Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,71 +1,30 @@
|
|
| 1 |
-
|
| 2 |
-
import os
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
-
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
-
os.makedirs('uploads')
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# Define the API endpoint for uploading images
|
| 18 |
-
@app.route('/upload_image', methods=['POST'])
|
| 19 |
-
def upload_image():
|
| 20 |
-
if 'image' not in request.files:
|
| 21 |
-
return jsonify({'message': 'No file part'}), 400
|
| 22 |
-
|
| 23 |
-
image = request.files['image']
|
| 24 |
-
if image.filename == '':
|
| 25 |
-
return jsonify({'message': 'No selected file'}), 400
|
| 26 |
-
|
| 27 |
-
try:
|
| 28 |
-
# Save the uploaded image
|
| 29 |
-
image_path = os.path.join('uploads', 'image.jpg')
|
| 30 |
-
image.save(image_path)
|
| 31 |
-
|
| 32 |
-
# Open and process the image
|
| 33 |
-
img = Image.open(image_path)
|
| 34 |
-
width, height = img.size
|
| 35 |
-
if width > 1024 or height > 1024:
|
| 36 |
-
return jsonify({'message': 'Image is too large. Please crop it.'}), 400
|
| 37 |
-
else:
|
| 38 |
-
# Simulate tree detection using YOLO8 model
|
| 39 |
-
# Replace this with actual model implementation
|
| 40 |
-
trees = np.random.randint(0, 100)
|
| 41 |
-
return jsonify({'message': f'Number of Trees: {trees}'})
|
| 42 |
-
except Exception as e:
|
| 43 |
-
return jsonify({'message': f'Error processing image: {str(e)}'}), 500
|
| 44 |
-
|
| 45 |
-
# Define the API endpoint for cropping images
|
| 46 |
-
@app.route('/crop_image', methods=['POST'])
|
| 47 |
-
def crop_image():
|
| 48 |
-
if 'image' not in request.files:
|
| 49 |
-
return jsonify({'message': 'No file part'}), 400
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
img = Image.open(image_path)
|
| 62 |
-
cropped_img = img.crop((0, 0, min(1024, img.width), min(1024, img.height)))
|
| 63 |
-
|
| 64 |
-
# Save the cropped image
|
| 65 |
-
cropped_img.save(os.path.join('uploads', 'cropped_image.jpg'))
|
| 66 |
-
return jsonify({'message': 'Image cropped successfully'})
|
| 67 |
-
except Exception as e:
|
| 68 |
-
return jsonify({'message': f'Error cropping image: {str(e)}'}), 500
|
| 69 |
|
| 70 |
-
if __name__ == '__main__':
|
| 71 |
-
app.run(debug=True)
|
|
|
|
| 1 |
+
import streamlit as st
|
|
|
|
| 2 |
from PIL import Image
|
| 3 |
import numpy as np
|
| 4 |
|
| 5 |
+
st.title("Tree Counter App")
|
| 6 |
|
| 7 |
+
# Upload image via Streamlit
|
| 8 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
|
|
|
| 9 |
|
| 10 |
+
if uploaded_file is not None:
|
| 11 |
+
# Open the image
|
| 12 |
+
img = Image.open(uploaded_file)
|
| 13 |
+
st.image(img, caption="Uploaded Image.", use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Check image dimensions
|
| 16 |
+
width, height = img.size
|
| 17 |
+
if width > 1024 or height > 1024:
|
| 18 |
+
st.error("Image is too large. Please crop it.")
|
| 19 |
+
else:
|
| 20 |
+
# Simulate tree detection using random number
|
| 21 |
+
trees = np.random.randint(0, 100)
|
| 22 |
+
st.success(f"Number of Trees: {trees}")
|
| 23 |
|
| 24 |
+
# Image cropping functionality
|
| 25 |
+
if uploaded_file is not None and st.button("Crop Image to 1024x1024"):
|
| 26 |
+
cropped_img = img.crop((0, 0, min(1024, img.width), min(1024, img.height)))
|
| 27 |
+
st.image(cropped_img, caption="Cropped Image.", use_column_width=True)
|
| 28 |
+
cropped_img.save("cropped_image.jpg")
|
| 29 |
+
st.success("Image cropped successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
|
|
|
|
|