SmolVLM2 / app.py
merve's picture
merve HF Staff
Update app.py
18c7142 verified
raw
history blame
6.53 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
from transformers.models.smolvlm.video_processing_smolvlm import load_smolvlm_video
from transformers.image_utils import load_image
from threading import Thread
import re
import time
import torch
#import spaces
#import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
from io import BytesIO
from transformers.image_utils import load_image
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct",
_attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16, device_map="auto")
#@spaces.GPU
def model_inference(
input_dict, history
):
text = input_dict["text"]
# first turn input_dict {'text': 'What', 'files': ['/tmp/gradio/0350274350a64a5737e1a5732f014aee2f28bb7344bbad5105c0d0b7e7334375/cats_2.mp4', '/tmp/gradio/2dd39f382fcf5444a1a2ac57ed6f9acafa775dd855248cf273034e8ce18aeff4/IMG_2201.JPG']}
# first turn history []
print("input_dict", input_dict)
print("history", history)
print("model.device", model.device)
images = []
# first conv turn
if history == []:
text = input_dict["text"]
resulting_messages = [{"role": "user", "content": [{"type": "text"}, {"type": "text", "text": text}]}]
for file in input_dict["files"]:
if file.endswith(".mp4"):
resulting_messages[0]["content"].append({"type": "video"})
frames, timestamps, duration_sec = load_smolvlm_video(
file, sampling_fps=1, max_frames=64
)
print("frames", frames)
images.append(frames)
elif file.endswith(".jpg") or file.endswith(".jpeg") or file.endswith(".png"):
resulting_messages[0]["content"].append({"type": "image"})
images.append(load_image(file))
print("images", images)
# second turn input_dict {'text': 'what', 'files': ['/tmp/gradio/7bafdcc4722c4b9902a4936439b3bb694927abd72106a946d773a15cc1c630d7/IMG_2198.JPG']}
# second turn history [[('/tmp/gradio/7bafdcc4722c4b9902a4936439b3bb694927abd72106a946d773a15cc1c630d7/IMG_2198.JPG',), None],
# [('/tmp/gradio/5b105e97e4876912b4e763902144540bd3ab00d9fd4016491337ee4f4c36f320/football.mp4',), None], ['what', None]]
# later conv turn
elif len(history) > 0:
for hist in history:
if isinstance(hist[0], tuple):
if hist[0][0].endswith(".mp4"):
resulting_messages.append({"role": "user", "content": [{"type": "video"}, {"type": "text", "text": hist[0][0]}]})
frames, timestamps, duration_sec = load_smolvlm_video(
file, sampling_fps=1, max_frames=64
)
images.append(frames)
else:
resulting_messages.append({"role": "user", "content": [{"type": "image"}, {"type": "text", "text": hist[0][0]}]})
images.append(load_image(hist[0][0]))
elif isinstance(hist[0], str):
resulting_messages.append({"role": "user", "content": [{"type": "text"}, {"type": "text", "text": hist[0]}]})
if isinstance(hist[1], str):
resulting_messages.append({"role": "user", "content": [{"type": "text"}, {"type": "text", "text": hist[0]}]})
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along the image(s).")
print("resulting_messages", resulting_messages)
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], padding=True, return_tensors="pt")
inputs = inputs.to(model.device)
generation_args = {
"input_ids": inputs.input_ids,
"pixel_values": inputs.pixel_values,
"attention_mask": inputs.attention_mask,
"num_return_sequences": 1,
"no_repeat_ngram_size": 2,
"max_new_tokens": 500,
"min_new_tokens": 10,
}
# Generate
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=500)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
yield "..."
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer#[len(ext_buffer):]
time.sleep(0.01)
yield buffer
examples=[
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
[{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}],
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}],
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}],
[{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}],
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
]
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM2: The Smollest Video Model Ever 📺",
description="Play with [SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This demo doesn't use history for the chat, so every chat you start is a new conversation.",
examples=examples,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", ".mp4"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True,
cache_examples=False,
type="messages"
)
demo.launch(debug=True)