Spaces:
Running
on
Zero
Running
on
Zero
xinjie.wang
commited on
Commit
·
f219113
1
Parent(s):
dd1f1fd
update
Browse files- app.py +170 -488
- embodied_gen/utils/gpt_clients.py +1 -0
app.py
CHANGED
|
@@ -1,501 +1,183 @@
|
|
| 1 |
-
# Project EmbodiedGen
|
| 2 |
-
#
|
| 3 |
-
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
|
| 4 |
-
#
|
| 5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
-
# you may not use this file except in compliance with the License.
|
| 7 |
-
# You may obtain a copy of the License at
|
| 8 |
-
#
|
| 9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
-
#
|
| 11 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 14 |
-
# implied. See the License for the specific language governing
|
| 15 |
-
# permissions and limitations under the License.
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
import os
|
| 19 |
-
|
| 20 |
-
os.environ["GRADIO_APP"] = "imageto3d"
|
| 21 |
-
from glob import glob
|
| 22 |
-
|
| 23 |
import gradio as gr
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
)
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
🖼️ Generate physically plausible 3D asset from single input image.
|
| 63 |
-
|
| 64 |
-
""".format(
|
| 65 |
-
VERSION=VERSION
|
| 66 |
-
),
|
| 67 |
-
elem_classes=["header"],
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
gr.HTML(image_css)
|
| 71 |
-
# gr.HTML(lighting_css)
|
| 72 |
-
with gr.Row():
|
| 73 |
-
with gr.Column(scale=2):
|
| 74 |
-
with gr.Tabs() as input_tabs:
|
| 75 |
-
with gr.Tab(
|
| 76 |
-
label="Image(auto seg)", id=0
|
| 77 |
-
) as single_image_input_tab:
|
| 78 |
-
raw_image_cache = gr.Image(
|
| 79 |
-
format="png",
|
| 80 |
-
image_mode="RGB",
|
| 81 |
-
type="pil",
|
| 82 |
-
visible=False,
|
| 83 |
-
)
|
| 84 |
-
image_prompt = gr.Image(
|
| 85 |
-
label="Input Image",
|
| 86 |
-
format="png",
|
| 87 |
-
image_mode="RGBA",
|
| 88 |
-
type="pil",
|
| 89 |
-
height=400,
|
| 90 |
-
elem_classes=["image_fit"],
|
| 91 |
-
)
|
| 92 |
-
gr.Markdown(
|
| 93 |
-
"""
|
| 94 |
-
If you are not satisfied with the auto segmentation
|
| 95 |
-
result, please switch to the `Image(SAM seg)` tab."""
|
| 96 |
-
)
|
| 97 |
-
with gr.Tab(
|
| 98 |
-
label="Image(SAM seg)", id=1
|
| 99 |
-
) as samimage_input_tab:
|
| 100 |
-
with gr.Row():
|
| 101 |
-
with gr.Column(scale=1):
|
| 102 |
-
image_prompt_sam = gr.Image(
|
| 103 |
-
label="Input Image",
|
| 104 |
-
type="numpy",
|
| 105 |
-
height=400,
|
| 106 |
-
elem_classes=["image_fit"],
|
| 107 |
-
)
|
| 108 |
-
image_seg_sam = gr.Image(
|
| 109 |
-
label="SAM Seg Image",
|
| 110 |
-
image_mode="RGBA",
|
| 111 |
-
type="pil",
|
| 112 |
-
height=400,
|
| 113 |
-
visible=False,
|
| 114 |
-
)
|
| 115 |
-
with gr.Column(scale=1):
|
| 116 |
-
image_mask_sam = gr.AnnotatedImage(
|
| 117 |
-
elem_classes=["image_fit"]
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
fg_bg_radio = gr.Radio(
|
| 121 |
-
["foreground_point", "background_point"],
|
| 122 |
-
label="Select foreground(green) or background(red) points, by default foreground", # noqa
|
| 123 |
-
value="foreground_point",
|
| 124 |
-
)
|
| 125 |
-
gr.Markdown(
|
| 126 |
-
""" Click the `Input Image` to select SAM points,
|
| 127 |
-
after get the satisified segmentation, click `Generate`
|
| 128 |
-
button to generate the 3D asset. \n
|
| 129 |
-
Note: If the segmented foreground is too small relative
|
| 130 |
-
to the entire image area, the generation will fail.
