15.5s\tremaining: 2.23s\n",
"874:\tlearn: 27.0810638\ttotal: 15.5s\tremaining: 2.21s\n",
"875:\tlearn: 27.0702122\ttotal: 15.5s\tremaining: 2.19s\n",
"876:\tlearn: 27.0645479\ttotal: 15.5s\tremaining: 2.17s\n",
"877:\tlearn: 27.0569765\ttotal: 15.5s\tremaining: 2.15s\n",
"878:\tlearn: 27.0470786\ttotal: 15.5s\tremaining: 2.14s\n",
"879:\tlearn: 27.0398774\ttotal: 15.5s\tremaining: 2.12s\n",
"880:\tlearn: 27.0324939\ttotal: 15.5s\tremaining: 2.1s\n",
"881:\tlearn: 27.0271821\ttotal: 15.6s\tremaining: 2.08s\n",
"882:\tlearn: 27.0245621\ttotal: 15.6s\tremaining: 2.06s\n",
"883:\tlearn: 27.0165566\ttotal: 15.6s\tremaining: 2.04s\n",
"884:\tlearn: 27.0103675\ttotal: 15.6s\tremaining: 2.03s\n",
"885:\tlearn: 27.0028499\ttotal: 15.6s\tremaining: 2.01s\n",
"886:\tlearn: 26.9931327\ttotal: 15.6s\tremaining: 1.99s\n",
"887:\tlearn: 26.9856319\ttotal: 15.6s\tremaining: 1.97s\n",
"888:\tlearn: 26.9739661\ttotal: 15.7s\tremaining: 1.96s\n",
"889:\tlearn: 26.9658751\ttotal: 15.7s\tremaining: 1.94s\n",
"890:\tlearn: 26.9567462\ttotal: 15.7s\tremaining: 1.92s\n",
"891:\tlearn: 26.9512192\ttotal: 15.7s\tremaining: 1.9s\n",
"892:\tlearn: 26.9439202\ttotal: 15.7s\tremaining: 1.88s\n",
"893:\tlearn: 26.9354864\ttotal: 15.7s\tremaining: 1.86s\n",
"894:\tlearn: 26.9248596\ttotal: 15.7s\tremaining: 1.85s\n",
"895:\tlearn: 26.9178549\ttotal: 15.8s\tremaining: 1.83s\n",
"896:\tlearn: 26.9090832\ttotal: 15.8s\tremaining: 1.81s\n",
"897:\tlearn: 26.8981578\ttotal: 15.8s\tremaining: 1.79s\n",
"898:\tlearn: 26.8935105\ttotal: 15.8s\tremaining: 1.77s\n",
"899:\tlearn: 26.8865545\ttotal: 15.8s\tremaining: 1.76s\n",
"900:\tlearn: 26.8805428\ttotal: 15.8s\tremaining: 1.74s\n",
"901:\tlearn: 26.8740951\ttotal: 15.8s\tremaining: 1.72s\n",
"902:\tlearn: 26.8636746\ttotal: 15.9s\tremaining: 1.7s\n",
"903:\tlearn: 26.8603265\ttotal: 15.9s\tremaining: 1.68s\n",
"904:\tlearn: 26.8483128\ttotal: 15.9s\tremaining: 1.67s\n",
"905:\tlearn: 26.8375338\ttotal: 15.9s\tremaining: 1.65s\n",
"906:\tlearn: 26.8338715\ttotal: 15.9s\tremaining: 1.63s\n",
"907:\tlearn: 26.8261453\ttotal: 15.9s\tremaining: 1.61s\n",
"908:\tlearn: 26.8201047\ttotal: 15.9s\tremaining: 1.59s\n",
"909:\tlearn: 26.8140952\ttotal: 15.9s\tremaining: 1.58s\n",
"910:\tlearn: 26.8058694\ttotal: 16s\tremaining: 1.56s\n",
"911:\tlearn: 26.7997854\ttotal: 16s\tremaining: 1.54s\n",
"912:\tlearn: 26.7956930\ttotal: 16s\tremaining: 1.52s\n",
"913:\tlearn: 26.7871044\ttotal: 16s\tremaining: 1.5s\n",
"914:\tlearn: 26.7835185\ttotal: 16s\tremaining: 1.49s\n",
"915:\tlearn: 26.7778598\ttotal: 16s\tremaining: 1.47s\n",
"916:\tlearn: 26.7690974\ttotal: 16.1s\tremaining: 1.45s\n",
"917:\tlearn: 26.7640263\ttotal: 16.1s\tremaining: 1.43s\n",
"918:\tlearn: 26.7584602\ttotal: 16.1s\tremaining: 1.42s\n",
"919:\tlearn: 26.7447917\ttotal: 16.1s\tremaining: 1.4s\n",
"920:\tlearn: 26.7341590\ttotal: 16.1s\tremaining: 1.38s\n",
"921:\tlearn: 26.7288407\ttotal: 16.1s\tremaining: 1.36s\n",
