Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer | |
from transformers.models.smolvlm.video_processing_smolvlm import load_smolvlm_video | |
from transformers.image_utils import load_image | |
from threading import Thread | |
import re | |
import time | |
import torch | |
#import spaces | |
#import subprocess | |
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
from io import BytesIO | |
from transformers.image_utils import load_image | |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct") | |
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct", | |
_attn_implementation="flash_attention_2", | |
torch_dtype=torch.bfloat16, device_map="auto") | |
#@spaces.GPU | |
def model_inference( | |
input_dict, history | |
): | |
text = input_dict["text"] | |
# first turn input_dict {'text': 'What', 'files': ['/tmp/gradio/0350274350a64a5737e1a5732f014aee2f28bb7344bbad5105c0d0b7e7334375/cats_2.mp4', '/tmp/gradio/2dd39f382fcf5444a1a2ac57ed6f9acafa775dd855248cf273034e8ce18aeff4/IMG_2201.JPG']} | |
# first turn history [] | |
print("input_dict", input_dict) | |
print("history", history) | |
print("model.device", model.device) | |
images = [] | |
# first conv turn | |
if history == []: | |
text = input_dict["text"] | |
resulting_messages = [{"role": "user", "content": [{"type": "text"}, {"type": "text", "text": text}]}] | |
for file in input_dict["files"]: | |
if file.endswith(".mp4"): | |
resulting_messages[0]["content"].append({"type": "video"}) | |
frames, timestamps, duration_sec = load_smolvlm_video( | |
file, sampling_fps=1, max_frames=64 | |
) | |
print("frames", frames) | |
images.append(frames) | |
elif file.endswith(".jpg") or file.endswith(".jpeg") or file.endswith(".png"): | |
resulting_messages[0]["content"].append({"type": "image"}) | |
images.append(load_image(file)) | |
print("images", images) | |
# second turn input_dict {'text': 'what', 'files': ['/tmp/gradio/7bafdcc4722c4b9902a4936439b3bb694927abd72106a946d773a15cc1c630d7/IMG_2198.JPG']} | |
# second turn history [[('/tmp/gradio/7bafdcc4722c4b9902a4936439b3bb694927abd72106a946d773a15cc1c630d7/IMG_2198.JPG',), None], | |
# [('/tmp/gradio/5b105e97e4876912b4e763902144540bd3ab00d9fd4016491337ee4f4c36f320/football.mp4',), None], ['what', None]] | |
# later conv turn | |
elif len(history) > 0: | |
for hist in history: | |
if isinstance(hist[0], tuple): | |
if hist[0][0].endswith(".mp4"): | |
resulting_messages.append({"role": "user", "content": [{"type": "video"}, {"type": "text", "text": hist[0][0]}]}) | |
frames, timestamps, duration_sec = load_smolvlm_video( | |
file, sampling_fps=1, max_frames=64 | |
) | |
images.append(frames) | |
else: | |
resulting_messages.append({"role": "user", "content": [{"type": "image"}, {"type": "text", "text": hist[0][0]}]}) | |
images.append(load_image(hist[0][0])) | |
elif isinstance(hist[0], str): | |
resulting_messages.append({"role": "user", "content": [{"type": "text"}, {"type": "text", "text": hist[0]}]}) | |
if isinstance(hist[1], str): | |
resulting_messages.append({"role": "user", "content": [{"type": "text"}, {"type": "text", "text": hist[0]}]}) | |
if text == "" and not images: | |
gr.Error("Please input a query and optionally image(s).") | |
if text == "" and images: | |
gr.Error("Please input a text query along the image(s).") | |
print("resulting_messages", resulting_messages) | |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[images], padding=True, return_tensors="pt") | |
inputs = inputs.to(model.device) | |
generation_args = { | |
"input_ids": inputs.input_ids, | |
"pixel_values": inputs.pixel_values, | |
"attention_mask": inputs.attention_mask, | |
"num_return_sequences": 1, | |
"no_repeat_ngram_size": 2, | |
"max_new_tokens": 500, | |
"min_new_tokens": 10, | |
} | |
# Generate | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_args = dict(inputs, streamer=streamer, max_new_tokens=500) | |
generated_text = "" | |
thread = Thread(target=model.generate, kwargs=generation_args) | |
thread.start() | |
yield "..." | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
generated_text_without_prompt = buffer#[len(ext_buffer):] | |
time.sleep(0.01) | |
yield buffer | |
examples=[ | |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], | |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], | |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | |
[{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}], | |
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], | |
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}], | |
[{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}], | |
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], | |
] | |
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM2: The Smollest Video Model Ever 📺", | |
description="Play with [SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This demo doesn't use history for the chat, so every chat you start is a new conversation.", | |
examples=examples, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", ".mp4"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, | |
cache_examples=False, | |
type="messages" | |
) | |
demo.launch(debug=True) | |