|
| 131 |
-
"""
|
| 132 |
-
)
|
| 133 |
-
|
| 134 |
-
with gr.Accordion(label="Generation Settings", open=False):
|
| 135 |
-
with gr.Row():
|
| 136 |
-
seed = gr.Slider(
|
| 137 |
-
0, MAX_SEED, label="Seed", value=0, step=1
|
| 138 |
-
)
|
| 139 |
-
texture_size = gr.Slider(
|
| 140 |
-
1024,
|
| 141 |
-
4096,
|
| 142 |
-
label="UV texture size",
|
| 143 |
-
value=2048,
|
| 144 |
-
step=256,
|
| 145 |
-
)
|
| 146 |
-
rmbg_tag = gr.Radio(
|
| 147 |
-
choices=["rembg", "rmbg14"],
|
| 148 |
-
value="rembg",
|
| 149 |
-
label="Background Removal Model",
|
| 150 |
-
)
|
| 151 |
-
with gr.Row():
|
| 152 |
-
randomize_seed = gr.Checkbox(
|
| 153 |
-
label="Randomize Seed", value=False
|
| 154 |
-
)
|
| 155 |
-
project_delight = gr.Checkbox(
|
| 156 |
-
label="Backproject delighting",
|
| 157 |
-
value=False,
|
| 158 |
-
)
|
| 159 |
-
gr.Markdown("Geo Structure Generation")
|
| 160 |
-
with gr.Row():
|
| 161 |
-
ss_guidance_strength = gr.Slider(
|
| 162 |
-
0.0,
|
| 163 |
-
10.0,
|
| 164 |
-
label="Guidance Strength",
|
| 165 |
-
value=7.5,
|
| 166 |
-
step=0.1,
|
| 167 |
-
)
|
| 168 |
-
ss_sampling_steps = gr.Slider(
|
| 169 |
-
1, 50, label="Sampling Steps", value=12, step=1
|
| 170 |
-
)
|
| 171 |
-
gr.Markdown("Visual Appearance Generation")
|
| 172 |
-
with gr.Row():
|
| 173 |
-
slat_guidance_strength = gr.Slider(
|
| 174 |
-
0.0,
|
| 175 |
-
10.0,
|
| 176 |
-
label="Guidance Strength",
|
| 177 |
-
value=3.0,
|
| 178 |
-
step=0.1,
|
| 179 |
-
)
|
| 180 |
-
slat_sampling_steps = gr.Slider(
|
| 181 |
-
1, 50, label="Sampling Steps", value=12, step=1
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
generate_btn = gr.Button(
|
| 185 |
-
"🚀 1. Generate(~0.5 mins)",
|
| 186 |
-
variant="primary",
|
| 187 |
-
interactive=False,
|
| 188 |
)
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
variant="primary",
|
| 194 |
-
interactive=False,
|
| 195 |
-
)
|
| 196 |
-
with gr.Accordion(
|
| 197 |
-
label="Enter Asset Attributes(optional)", open=False
|
| 198 |
-
):
|
| 199 |
-
asset_cat_text = gr.Textbox(
|
| 200 |
-
label="Enter Asset Category (e.g., chair)"
|
| 201 |
-
)
|
| 202 |
-
height_range_text = gr.Textbox(
|
| 203 |
-
label="Enter **Height Range** in meter (e.g., 0.5-0.6)"
|
| 204 |
-
)
|
| 205 |
-
mass_range_text = gr.Textbox(
|
| 206 |
-
label="Enter **Mass Range** in kg (e.g., 1.1-1.2)"
|
| 207 |
-
)
|
| 208 |
-
asset_version_text = gr.Textbox(
|
| 209 |
-
label=f"Enter version (e.g., {VERSION})"
|
| 210 |
-
)
|
| 211 |
-
with gr.Row():
|
| 212 |
-
extract_urdf_btn = gr.Button(
|
| 213 |
-
"🧩 3. Extract URDF with physics(~1 mins)",
|
| 214 |
-
variant="primary",
|
| 215 |
-
interactive=False,
|
| 216 |
-
)
|
| 217 |
-
with gr.Row():
|
| 218 |
