Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,111 +27,181 @@ def load_tab(sheet_name):
|
|
| 27 |
return pd.DataFrame([["β οΈ Could not load sheet."]], columns=["Error"])
|
| 28 |
|
| 29 |
def haversine(coord1, coord2):
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
| 39 |
def load_field_sales():
|
| 40 |
df = load_tab("Field Sales")
|
| 41 |
if df.empty:
|
| 42 |
-
return pd.DataFrame(columns=["Date", "Rep", "Order Value", "Order Received", "Location", "KM Travelled"])
|
|
|
|
| 43 |
df['Date'] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
| 44 |
df = df.dropna(subset=["Date"])
|
|
|
|
| 45 |
df["Order Value"] = pd.to_numeric(df.get("Order Value", 0), errors="coerce").fillna(0)
|
|
|
|
| 46 |
df["KM Travelled"] = 0.0
|
| 47 |
for rep in df["Rep"].unique():
|
| 48 |
rep_df = df[df["Rep"] == rep].sort_values(by="Date")
|
| 49 |
prev_coord = None
|
| 50 |
for idx, row in rep_df.iterrows():
|
| 51 |
curr_coord = row.get("Location", "")
|
| 52 |
-
if prev_coord
|
| 53 |
-
|
| 54 |
-
km = haversine(prev_coord, curr_coord)
|
| 55 |
-
df.at[idx, "KM Travelled"] = km
|
| 56 |
-
except:
|
| 57 |
-
df.at[idx, "KM Travelled"] = 0
|
| 58 |
prev_coord = curr_coord
|
| 59 |
-
|
| 60 |
return df
|
| 61 |
|
| 62 |
-
def
|
| 63 |
-
df =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
df["Order Value"] = pd.to_numeric(df.get("Order Value", 0), errors="coerce").fillna(0)
|
| 65 |
-
return df
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
gr.Dataframe(dealer_df, label="Dealership Directory")
|
| 116 |
-
|
| 117 |
-
with gr.Tab("Users"):
|
| 118 |
-
gr.Dataframe(users_df, label="Users")
|
| 119 |
-
|
| 120 |
-
return gr.update(visible=False), gr.update(visible=True)
|
| 121 |
else:
|
| 122 |
-
return "
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
demo.launch()
|
|
|
|
| 27 |
return pd.DataFrame([["β οΈ Could not load sheet."]], columns=["Error"])
|
| 28 |
|
| 29 |
def haversine(coord1, coord2):
|
| 30 |
+
try:
|
| 31 |
+
lon1, lat1 = map(radians, map(float, coord1.split(',')[::-1]))
|
| 32 |
+
lon2, lat2 = map(radians, map(float, coord2.split(',')[::-1]))
|
| 33 |
+
dlon = lon2 - lon1
|
| 34 |
+
dlat = lat2 - lat1
|
| 35 |
+
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
|
| 36 |
+
c = 2 * asin(sqrt(a))
|
| 37 |
+
return round(6371 * c, 2)
|
| 38 |
+
except:
|
| 39 |
+
return 0.0
|
| 40 |
+
|
| 41 |
+
# ------------------ FIELD SALES ------------------
|
| 42 |
def load_field_sales():
|
| 43 |
df = load_tab("Field Sales")
|
| 44 |
if df.empty:
|
| 45 |
+
return pd.DataFrame(columns=["Date", "Rep", "Order Value", "Order Received", "Location", "DateStr", "KM Travelled"])
|
| 46 |
+
|
| 47 |
df['Date'] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
| 48 |
df = df.dropna(subset=["Date"])
|
| 49 |
+
df['DateStr'] = df['Date'].dt.date.astype(str)
|
| 50 |
df["Order Value"] = pd.to_numeric(df.get("Order Value", 0), errors="coerce").fillna(0)
|
| 51 |
+
|
| 52 |
df["KM Travelled"] = 0.0
|
| 53 |
for rep in df["Rep"].unique():
|
| 54 |
rep_df = df[df["Rep"] == rep].sort_values(by="Date")
|
| 55 |
prev_coord = None
|
| 56 |
for idx, row in rep_df.iterrows():
|
| 57 |
curr_coord = row.get("Location", "")
|
| 58 |
+
if prev_coord:
|
| 59 |
+
df.at[idx, "KM Travelled"] = haversine(prev_coord, curr_coord)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
prev_coord = curr_coord
|
| 61 |
+
|
| 62 |
return df
|
| 63 |
