Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,30 @@
|
|
1 |
-
|
2 |
-
import os
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
|
6 |
-
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
os.makedirs('uploads')
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
# Define the API endpoint for uploading images
|
18 |
-
@app.route('/upload_image', methods=['POST'])
|
19 |
-
def upload_image():
|
20 |
-
if 'image' not in request.files:
|
21 |
-
return jsonify({'message': 'No file part'}), 400
|
22 |
-
|
23 |
-
image = request.files['image']
|
24 |
-
if image.filename == '':
|
25 |
-
return jsonify({'message': 'No selected file'}), 400
|
26 |
-
|
27 |
-
try:
|
28 |
-
# Save the uploaded image
|
29 |
-
image_path = os.path.join('uploads', 'image.jpg')
|
30 |
-
image.save(image_path)
|
31 |
-
|
32 |
-
# Open and process the image
|
33 |
-
img = Image.open(image_path)
|
34 |
-
width, height = img.size
|
35 |
-
if width > 1024 or height > 1024:
|
36 |
-
return jsonify({'message': 'Image is too large. Please crop it.'}), 400
|
37 |
-
else:
|
38 |
-
# Simulate tree detection using YOLO8 model
|
39 |
-
# Replace this with actual model implementation
|
40 |
-
trees = np.random.randint(0, 100)
|
41 |
-
return jsonify({'message': f'Number of Trees: {trees}'})
|
42 |
-
except Exception as e:
|
43 |
-
return jsonify({'message': f'Error processing image: {str(e)}'}), 500
|
44 |
-
|
45 |
-
# Define the API endpoint for cropping images
|
46 |
-
@app.route('/crop_image', methods=['POST'])
|
47 |
-
def crop_image():
|
48 |
-
if 'image' not in request.files:
|
49 |
-
return jsonify({'message': 'No file part'}), 400
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
img = Image.open(image_path)
|
62 |
-
cropped_img = img.crop((0, 0, min(1024, img.width), min(1024, img.height)))
|
63 |
-
|
64 |
-
# Save the cropped image
|
65 |
-
cropped_img.save(os.path.join('uploads', 'cropped_image.jpg'))
|
66 |
-
return jsonify({'message': 'Image cropped successfully'})
|
67 |
-
except Exception as e:
|
68 |
-
return jsonify({'message': f'Error cropping image: {str(e)}'}), 500
|
69 |
|
70 |
-
if __name__ == '__main__':
|
71 |
-
app.run(debug=True)
|
|
|
1 |
+
import streamlit as st
|
|
|
2 |
from PIL import Image
|
3 |
import numpy as np
|
4 |
|
5 |
+
st.title("Tree Counter App")
|
6 |
|
7 |
+
# Upload image via Streamlit
|
8 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
|
|
9 |
|
10 |
+
if uploaded_file is not None:
|
11 |
+
# Open the image
|
12 |
+
img = Image.open(uploaded_file)
|
13 |
+
st.image(img, caption="Uploaded Image.", use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Check image dimensions
|
16 |
+
width, height = img.size
|
17 |
+
if width > 1024 or height > 1024:
|
18 |
+
st.error("Image is too large. Please crop it.")
|
19 |
+
else:
|
20 |
+
# Simulate tree detection using random number
|
21 |
+
trees = np.random.randint(0, 100)
|
22 |
+
st.success(f"Number of Trees: {trees}")
|
23 |
|
24 |
+
# Image cropping functionality
|
25 |
+
if uploaded_file is not None and st.button("Crop Image to 1024x1024"):
|
26 |
+
cropped_img = img.crop((0, 0, min(1024, img.width), min(1024, img.height)))
|
27 |
+
st.image(cropped_img, caption="Cropped Image.", use_column_width=True)
|
28 |
+
cropped_img.save("cropped_image.jpg")
|
29 |
+
st.success("Image cropped successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|