-
gr.Markdown(
|
| 219 |
-
"#### Estimated Asset 3D Attributes(No input required)"
|
| 220 |
-
)
|
| 221 |
-
with gr.Row():
|
| 222 |
-
est_type_text = gr.Textbox(
|
| 223 |
-
label="Asset category", interactive=False
|
| 224 |
-
)
|
| 225 |
-
est_height_text = gr.Textbox(
|
| 226 |
-
label="Real height(.m)", interactive=False
|
| 227 |
-
)
|
| 228 |
-
est_mass_text = gr.Textbox(
|
| 229 |
-
label="Mass(.kg)", interactive=False
|
| 230 |
-
)
|
| 231 |
-
est_mu_text = gr.Textbox(
|
| 232 |
-
label="Friction coefficient", interactive=False
|
| 233 |
-
)
|
| 234 |
-
with gr.Row():
|
| 235 |
-
download_urdf = gr.DownloadButton(
|
| 236 |
-
label="⬇️ 4. Download URDF",
|
| 237 |
-
variant="primary",
|
| 238 |
-
interactive=False,
|
| 239 |
-
)
|
| 240 |
-
|
| 241 |
-
gr.Markdown(
|
| 242 |
-
""" NOTE: If `Asset Attributes` are provided, the provided
|
| 243 |
-
properties will be used; otherwise, the GPT-preset properties
|
| 244 |
-
will be applied. \n
|
| 245 |
-
The `Download URDF` file is restored to the real scale and
|
| 246 |
-
has quality inspection, open with an editor to view details.
|
| 247 |
-
"""
|
| 248 |
)
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
for image_path in sorted(
|
| 256 |
-
glob("assets/example_image/*")
|
| 257 |
-
)
|
| 258 |
-
],
|
| 259 |
-
inputs=[image_prompt, rmbg_tag],
|
| 260 |
-
fn=preprocess_image_fn,
|
| 261 |
-
outputs=[image_prompt, raw_image_cache],
|
| 262 |
-
run_on_click=True,
|
| 263 |
-
examples_per_page=10,
|
| 264 |
-
)
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
)
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
)
|
| 303 |
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
],
|
| 366 |
-
)
|
| 367 |
-
image_prompt.change(
|
| 368 |
-
active_btn_by_content,
|
| 369 |
-
inputs=image_prompt,
|
| 370 |
-
outputs=generate_btn,
|
| 371 |
-
)
|
| 372 |
-
|
| 373 |
-
image_prompt_sam.upload(
|
| 374 |
-
preprocess_sam_image_fn,
|
| 375 |
-
inputs=[image_prompt_sam],
|
| 376 |
-
outputs=[image_prompt_sam, raw_image_cache],
|
| 377 |
-
)
|
| 378 |
-
image_prompt_sam.change(
|
| 379 |
-
lambda: tuple(
|
| 380 |
-
[
|
| 381 |
-
gr.Button(interactive=False),
|
| 382 |
-
gr.Button(interactive=False),
|
| 383 |
-
gr.Button(interactive=False),
|
| 384 |
-
None,
|
| 385 |
-
None,
|
| 386 |
-
None,
|
| 387 |
-
"",
|
| 388 |
-
"",
|
| 389 |
-
"",
|
| 390 |
-
"",
|
| 391 |
-
"",
|
| 392 |
-
"",
|
| 393 |
-
"",
|
| 394 |
-
"",
|
| 395 |
-
None,
|
| 396 |
-
[],
|
| 397 |
-
]
|
| 398 |
-
),
|
| 399 |
-
outputs=[
|
| 400 |
-
extract_rep3d_btn,
|
| 401 |
-
extract_urdf_btn,
|
| 402 |
-
download_urdf,
|
| 403 |
-
model_output_gs,
|
| 404 |
-
model_output_mesh,
|
| 405 |
-
video_output,
|
| 406 |
-
