HusseinBashir commited on
Commit
bb65721
·
verified ·
1 Parent(s): 7145778

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -36
app.py CHANGED
@@ -1,46 +1,94 @@
1
- from fastapi import FastAPI
2
- from pydantic import BaseModel
3
- from transformers import VitsModel, AutoTokenizer
4
  import torch
5
- import base64
6
- import io
7
- import soundfile as sf
8
-
9
- app = FastAPI()
10
-
11
- # Load model & tokenizer hal mar marka server-ka bilaabmo
12
- model_name = "facebook/mms-tts-som"
13
- model = VitsModel.from_pretrained(model_name)
14
- tokenizer = AutoTokenizer.from_pretrained(model_name)
15
 
 
 
 
16
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
  model.to(device)
18
  model.eval()
19
 
20
- class TTSRequest(BaseModel):
21
- text: str
 
 
 
 
 
 
 
 
22
 
23
- @app.post("/tts")
24
- async def tts(request: TTSRequest):
25
- text = request.text
26
- # Tokenize input text
27
- tokens = tokenizer(text, return_tensors="pt")
28
- tokens = {k: v.to(device) for k, v in tokens.items()}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- # Generate speech waveform tensor
31
- with torch.no_grad():
32
- audio = model.generate_speech(tokens['input_ids'])
33
-
34
- # Convert tensor to numpy array
35
- audio_np = audio.squeeze().cpu().numpy()
 
 
36
 
37
- # Write to WAV buffer
38
- buffer = io.BytesIO()
39
- sf.write(buffer, audio_np, samplerate=22050, format='WAV')
40
- wav_bytes = buffer.getvalue()
41
-
42
- # Encode wav bytes to base64
43
- b64_audio = base64.b64encode(wav_bytes).decode('utf-8')
 
44
 
45
- # Return base64 audio string with wav header
46
- return {"audio": f"data:audio/wav;base64,{b64_audio}"}
 
 
 
 
 
 
 
1
+ import gradio as gr
 
 
2
  import torch
3
+ import numpy as np
4
+ import scipy.io.wavfile
5
+ from transformers import VitsModel, AutoTokenizer
6
+ import re
 
 
 
 
 
 
7
 
8
+ # Load fine-tuned model from Hugging Face Hub or local path
9
+ model = VitsModel.from_pretrained("Somali-tts/somali_tts_model")
10
+ tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts")
11
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
  model.to(device)
13
  model.eval()
14
 
15
+ number_words = {
16
+ 0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
17
+ 6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
18
+ 11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex",
19
+ 14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix",
20
+ 17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal",
21
+ 20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton",
22
+ 60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan",
23
+ 100: "boqol", 1000: "kun"
24
+ }
25
 
26
+ def number_to_words(number):
27
+ number = int(number)
28
+ if number < 20:
29
+ return number_words[number]
30
+ elif number < 100:
31
+ tens, unit = divmod(number, 10)
32
+ return number_words[tens * 10] + (" iyo " + number_words[unit] if unit else "")
33
+ elif number < 1000:
34
+ hundreds, remainder = divmod(number, 100)
35
+ part = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol"
36
+ if remainder:
37
+ part += " iyo " + number_to_words(remainder)
38
+ return part
39
+ elif number < 1000000:
40
+ thousands, remainder = divmod(number, 1000)
41
+ words = []
42
+ if thousands == 1:
43
+ words.append("kun")
44
+ else:
45
+ words.append(number_to_words(thousands) + " kun")
46
+ if remainder >= 100:
47
+ hundreds, rem2 = divmod(remainder, 100)
48
+ if hundreds:
49
+ boqol_text = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol"
50
+ words.append(boqol_text)
51
+ if rem2:
52
+ words.append("iyo " + number_to_words(rem2))
53
+ elif remainder:
54
+ words.append("iyo " + number_to_words(remainder))
55
+ return " ".join(words)
56
+ elif number < 1000000000:
57
+ millions, remainder = divmod(number, 1000000)
58
+ words = []
59
+ if millions == 1:
60
+ words.append("milyan")
61
+ else:
62
+ words.append(number_to_words(millions) + " milyan")
63
+ if remainder:
64
+ words.append(number_to_words(remainder))
65
+ return " ".join(words)
66
+ else:
67
+ return str(number)
68
 
69
+ def normalize_text(text):
70
+ numbers = re.findall(r'\d+', text)
71
+ for num in numbers:
72
+ text = text.replace(num, number_to_words(num))
73
+ text = text.replace("KH", "qa").replace("Z", "S")
74
+ text = text.replace("SH", "SHa'a").replace("DH", "Dha'a")
75
+ text = text.replace("ZamZam", "SamSam")
76
+ return text
77
 
78
+ def tts(text):
79
+ text = normalize_text(text)
80
+ inputs = tokenizer(text, return_tensors="pt").to(device)
81
+ with torch.no_grad():
82
+ waveform = model(**inputs).waveform.squeeze().cpu().numpy()
83
+ filename = "output.wav"
84
+ scipy.io.wavfile.write(filename, rate=model.config.sampling_rate, data=(waveform * 32767).astype(np.int16))
85
+ return filename
86
 
87
+ gr.Interface(
88
+ fn=tts,
89
+ inputs=gr.Textbox(label="Geli qoraal Soomaali ah"),
90
+ outputs=gr.Audio(label="Codka TTS"),
91
+ title="Somali TTS",
92
+ description="Ku qor qoraal Soomaaliyeed si aad u maqasho cod dabiici ah.",
93
+ ).launch()
94
+