|
| 64 |
+
def get_field_summary():
|
| 65 |
+
df = load_field_sales()
|
| 66 |
+
if df.empty:
|
| 67 |
+
return pd.DataFrame([["No data available"]], columns=["Message"])
|
| 68 |
+
summary = df.groupby("Rep").agg({
|
| 69 |
+
"Order Value": "sum",
|
| 70 |
+
"Order Received": lambda x: (x == "Yes").sum(),
|
| 71 |
+
"KM Travelled": "sum"
|
| 72 |
+
}).reset_index().rename(columns={
|
| 73 |
+
"Order Value": "Total Order Value",
|
| 74 |
+
"Order Received": "Orders Received"
|
| 75 |
+
})
|
| 76 |
+
return summary
|
| 77 |
+
|
| 78 |
+
# ------------------ TELESALES ------------------
|
| 79 |
+
def get_telesales_summary():
|
| 80 |
+
df = load_tab("TeleSales")
|
| 81 |
+
if df.empty or "Rep" not in df.columns:
|
| 82 |
+
return pd.DataFrame([["No data available"]], columns=["Message"])
|
| 83 |
+
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
| 84 |
+
df["DateStr"] = df["Date"].dt.date.astype(str)
|
| 85 |
df["Order Value"] = pd.to_numeric(df.get("Order Value", 0), errors="coerce").fillna(0)
|
|
|
|
| 86 |
|
| 87 |
+
summary = df.groupby("Rep").agg({
|
| 88 |
+
"Order Value": "sum",
|
| 89 |
+
"Order Received": lambda x: (x == "Yes").sum()
|
| 90 |
+
}).reset_index().rename(columns={
|
| 91 |
+
"Order Value": "Total Order Value",
|
| 92 |
+
"Order Received": "Orders Received"
|
| 93 |
+
})
|
| 94 |
+
return summary
|
| 95 |
+
|
| 96 |
+
# ------------------ COMBINED ORDERS ------------------
|
| 97 |
+
def get_combined_orders():
|
| 98 |
+
fs = get_field_summary()
|
| 99 |
+
ts = get_telesales_summary()
|
| 100 |
+
|
| 101 |
+
fs["Source"] = "Field Sales"
|
| 102 |
+
ts["Source"] = "TeleSales"
|
| 103 |
+
|
| 104 |
+
combined = pd.concat([fs, ts], ignore_index=True)
|
| 105 |
+
return combined[["Rep", "Orders Received", "Total Order Value", "Source"]].sort_values(by="Total Order Value", ascending=False)
|
| 106 |
+
|
| 107 |
+
# ------------------ OEM VISITS ------------------
|
| 108 |
+
def get_oem_summary():
|
| 109 |
+
df = load_tab("OEM Visit")
|
| 110 |
+
if df.empty or "Rep" not in df.columns:
|
| 111 |
+
return pd.DataFrame([["No data available"]], columns=["Message"])
|
| 112 |
+
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
| 113 |
+
df["DateStr"] = df["Date"].dt.date.astype(str)
|
| 114 |
+
return df.groupby(["Rep", "DateStr"]).size().reset_index(name="OEM Visits")
|
| 115 |
+
|
| 116 |
+
# ------------------ OTHER TABS ------------------
|
| 117 |
+
def get_requests():
|
| 118 |
+
df = load_tab("Customer Requests")
|
| 119 |
+
return df if not df.empty else pd.DataFrame([["No requests yet."]], columns=["Message"])
|
| 120 |
+
|
| 121 |
+
def get_listings():
|
| 122 |
+
df = load_tab("CustomerListings")
|
| 123 |
+
return df if not df.empty else pd.DataFrame([["No listings found."]], columns=["Message"])
|
| 124 |
+
|
| 125 |
+
def get_users():
|
| 126 |
+
df = load_tab("Users")
|
| 127 |
+
return df if not df.empty else pd.DataFrame([["No users configured."]], columns=["Message"])
|
| 128 |
+
|
| 129 |
+
def get_escalations():
|
| 130 |
+
df = load_field_sales()
|
| 131 |
+
col = "Customer Type & Status"
|
| 132 |
+
if col in df.columns:
|
| 133 |
+
flagged = df[df[col].str.contains("Second", na=False)]
|
| 134 |
+
return flagged if not flagged.empty else pd.DataFrame([["No second-hand dealerships flagged."]], columns=["Message"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
else:
|
| 136 |
+
