import gradio as gr from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer from threading import Thread import re import time import torch import spaces #import subprocess #subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) from io import BytesIO processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-500M-Instruct") model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM2-500M-Instruct", _attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16).to("cuda:0") @spaces.GPU def model_inference( input_dict, history, max_tokens ): text = input_dict["text"] images = [] # first conv turn if history == []: text = input_dict["text"] resulting_messages = [{"role": "user", "content": [{"type": "text", "text": text}]}] for file in input_dict["files"]: if file.endswith(".mp4"): resulting_messages[0]["content"].append({"type": "video", "path": file}) elif file.endswith(".jpg") or file.endswith(".jpeg") or file.endswith(".png"): resulting_messages[0]["content"].append({"type": "image", "path": file}) elif len(history) > 0: resulting_messages = [] for entry in history: if entry["role"] == "user": user_content = [] if isinstance(entry["content"], tuple): file_name = entry["content"][0] if file_name.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")): user_content.append({"type": "image", "path": file_name}) elif file_name.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")): user_content.append({"type": "video", "path": file_name}) elif isinstance(entry["content"], str): user_content.insert(0, {"type": "text", "text": entry["content"]}) elif entry["role"] == "assistant": resulting_messages.append({ "role": "user", "content": user_content }) resulting_messages.append({ "role": "assistant", "content": [{"type": "text", "text": entry["content"]}] }) user_content = [] if text == "" and not images: gr.Error("Please input a query and optionally image(s).") if text == "" and images: gr.Error("Please input a text query along the images(s).") inputs = processor.apply_chat_template( resulting_messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ) inputs = inputs.to(model.device) # Generate streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_args) thread.start() yield "..." buffer = "" for new_text in streamer: buffer += new_text generated_text_without_prompt = buffer#[len(ext_buffer):] time.sleep(0.01) yield buffer examples=[ [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], [{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}], [{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], [{"text": "What does this say?", "files": ["example_images/math.jpg"]}], [{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}], [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], ] demo = gr.ChatInterface(fn=model_inference, title="SmolVLM2: The Smollest Video Model Ever 📺", description="Play with [SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This demo doesn't use history for the chat, so every chat you start is a new conversation.", examples=examples, textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", ".mp4"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, cache_examples=False, additional_inputs=[gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens")], type="messages" ) demo.launch(debug=True)