Spaces:
Build error
Build error
File size: 5,437 Bytes
d7b89b7 ac0541e d7b89b7 ac0541e d7b89b7 ac0541e d7b89b7 ac0541e d7b89b7 d015e2a d7b89b7 f26a234 1c55e0d f26a234 1c55e0d f26a234 1c55e0d f26a234 d7b89b7 07bc76b d7b89b7 f26a234 d7b89b7 f26a234 bc3f665 d7b89b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import gradio as gr
import mathutils
import math
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import matplotlib.cm as cmx
import os.path as osp
import h5py
import random
import torch
import torch.nn as nn
from GDANet_cls import GDANET
from DGCNN import DGCNN
with open('shape_names.txt') as f:
CLASS_NAME = f.read().splitlines()
model_gda = GDANET()
model_gda = nn.DataParallel(model_gda)
model_gda.load_state_dict(torch.load('./GDANet_WOLFMix.t7', map_location=torch.device('cpu')))
# model_gda.load_state_dict(torch.load('/Users/renjiawei/Downloads/pretrained_models/GDANet_WOLFMix.t7', map_location=torch.device('cpu')))
model_gda.eval()
model_dgcnn = DGCNN()
model_dgcnn = nn.DataParallel(model_dgcnn)
model_dgcnn.load_state_dict(torch.load('./dgcnn.t7', map_location=torch.device('cpu')))
# model_dgcnn.load_state_dict(torch.load('/Users/renjiawei/Downloads/pretrained_models/dgcnn.t7', map_location=torch.device('cpu')))
model_dgcnn.eval()
def pyplot_draw_point_cloud(points, corruption):
rot1 = mathutils.Euler([-math.pi / 2, 0, 0]).to_matrix().to_3x3()
rot2 = mathutils.Euler([0, 0, math.pi]).to_matrix().to_3x3()
points = np.dot(points, rot1)
points = np.dot(points, rot2)
x, y, z = points[:, 0], points[:, 1], points[:, 2]
colorsMap = 'winter'
cs = y
cm = plt.get_cmap(colorsMap)
cNorm = matplotlib.colors.Normalize(vmin=-1, vmax=1)
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm)
fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z, c=scalarMap.to_rgba(cs))
scalarMap.set_array(cs)
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.set_zlim(-1, 1)
plt.axis('off')
plt.title(corruption, fontsize=30)
plt.tight_layout()
plt.savefig('visualization.png', bbox_inches='tight', dpi=200)
plt.close()
def load_dataset(corruption_idx, severity):
corruptions = [
'clean',
'scale',
'jitter',
'rotate',
'dropout_global',
'dropout_local',
'add_global',
'add_local',
]
corruption_type = corruptions[corruption_idx]
if corruption_type == 'clean':
f = h5py.File(osp.join('modelnet_c', corruption_type + '.h5'))
# f = h5py.File(osp.join('/Users/renjiawei/Downloads/modelnet_c', corruption_type + '.h5'))
else:
f = h5py.File(osp.join('modelnet_c', corruption_type + '_{}'.format(severity-1) + '.h5'))
# f = h5py.File(osp.join('/Users/renjiawei/Downloads/modelnet_c', corruption_type + '_{}'.format(severity - 1) + '.h5'))
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
f.close()
return data, label
def recognize_pcd(model, pcd):
pcd = torch.tensor(pcd).unsqueeze(0)
pcd = pcd.permute(0, 2, 1)
output = model(pcd)
prediction = output.softmax(-1).flatten()
_, top5_idx = torch.topk(prediction, 5)
return {CLASS_NAME[i]: float(prediction[i]) for i in top5_idx.tolist()}
def run(seed, corruption_idx, severity):
data, label = load_dataset(corruption_idx, severity)
random.seed(seed)
sample_indx = random.randint(0, data.shape[0])
pcd, cls = data[sample_indx], label[sample_indx]
pyplot_draw_point_cloud(pcd, CLASS_NAME[cls[0]])
output = 'visualization.png'
return output, recognize_pcd(model_dgcnn, pcd), recognize_pcd(model_gda, pcd)
description = """
Welcome to the demo of PointCloud-C! [PointCloud-C](https://pointcloud-c.github.io/home.html) is a test-suite for point cloud robustness analysis under corruptions. In this demo, you may:
- __Visualize__ various types of corrupted point clouds in [ModelNet-C](https://github.com/jiawei-ren/ModelNet-C).
- __Compare__ our proposed techniques to the baseline in terms of prediction robustness.
For more details, checkout our paper [Benchmarking and Analyzing Point Cloud Classification under Corruptions, __ICML 2022__](https://arxiv.org/abs/2202.03377)!
📣 News: [The first PointCloud-C challenge](https://codalab.lisn.upsaclay.fr/competitions/6437) with Classification track and Part Segmentation track in [ECCV'22 SenseHuman workshop](https://sense-human.github.io/) is open for submission now!
"""
if __name__ == '__main__':
iface = gr.Interface(
fn=run,
inputs=[
gr.components.Number(label='Sample Seed', precision=0),
gr.components.Radio(
['Clean', 'Scale', 'Jitter', 'Rotate', 'Drop Global', 'Drop Local', 'Add Global', 'Add Local'],
value='Jitter', type="index", label='Corruption Type'),
gr.components.Slider(1, 5, value=5, step=1, label='Corruption severity'),
],
outputs=[
gr.components.Image(type="file", label="Visualization"),
gr.components.Label(num_top_classes=5, label="Baseline (DGCNN) Prediction"),
gr.components.Label(num_top_classes=5, label="Ours (GDANet+WolfMix) Prediction")
],
live=False,
allow_flagging='never',
title="PointCloud-C",
description=description,
examples=[
[0, 'Jitter', 5],
[999, 'Drop Local', 5],
],
css=".output-image, .image-preview {height: 100px !important}",
article="<p style='text-align: center'><a href='https://github.com/ldkong1205/PointCloud-C' target='_blank'>PointNet-C @ GitHub</a></p> "
)
iface.launch()
|