return pd.DataFrame([["β οΈ Column 'Customer Type & Status' not found."]], columns=["Message"])
|
| 137 |
+
|
| 138 |
+
# ------------------ GRADIO APP ------------------
|
| 139 |
+
with gr.Blocks() as app:
|
| 140 |
+
with gr.Row():
|
| 141 |
+
with gr.Column(visible=True) as login_ui:
|
| 142 |
+
gr.Markdown("## π Login Required")
|
| 143 |
+
email = gr.Textbox(label="Email")
|
| 144 |
+
password = gr.Textbox(label="Password", type="password")
|
| 145 |
+
login_btn = gr.Button("Login")
|
| 146 |
+
login_msg = gr.Markdown("")
|
| 147 |
+
|
| 148 |
+
with gr.Column(visible=False) as main_ui:
|
| 149 |
+
gr.Markdown("## ποΈ CarMat Dashboard")
|
| 150 |
+
|
| 151 |
+
# --- Summary Tab ---
|
| 152 |
+
with gr.Tab("π Summary"):
|
| 153 |
+
summary_table = gr.Dataframe(label="Combined Orders", value=get_combined_orders)
|
| 154 |
+
|
| 155 |
+
# --- Field Sales Tab ---
|
| 156 |
+
with gr.Tab("π£οΈ Field Sales"):
|
| 157 |
+
fs_table = gr.Dataframe(label="Field Sales Summary", value=get_field_summary)
|
| 158 |
+
fs_raw = gr.Dataframe(label="Raw Field Sales", value=load_field_sales)
|
| 159 |
+
|
| 160 |
+
# --- Telesales Tab ---
|
| 161 |
+
with gr.Tab("π TeleSales"):
|
| 162 |
+
ts_table = gr.Dataframe(label="TeleSales Summary", value=get_telesales_summary)
|
| 163 |
+
|
| 164 |
+
# --- Orders Tab ---
|
| 165 |
+
with gr.Tab("π¦ Orders"):
|
| 166 |
+
order_table = gr.Dataframe(label="All Orders Combined", value=get_combined_orders)
|
| 167 |
+
|
| 168 |
+
# --- Escalations ---
|
| 169 |
+
with gr.Tab("π¨ Escalations"):
|
| 170 |
+
esc_table = gr.Dataframe(value=get_escalations, label="Second-hand Dealerships")
|
| 171 |
+
esc_btn = gr.Button("π Refresh")
|
| 172 |
+
esc_btn.click(fn=get_escalations, outputs=esc_table)
|
| 173 |
+
|
| 174 |
+
# --- OEM Visits ---
|
| 175 |
+
with gr.Tab("π OEM Visits"):
|
| 176 |
+
oem_table = gr.Dataframe(value=get_oem_summary, label="OEM Visit Summary")
|
| 177 |
+
oem_refresh = gr.Button("π Refresh OEM")
|
| 178 |
+
oem_refresh.click(fn=get_oem_summary, outputs=oem_table)
|
| 179 |
+
|
| 180 |
+
# --- Requests ---
|
| 181 |
+
with gr.Tab("π¬ Customer Requests"):
|
| 182 |
+
req_table = gr.Dataframe(value=get_requests, label="Customer Requests", interactive=False)
|
| 183 |
+
req_refresh = gr.Button("π Refresh Requests")
|
| 184 |
+
req_refresh.click(fn=get_requests, outputs=req_table)
|
| 185 |
+
|
| 186 |
+
# --- Dealership Listings ---
|
| 187 |
+
with gr.Tab("π Dealership Directory"):
|
| 188 |
+
listings_table = gr.Dataframe(value=get_listings, label="Customer Listings")
|
| 189 |
+
listings_refresh = gr.Button("π Refresh Listings")
|
| 190 |
+
listings_refresh.click(fn=get_listings, outputs=listings_table)
|
| 191 |
+
|
| 192 |
+
# --- Users ---
|
| 193 |
+
with gr.Tab("π€ Users"):
|
| 194 |
+
users_table = gr.Dataframe(value=get_users, label="Users")
|
| 195 |
+
users_refresh = gr.Button("π Refresh Users")
|
| 196 |
+
users_refresh.click(fn=get_users, outputs=users_table)
|
| 197 |
+
|
| 198 |
+
def do_login(user, pw):
|
| 199 |
+
if VALID_USERS.get(user) == pw:
|
| 200 |
+
return gr.update(visible=False), gr.update(visible=True), ""
|
| 201 |
+
else:
|
| 202 |
+
return gr.update(visible=True), gr.update(visible=False), "β Invalid login."
|
| 203 |
+
|
| 204 |
+
login_btn.click(fn=do_login, inputs=[email, password], outputs=[login_ui, main_ui, login_msg])
|
| 205 |
+
|
| 206 |
+
app.launch()
|
| 207 |
|
|
|