asset_cat_text,
|
| 407 |
-
height_range_text,
|
| 408 |
-
mass_range_text,
|
| 409 |
-
asset_version_text,
|
| 410 |
-
est_type_text,
|
| 411 |
-
est_height_text,
|
| 412 |
-
est_mass_text,
|
| 413 |
-
est_mu_text,
|
| 414 |
-
image_mask_sam,
|
| 415 |
-
selected_points,
|
| 416 |
-
],
|
| 417 |
-
)
|
| 418 |
-
|
| 419 |
-
image_prompt_sam.select(
|
| 420 |
-
select_point,
|
| 421 |
-
[
|
| 422 |
-
image_prompt_sam,
|
| 423 |
-
selected_points,
|
| 424 |
-
fg_bg_radio,
|
| 425 |
-
],
|
| 426 |
-
[image_mask_sam, image_seg_sam],
|
| 427 |
-
)
|
| 428 |
-
image_seg_sam.change(
|
| 429 |
-
active_btn_by_content,
|
| 430 |
-
inputs=image_seg_sam,
|
| 431 |
-
outputs=generate_btn,
|
| 432 |
-
)
|
| 433 |
-
|
| 434 |
-
generate_btn.click(
|
| 435 |
-
get_seed,
|
| 436 |
-
inputs=[randomize_seed, seed],
|
| 437 |
-
outputs=[seed],
|
| 438 |
-
).success(
|
| 439 |
-
image_to_3d,
|
| 440 |
-
inputs=[
|
| 441 |
-
image_prompt,
|
| 442 |
-
seed,
|
| 443 |
-
ss_guidance_strength,
|
| 444 |
-
ss_sampling_steps,
|
| 445 |
-
slat_guidance_strength,
|
| 446 |
-
slat_sampling_steps,
|
| 447 |
-
raw_image_cache,
|
| 448 |
-
image_seg_sam,
|
| 449 |
-
is_samimage,
|
| 450 |
-
],
|
| 451 |
-
outputs=[output_buf, video_output],
|
| 452 |
-
).success(
|
| 453 |
-
lambda: gr.Button(interactive=True),
|
| 454 |
-
outputs=[extract_rep3d_btn],
|
| 455 |
-
)
|
| 456 |
-
|
| 457 |
-
extract_rep3d_btn.click(
|
| 458 |
-
extract_3d_representations_v2,
|
| 459 |
-
inputs=[
|
| 460 |
-
output_buf,
|
| 461 |
-
project_delight,
|
| 462 |
-
texture_size,
|
| 463 |
-
],
|
| 464 |
-
outputs=[
|
| 465 |
-
model_output_mesh,
|
| 466 |
-
model_output_gs,
|
| 467 |
-
model_output_obj,
|
| 468 |
-
aligned_gs,
|
| 469 |
-
],
|
| 470 |
-
).success(
|
| 471 |
-
lambda: gr.Button(interactive=True),
|
| 472 |
-
outputs=[extract_urdf_btn],
|
| 473 |
-
)
|
| 474 |
-
|
| 475 |
-
extract_urdf_btn.click(
|
| 476 |
-
extract_urdf,
|
| 477 |
-
inputs=[
|
| 478 |
-
aligned_gs,
|
| 479 |
-
model_output_obj,
|
| 480 |
-
asset_cat_text,
|
| 481 |
-
height_range_text,
|
| 482 |
-
mass_range_text,
|
| 483 |
-
asset_version_text,
|
| 484 |
-
],
|
| 485 |
-
outputs=[
|
| 486 |
-
download_urdf,
|
| 487 |
-
est_type_text,
|
| 488 |
-
est_height_text,
|
| 489 |
-
est_mass_text,
|
| 490 |
-
est_mu_text,
|
| 491 |
-
],
|
| 492 |
-
queue=True,
|
| 493 |
-
show_progress="full",
|
| 494 |
-
).success(
|
| 495 |
-
lambda: gr.Button(interactive=True),
|
| 496 |
-
outputs=[download_urdf],
|
| 497 |
-
)
|
| 498 |
|
| 499 |
|
| 500 |
if __name__ == "__main__":
|
| 501 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import yaml
|
| 4 |
+
import base64
|
| 5 |
+
import logging
|
| 6 |
+
import os
