Spaces:
Runtime error
Runtime error
Commit
Β·
f20057b
1
Parent(s):
157a0b7
hello
Browse files- app.py +261 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import random
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import imagehash
|
| 7 |
+
import cv2
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 11 |
+
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
|
| 12 |
+
from transformers.image_transforms import resize, to_channel_dimension_format
|
| 13 |
+
|
| 14 |
+
from typing import List
|
| 15 |
+
from PIL import Image
|
| 16 |
+
from collections import Counter
|
| 17 |
+
|
| 18 |
+
from datasets import load_dataset, concatenate_datasets
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
DEVICE = torch.device("cuda")
|
| 22 |
+
PROCESSOR = AutoProcessor.from_pretrained(
|
| 23 |
+
"HuggingFaceM4/idefics2_raven_finetuned",
|
| 24 |
+
token=os.environ["HF_AUTH_TOKEN"],
|
| 25 |
+
)
|
| 26 |
+
MODEL = AutoModelForCausalLM.from_pretrained(
|
| 27 |
+
"HuggingFaceM4/idefics2_raven_finetuned",
|
| 28 |
+
trust_remote_code=True,
|
| 29 |
+
torch_dtype=torch.bfloat16,
|
| 30 |
+
token=os.environ["HF_AUTH_TOKEN"],
|
| 31 |
+
).to(DEVICE)
|
| 32 |
+
if MODEL.config.use_resampler:
|
| 33 |
+
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
|
| 34 |
+
else:
|
| 35 |
+
image_seq_len = (
|
| 36 |
+
MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size
|
| 37 |
+
) ** 2
|
| 38 |
+
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
|
| 39 |
+
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
| 40 |
+
DATASET = load_dataset("HuggingFaceM4/RAVEN_rendered", split="validation")
|
| 41 |
+
|
| 42 |
+
## Utils
|
| 43 |
+
|
| 44 |
+
def convert_to_rgb(image):
|
| 45 |
+
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
| 46 |
+
# for transparent images. The call to `alpha_composite` handles this case
|
| 47 |
+
if image.mode == "RGB":
|
| 48 |
+
return image
|
| 49 |
+
|
| 50 |
+
image_rgba = image.convert("RGBA")
|
| 51 |
+
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
| 52 |
+
alpha_composite = Image.alpha_composite(background, image_rgba)
|
| 53 |
+
alpha_composite = alpha_composite.convert("RGB")
|
| 54 |
+
return alpha_composite
|
| 55 |
+
|
| 56 |
+
# The processor is the same as the Idefics processor except for the BICUBIC interpolation inside siglip,
|
| 57 |
+
# so this is a hack in order to redefine ONLY the transform method
|
| 58 |
+
def custom_transform(x):
|
| 59 |
+
x = convert_to_rgb(x)
|
| 60 |
+
x = to_numpy_array(x)
|
| 61 |
+
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
|
| 62 |
+
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
|
| 63 |
+
x = PROCESSOR.image_processor.normalize(
|
| 64 |
+
x,
|
| 65 |
+
mean=PROCESSOR.image_processor.image_mean,
|
| 66 |
+
std=PROCESSOR.image_processor.image_std
|
| 67 |
+
)
|
| 68 |
+
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
|
| 69 |
+
x = torch.tensor(x)
|
| 70 |
+
return x
|
| 71 |
+
|
| 72 |
+
def pixel_difference(image1, image2):
|
| 73 |
+
def color(im):
|
| 74 |
+
arr = np.array(im).flatten()
|
| 75 |
+
arr_list = arr.tolist()
|
| 76 |
+
counts = Counter(arr_list)
|
| 77 |
+
most_common = counts.most_common(2)
|
| 78 |
+
if most_common[0][0] == 255:
|
| 79 |
+
return most_common[1][0]
|
| 80 |
+
else:
|
| 81 |
+
return most_common[0][0]
|
| 82 |
+
|
| 83 |
+
def canny_edges(im):
|
| 84 |
+
im = cv2.Canny(np.array(im), 50, 100)
|
| 85 |
+
im[im!=0] = 255
|
| 86 |
+
return Image.fromarray(im)
