import gradio as gr import torch import numpy as np import scipy.io.wavfile from transformers import VitsModel, AutoTokenizer import re # Load fine-tuned model from Hugging Face Hub or local path model = VitsModel.from_pretrained("Somali-tts/somali_tts_model") tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() number_words = { 0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan", 6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban", 11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex", 14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix", 17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal", 20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton", 60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan", 100: "boqol", 1000: "kun" } def number_to_words(number): number = int(number) if number < 20: return number_words[number] elif number < 100: tens, unit = divmod(number, 10) return number_words[tens * 10] + (" iyo " + number_words[unit] if unit else "") elif number < 1000: hundreds, remainder = divmod(number, 100) part = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol" if remainder: part += " iyo " + number_to_words(remainder) return part elif number < 1000000: thousands, remainder = divmod(number, 1000) words = [] if thousands == 1: words.append("kun") else: words.append(number_to_words(thousands) + " kun") if remainder >= 100: hundreds, rem2 = divmod(remainder, 100) if hundreds: boqol_text = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol" words.append(boqol_text) if rem2: words.append("iyo " + number_to_words(rem2)) elif remainder: words.append("iyo " + number_to_words(remainder)) return " ".join(words) elif number < 1000000000: millions, remainder = divmod(number, 1000000) words = [] if millions == 1: words.append("milyan") else: words.append(number_to_words(millions) + " milyan") if remainder: words.append(number_to_words(remainder)) return " ".join(words) else: return str(number) def normalize_text(text): numbers = re.findall(r'\d+', text) for num in numbers: text = text.replace(num, number_to_words(num)) text = text.replace("KH", "qa").replace("Z", "S") text = text.replace("SH", "SHa'a").replace("DH", "Dha'a") text = text.replace("ZamZam", "SamSam") return text def tts(text): text = normalize_text(text) inputs = tokenizer(text, return_tensors="pt").to(device) with torch.no_grad(): waveform = model(**inputs).waveform.squeeze().cpu().numpy() filename = "output.wav" scipy.io.wavfile.write(filename, rate=model.config.sampling_rate, data=(waveform * 32767).astype(np.int16)) return filename gr.Interface( fn=tts, inputs=gr.Textbox(label="Geli qoraal Soomaali ah"), outputs=gr.Audio(label="Codka TTS"), title="Somali TTS", description="Ku qor qoraal Soomaaliyeed si aad u maqasho cod dabiici ah.", ).launch()