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
from typing import Optional
|
| 9 |
+
|
| 10 |
+
import yaml
|
| 11 |
+
from openai import AzureOpenAI, OpenAI # pip install openai
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from tenacity import (
|
| 14 |
+
retry,
|
| 15 |
+
stop_after_attempt,
|
| 16 |
+
stop_after_delay,
|
| 17 |
+
wait_random_exponential,
|
| 18 |
)
|
| 19 |
|
| 20 |
+
logging.basicConfig(level=logging.INFO)
|
| 21 |
+
logger = logging.getLogger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class GPTclient:
|
| 25 |
+
"""A client to interact with the GPT model via OpenAI or Azure API."""
|
| 26 |
+
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
endpoint: str,
|
| 30 |
+
api_key: str,
|
| 31 |
+
model_name: str = "yfb-gpt-4o",
|
| 32 |
+
api_version: str = None,
|
| 33 |
+
verbose: bool = False,
|
| 34 |
+
):
|
| 35 |
+
if api_version is not None:
|
| 36 |
+
self.client = AzureOpenAI(
|
| 37 |
+
azure_endpoint=endpoint,
|
| 38 |
+
api_key=api_key,
|
| 39 |
+
api_version=api_version,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
)
|
| 41 |
+
else:
|
| 42 |
+
self.client = OpenAI(
|
| 43 |
+
base_url=endpoint,
|
| 44 |
+
api_key=api_key,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
)
|
| 46 |
|
| 47 |
+
self.endpoint = endpoint
|
| 48 |
+
self.model_name = model_name
|
| 49 |
+
self.image_formats = {".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif"}
|
| 50 |
+
self.verbose = verbose
|
| 51 |
+
logger.info(f"Using GPT model: {self.model_name}.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
@retry(
|
| 54 |
+
wait=wait_random_exponential(min=1, max=20),
|
| 55 |
+
stop=(stop_after_attempt(10) | stop_after_delay(30)),
|
| 56 |
+
)
|
| 57 |
+
def completion_with_backoff(self, **kwargs):
|
| 58 |
+
return self.client.chat.completions.create(**kwargs)
|
| 59 |
+
|
| 60 |
+
def query(
|
| 61 |
+
self,
|
| 62 |
+
text_prompt: str,
|
| 63 |
+
image_base64: Optional[list[str | Image.Image]] = None,
|
| 64 |
+
system_role: Optional[str] = None,
|
| 65 |
+
) -> Optional[str]:
|
| 66 |
+
"""Queries the GPT model with a text and optional image prompts.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
text_prompt (str): The main text input that the model responds to.
|
| 70 |
+
image_base64 (Optional[List[str]]): A list of image base64 strings
|
| 71 |
+
or local image paths or PIL.Image to accompany the text prompt.
|
| 72 |
+
system_role (Optional[str]): Optional system-level instructions
|
| 73 |
+
that specify the behavior of the assistant.
|
| 74 |
+
|
| 75 |
+
Returns:
|
| 76 |
+
Optional[str]: The response content generated by the model based on
|
| 77 |
+
the prompt. Returns `None` if an error occurs.