"922:\tlearn: 26.7234104\ttotal: 16.1s\tremaining: 1.34s\n",
"923:\tlearn: 26.7173122\ttotal: 16.1s\tremaining: 1.33s\n",
"924:\tlearn: 26.7124405\ttotal: 16.2s\tremaining: 1.31s\n",
"925:\tlearn: 26.7090817\ttotal: 16.2s\tremaining: 1.29s\n",
"926:\tlearn: 26.7038466\ttotal: 16.2s\tremaining: 1.27s\n",
"927:\tlearn: 26.6972309\ttotal: 16.2s\tremaining: 1.26s\n",
"928:\tlearn: 26.6901019\ttotal: 16.2s\tremaining: 1.24s\n",
"929:\tlearn: 26.6855449\ttotal: 16.2s\tremaining: 1.22s\n",
"930:\tlearn: 26.6784611\ttotal: 16.2s\tremaining: 1.2s\n",
"931:\tlearn: 26.6730980\ttotal: 16.3s\tremaining: 1.19s\n",
"932:\tlearn: 26.6663044\ttotal: 16.3s\tremaining: 1.17s\n",
"933:\tlearn: 26.6629704\ttotal: 16.3s\tremaining: 1.15s\n",
"934:\tlearn: 26.6562971\ttotal: 16.4s\tremaining: 1.14s\n",
"935:\tlearn: 26.6501814\ttotal: 16.4s\tremaining: 1.12s\n",
"936:\tlearn: 26.6395262\ttotal: 16.4s\tremaining: 1.1s\n",
"937:\tlearn: 26.6343016\ttotal: 16.5s\tremaining: 1.09s\n",
"938:\tlearn: 26.6253725\ttotal: 16.5s\tremaining: 1.07s\n",
"939:\tlearn: 26.6166771\ttotal: 16.5s\tremaining: 1.05s\n",
"940:\tlearn: 26.6087999\ttotal: 16.6s\tremaining: 1.04s\n",
"941:\tlearn: 26.6021403\ttotal: 16.6s\tremaining: 1.02s\n",
"942:\tlearn: 26.5965159\ttotal: 16.6s\tremaining: 1s\n",
"943:\tlearn: 26.5899254\ttotal: 16.6s\tremaining: 985ms\n",
"944:\tlearn: 26.5853834\ttotal: 16.6s\tremaining: 967ms\n",
"945:\tlearn: 26.5782683\ttotal: 16.6s\tremaining: 949ms\n",
"946:\tlearn: 26.5726734\ttotal: 16.6s\tremaining: 931ms\n",
"947:\tlearn: 26.5631793\ttotal: 16.6s\tremaining: 913ms\n",
"948:\tlearn: 26.5560843\ttotal: 16.7s\tremaining: 896ms\n",
"949:\tlearn: 26.5465752\ttotal: 16.7s\tremaining: 878ms\n",
"950:\tlearn: 26.5402675\ttotal: 16.7s\tremaining: 860ms\n",
"951:\tlearn: 26.5341410\ttotal: 16.7s\tremaining: 842ms\n",
"952:\tlearn: 26.5237841\ttotal: 16.7s\tremaining: 825ms\n",
"953:\tlearn: 26.5181007\ttotal: 16.7s\tremaining: 807ms\n",
"954:\tlearn: 26.5139117\ttotal: 16.7s\tremaining: 789ms\n",
"955:\tlearn: 26.5025646\ttotal: 16.8s\tremaining: 771ms\n",
"956:\tlearn: 26.4938975\ttotal: 16.8s\tremaining: 754ms\n",
"957:\tlearn: 26.4892560\ttotal: 16.8s\tremaining: 736ms\n",
"958:\tlearn: 26.4849703\ttotal: 16.8s\tremaining: 718ms\n",
"959:\tlearn: 26.4710369\ttotal: 16.8s\tremaining: 701ms\n",
"960:\tlearn: 26.4645715\ttotal: 16.8s\tremaining: 683ms\n",
"961:\tlearn: 26.4506966\ttotal: 16.8s\tremaining: 665ms\n",
"962:\tlearn: 26.4439531\ttotal: 16.9s\tremaining: 648ms\n",
"963:\tlearn: 26.4386142\ttotal: 16.9s\tremaining: 630ms\n",
"964:\tlearn: 26.4295642\ttotal: 16.9s\tremaining: 612ms\n",
"965:\tlearn: 26.4226379\ttotal: 16.9s\tremaining: 595ms\n",
"966:\tlearn: 26.4144893\ttotal: 16.9s\tremaining: 577ms\n",
"967:\tlearn: 26.4039786\ttotal: 16.9s\tremaining: 560ms\n",
"968:\tlearn: 26.3964753\ttotal: 16.9s\tremaining: 542ms\n",
"969:\tlearn: 26.3900707\ttotal: 17s\tremaining: 524ms\n",