|
| 87 |
+
|
| 88 |
+
def phash(im):
|
| 89 |
+
return imagehash.phash(canny_edges(im), hash_size=32)
|
| 90 |
+
|
| 91 |
+
def surface(im):
|
| 92 |
+
return (np.array(im) != 255).sum()
|
| 93 |
+
|
| 94 |
+
color_diff = np.abs(color(image1) - color(image2))
|
| 95 |
+
hash_diff = phash(image1) - phash(image2)
|
| 96 |
+
surface_diff = np.abs(surface(image1) - surface(image2))
|
| 97 |
+
|
| 98 |
+
if int(hash_diff/7) < 10:
|
| 99 |
+
return color_diff < 10 or int(surface_diff / (160 * 160) * 100) < 10
|
| 100 |
+
elif color_diff < 10:
|
| 101 |
+
return int(surface_diff / (160 * 160) * 100) < 10 or int(hash_diff/7) < 10
|
| 102 |
+
elif int(surface_diff / (160 * 160) * 100) < 10:
|
| 103 |
+
return int(hash_diff/7) < 10 or color_diff < 10
|
| 104 |
+
else:
|
| 105 |
+
return False
|
| 106 |
+
|
| 107 |
+
# End of Utils
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def load_sample():
|
| 111 |
+
n = len(DATASET)
|
| 112 |
+
found_sample = False
|
| 113 |
+
while not found_sample:
|
| 114 |
+
idx = random.randint(0, n)
|
| 115 |
+
sample = DATASET[idx]
|
| 116 |
+
found_sample = True
|
| 117 |
+
return sample["image"], sample["label"], "", "", ""
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# @spaces.GPU(duration=180)
|
| 121 |
+
def model_inference(
|
| 122 |
+
image,
|
| 123 |
+
):
|
| 124 |
+
if image is None:
|
| 125 |
+
raise ValueError("`image` is None. It should be a PIL image.")
|
| 126 |
+
|
| 127 |
+
# return "A"
|
| 128 |
+
inputs = PROCESSOR.tokenizer(
|
| 129 |
+
f"{BOS_TOKEN}User:<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>Which figure should complete the logical sequence?<end_of_utterance>\nAssistant:",
|
| 130 |
+
return_tensors="pt",
|
| 131 |
+
add_special_tokens=False,
|
| 132 |
+
)
|
| 133 |
+
inputs["pixel_values"] = PROCESSOR.image_processor(
|
| 134 |
+
[image],
|
| 135 |
+
transform=custom_transform
|
| 136 |
+
)
|
| 137 |
+
inputs = {
|
| 138 |
+
k: v.to(DEVICE)
|
| 139 |
+
for k, v in inputs.items()
|
| 140 |
+
}
|
| 141 |
+
generation_kwargs = dict(
|
| 142 |
+
inputs,
|
| 143 |
+
bad_words_ids=BAD_WORDS_IDS,
|
| 144 |
+
max_length=4,
|
| 145 |
+
)
|
| 146 |
+
# Regular generation version
|
| 147 |
+
generated_ids = MODEL.generate(**generation_kwargs)
|
| 148 |
+
generated_text = PROCESSOR.batch_decode(
|
| 149 |
+
generated_ids,
|
| 150 |
+
skip_special_tokens=True
|
| 151 |
+
)[0]
|
| 152 |
+
return generated_text[-1]
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
model_prediction = gr.TextArea(
|
| 156 |
+
label="AI's guess",
|
| 157 |
+
visible=True,
|
| 158 |
+
lines=1,
|
| 159 |
+
max_lines=1,
|
| 160 |
+
interactive=False,
|
| 161 |
+
)
|
| 162 |
+
user_prediction = gr.TextArea(
|
| 163 |
+
label="Your guess",
|
| 164 |
+
visible=True,
|
| 165 |
+
lines=1,
|
| 166 |
+
max_lines=1,
|
| 167 |
+
interactive=False,
|
| 168 |
+
)
|
| 169 |
+
result = gr.TextArea(
|
| 170 |
+
label="Win or lose?",
|
| 171 |
+
visible=True,
|
| 172 |
+
lines=1,
|
| 173 |
+
max_lines=1,
|
| 174 |
+
interactive=False,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
css = """
|
| 180 |
+
.gradio-container{max-width: 1000px!important}
|
| 181 |
+
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
|
| 182 |
+
*{transition: width 0.5s ease, flex-grow 0.5s ease}
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
with gr.Blocks(title="Beat the AI", theme=gr.themes.Base(), css=css) as demo:
|
| 187 |
+
gr.Markdown(
|
| 188 |
+
"Are you smarter than the AI?"