"970:\tlearn: 26.3866106\ttotal: 17s\tremaining: 507ms\n",
"971:\tlearn: 26.3785727\ttotal: 17s\tremaining: 489ms\n",
"972:\tlearn: 26.3709814\ttotal: 17s\tremaining: 472ms\n",
"973:\tlearn: 26.3644394\ttotal: 17s\tremaining: 454ms\n",
"974:\tlearn: 26.3590247\ttotal: 17s\tremaining: 436ms\n",
"975:\tlearn: 26.3538206\ttotal: 17s\tremaining: 419ms\n",
"976:\tlearn: 26.3482354\ttotal: 17.1s\tremaining: 401ms\n",
"977:\tlearn: 26.3432582\ttotal: 17.1s\tremaining: 384ms\n",
"978:\tlearn: 26.3351950\ttotal: 17.1s\tremaining: 366ms\n",
"979:\tlearn: 26.3319234\ttotal: 17.1s\tremaining: 349ms\n",
"980:\tlearn: 26.3236040\ttotal: 17.1s\tremaining: 331ms\n",
"981:\tlearn: 26.3170303\ttotal: 17.1s\tremaining: 314ms\n",
"982:\tlearn: 26.3058513\ttotal: 17.1s\tremaining: 296ms\n",
"983:\tlearn: 26.3031381\ttotal: 17.1s\tremaining: 279ms\n",
"984:\tlearn: 26.2959843\ttotal: 17.2s\tremaining: 261ms\n",
"985:\tlearn: 26.2911587\ttotal: 17.2s\tremaining: 244ms\n",
"986:\tlearn: 26.2851547\ttotal: 17.2s\tremaining: 226ms\n",
"987:\tlearn: 26.2796736\ttotal: 17.2s\tremaining: 209ms\n",
"988:\tlearn: 26.2726083\ttotal: 17.2s\tremaining: 191ms\n",
"989:\tlearn: 26.2661398\ttotal: 17.2s\tremaining: 174ms\n",
"990:\tlearn: 26.2579096\ttotal: 17.2s\tremaining: 157ms\n",
"991:\tlearn: 26.2498383\ttotal: 17.3s\tremaining: 139ms\n",
"992:\tlearn: 26.2451323\ttotal: 17.3s\tremaining: 122ms\n",
"993:\tlearn: 26.2328359\ttotal: 17.3s\tremaining: 104ms\n",
"994:\tlearn: 26.2223634\ttotal: 17.3s\tremaining: 86.9ms\n",
"995:\tlearn: 26.2165401\ttotal: 17.3s\tremaining: 69.5ms\n",
"996:\tlearn: 26.2090302\ttotal: 17.3s\tremaining: 52.1ms\n",
"997:\tlearn: 26.2044318\ttotal: 17.3s\tremaining: 34.8ms\n",
"998:\tlearn: 26.2000229\ttotal: 17.4s\tremaining: 17.4ms\n",
"999:\tlearn: 26.1907431\ttotal: 17.4s\tremaining: 0us\n",
"Mean Squared Error: 2011.3795373657592\n",
"R^2 Score: 0.9007680525950373\n",
"Mean Absolute Error: 23.515733843474596\n",
"Training Accuracy: 0.9649414241187501\n",
"Testing Accuracy: 0.9007680525950373\n"
]
}
],
"source": [
"cat= CatBoostRegressor( n_estimators=1000, \n",
" max_depth=8, \n",
" )\n",
"\n",
"x = df.drop('AQI', axis=1)\n",
"y = df['AQI']\n",
"x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)\n",
"cat.fit(x_train, y_train)\n",
"y_pred = cat.predict(x_test)\n",
"mse = mean_squared_error(y_test, y_pred)\n",
"r2 = r2_score(y_test, y_pred)\n",
"mae = mean_absolute_error(y_test, y_pred)\n",
"print(f\"Mean Squared Error: {mse}\")\n",
"print(f\"R^2 Score: {r2}\")\n",
"print(f\"Mean Absolute Error: {mae}\")\n",
"\n",
"train_accuracy = cat.score(x_train, y_train)\n",
"test_accuracy = cat.score(x_test, y_test)\n",
"print(f\"Training Accuracy: {train_accuracy}\")\n",
"print(f\"Testing Accuracy: {test_accuracy}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "dcd1aedf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['cat_model.joblib']"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"joblib.dump(cat, 'cat_model.joblib')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5b8c13e8",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 29,