|
| 189 |
+
)
|
| 190 |
+
load_new_sample = gr.Button(value="Load new sample")
|
| 191 |
+
with gr.Row(equal_height=True):
|
| 192 |
+
with gr.Column(scale=4, min_width=250) as upload_area:
|
| 193 |
+
imagebox = gr.Image(
|
| 194 |
+
image_mode="L",
|
| 195 |
+
type="pil",
|
| 196 |
+
visible=True,
|
| 197 |
+
sources=None,
|
| 198 |
+
)
|
| 199 |
+
with gr.Column(scale=4):
|
| 200 |
+
with gr.Row():
|
| 201 |
+
a = gr.Button(value="A", min_width=1)
|
| 202 |
+
b = gr.Button(value="B", min_width=1)
|
| 203 |
+
c = gr.Button(value="C", min_width=1)
|
| 204 |
+
d = gr.Button(value="D", min_width=1)
|
| 205 |
+
with gr.Row():
|
| 206 |
+
e = gr.Button(value="E", min_width=1)
|
| 207 |
+
f = gr.Button(value="F", min_width=1)
|
| 208 |
+
g = gr.Button(value="G", min_width=1)
|
| 209 |
+
h = gr.Button(value="H", min_width=1)
|
| 210 |
+
with gr.Row():
|
| 211 |
+
model_prediction.render()
|
| 212 |
+
user_prediction.render()
|
| 213 |
+
solution = gr.TextArea(
|
| 214 |
+
label="Solution",
|
| 215 |
+
visible=False,
|
| 216 |
+
lines=1,
|
| 217 |
+
max_lines=1,
|
| 218 |
+
interactive=False,
|
| 219 |
+
)
|
| 220 |
+
with gr.Row():
|
| 221 |
+
result.render()
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
load_new_sample.click(
|
| 225 |
+
fn=load_sample,
|
| 226 |
+
inputs=[],
|
| 227 |
+
outputs=[imagebox, solution, model_prediction, user_prediction, result]
|
| 228 |
+
)
|
| 229 |
+
gr.on(
|
| 230 |
+
triggers=[
|
| 231 |
+
a.click,
|
| 232 |
+
b.click,
|
| 233 |
+
c.click,
|
| 234 |
+
d.click,
|
| 235 |
+
e.click,
|
| 236 |
+
f.click,
|
| 237 |
+
g.click,
|
| 238 |
+
h.click,
|
| 239 |
+
],
|
| 240 |
+
fn=model_inference,
|
| 241 |
+
inputs=[imagebox],
|
| 242 |
+
outputs=[model_prediction],
|
| 243 |
+
).then(
|
| 244 |
+
fn=lambda x, y, z: "π₯" if x==y else f"π© The solution is {chr(ord('A') + int(z))}",
|
| 245 |
+
inputs=[model_prediction, user_prediction, solution],
|
| 246 |
+
outputs=[result],
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
a.click(fn=lambda: "A", inputs=[], outputs=[user_prediction])
|
| 250 |
+
b.click(fn=lambda: "B", inputs=[], outputs=[user_prediction])
|
| 251 |
+
c.click(fn=lambda: "C", inputs=[], outputs=[user_prediction])
|
| 252 |
+
d.click(fn=lambda: "D", inputs=[], outputs=[user_prediction])
|
| 253 |
+
e.click(fn=lambda: "E", inputs=[], outputs=[user_prediction])
|
| 254 |
+
f.click(fn=lambda: "F", inputs=[], outputs=[user_prediction])
|
| 255 |
+
g.click(fn=lambda: "G", inputs=[], outputs=[user_prediction])
|
| 256 |
+
h.click(fn=lambda: "H", inputs=[], outputs=[user_prediction])
|
| 257 |
+
|
| 258 |
+
demo.load()
|
| 259 |
+
|
| 260 |
+
demo.queue(max_size=40, api_open=False)
|
| 261 |
+
demo.launch(max_threads=400)
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cv2
|
| 2 |
+
torch
|
| 3 |
+
imagehash
|
| 4 |
+
transformers
|
| 5 |
+
datasets
|
| 6 |
+
pillow
|
| 7 |
+
numpy
|