"id": "956e32a6",
"metadata": {
"vscode": {
"languageId": "html"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7867\n",
"* To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import gradio as gr\n",
"\n",
"import joblib\n",
"\n",
"with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:\n",
" gr.Markdown(feature_info)\n",
" gr.Markdown(\n",
" \"\"\"\n",
" # 🌫️ Air Quality Index (AQI) Predictor\n",
" Enter pollutant values to predict the AQI using a trained CatBoost model.\n",
" \"\"\")\n",
"# Add an info box above the input fields to explain the features in simple terms\n",
"feature_info = \"\"\"\n",
"\n",
"
What do these features mean?\n",
"
\n",
" - PM2.5 (μg/m³): Fine particulate matter. Low: 0-50 (Good), High: 250+ (Hazardous)
\n",
" - NO2 (μg/m³): Nitrogen dioxide. Low: 0-40 (Good), High: 200+ (Very unhealthy)
\n",
" - CO (mg/m³): Carbon monoxide. Low: 0-2 (Good), High: 10+ (Dangerous)
\n",
" - SO2 (μg/m³): Sulfur dioxide. Low: 0-20 (Good), High: 100+ (Very unhealthy)
\n",
" - O3 (μg/m³): Ozone. Low: 0-60 (Good), High: 180+ (Unhealthy)
\n",
"
\n",
"
Higher values mean more pollution and worse air quality.\n",
"
\n",
"\"\"\"\n",
"\n",
"# Update the Gradio interface with the info box and a dark yellow background\n",
"custom_css = \"\"\"\n",
".gradio-container {background: linear-gradient(135deg, ##ffd21e 0%, #ffcc29 100%);}\n",
"h1, h2, h3 {color: #2d3a4b;}\n",
"input, .input-text {border-radius: 8px;}\n",
".output-text {font-size: 1.5em; color: #1a5d1a; font-weight: bold;}\n",
"\"\"\"\n",
"\n",
"with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:\n",
" gr.Markdown(feature_info)\n",
" gr.Markdown(\n",
" \"\"\"\n",
" # 🌫️ Air Quality Index (AQI) Predictor\n",
" Enter pollutant values to predict the AQI using a trained CatBoost model.\n",
" \"\"\")\n",
" with gr.Row():\n",
" with gr.Column():\n",
" pm25 = gr.Number(label=\"PM2.5 (μg/m³)\", interactive=True)\n",
" no2 = gr.Number(label=\"NO2 (μg/m³)\", interactive=True)\n",
" co = gr.Number(label=\"CO (mg/m³)\", interactive=True)\n",
" so2 = gr.Number(label=\"SO2 (μg/m³)\", interactive=True)\n",
" o3 = gr.Number(label=\"O3 (μg/m³)\", interactive=True)\n",
" submit_btn = gr.Button(\"Predict AQI\", elem_id=\"predict-btn\")\n",
" with gr.Column():\n",
" output = gr.Textbox(label=\"Predicted AQI\", elem_classes=\"output-text\", interactive=False)\n",
"\n",
" submit_btn.click(\n",
" predict_aqi,\n",
" inputs=[pm25, no2, co, so2, o3],\n",
" outputs=output\n",
" )\n",
"\n",
" gr.Markdown(\n",
" \"\"\"\n",
" \n",
" Model: CatBoostRegressor | Features: PM2.5, NO2, CO, SO2, O3\n",
"
\n",
" \"\"\"\n",
" )\n",
"\n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8fa9ed64",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "air",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}