|
| 78 |
+
"""
|
| 79 |
+
if system_role is None:
|
| 80 |
+
system_role = "You are a highly knowledgeable assistant specializing in physics, engineering, and object properties." # noqa
|
| 81 |
+
|
| 82 |
+
content_user = [
|
| 83 |
+
{
|
| 84 |
+
"type": "text",
|
| 85 |
+
"text": text_prompt,
|
| 86 |
+
},
|
| 87 |
+
]
|
| 88 |
+
|
| 89 |
+
# Process images if provided
|
| 90 |
+
if image_base64 is not None:
|
| 91 |
+
image_base64 = (
|
| 92 |
+
image_base64
|
| 93 |
+
if isinstance(image_base64, list)
|
| 94 |
+
else [image_base64]
|
| 95 |
)
|
| 96 |
+
for img in image_base64:
|
| 97 |
+
if isinstance(img, Image.Image):
|
| 98 |
+
buffer = BytesIO()
|
| 99 |
+
img.save(buffer, format=img.format or "PNG")
|
| 100 |
+
buffer.seek(0)
|
| 101 |
+
image_binary = buffer.read()
|
| 102 |
+
img = base64.b64encode(image_binary).decode("utf-8")
|
| 103 |
+
elif (
|
| 104 |
+
len(os.path.splitext(img)) > 1
|
| 105 |
+
and os.path.splitext(img)[-1].lower() in self.image_formats
|
| 106 |
+
):
|
| 107 |
+
if not os.path.exists(img):
|
| 108 |
+
raise FileNotFoundError(f"Image file not found: {img}")
|
| 109 |
+
with open(img, "rb") as f:
|
| 110 |
+
img = base64.b64encode(f.read()).decode("utf-8")
|
| 111 |
+
|
| 112 |
+
content_user.append(
|
| 113 |
+
{
|
| 114 |
+
"type": "image_url",
|
| 115 |
+
"image_url": {"url": f"data:image/png;base64,{img}"},
|
| 116 |
+
}
|
| 117 |
)
|
| 118 |
|
| 119 |
+
payload = {
|
| 120 |
+
"messages": [
|
| 121 |
+
{"role": "system", "content": system_role},
|
| 122 |
+
{"role": "user", "content": content_user},
|
| 123 |
+
],
|
| 124 |
+
"temperature": 0.1,
|
| 125 |
+
"max_tokens": 500,
|
| 126 |
+
"top_p": 0.1,
|
| 127 |
+
"frequency_penalty": 0,
|
| 128 |
+
"presence_penalty": 0,
|
| 129 |
+
"stop": None,
|
| 130 |
+
}
|
| 131 |
+
payload.update({"model": self.model_name})
|
| 132 |
+
|
| 133 |
+
response = None
|
| 134 |
+
try:
|
| 135 |
+
response = self.completion_with_backoff(**payload)
|
| 136 |
+
response = response.choices[0].message.content
|
| 137 |
+
except Exception as e:
|
| 138 |
+
logger.error(f"Error GPTclint {self.endpoint} API call: {e}")
|
| 139 |
+
response = None
|
| 140 |
+
|
| 141 |
+
if self.verbose:
|
| 142 |
+
logger.info(f"Prompt: {text_prompt}")
|
| 143 |
+
logger.info(f"Response: {response}")
|
| 144 |
+
|
| 145 |
+
return response
|
| 146 |
+
|
| 147 |
+
from embodied_gen.utils.gpt_clients import GPT_CLIENT
|
| 148 |
+
|
| 149 |
+
print(GPT_CLIENT.api_version, GPT_CLIENT.model_name, GPT_CLIENT.endpoint)
|
| 150 |
+
|
| 151 |
+
def debug_gptclient(text_prompt, images, system_role):
|
| 152 |
+
try:
|
| 153 |
+
# Handle image input (Gradio passes images as PIL.Image or file paths)
|
| 154 |
+
image_base64 = images if images else None
|
| 155 |
+
response = GPT_CLIENT.query(
|
| 156 |
+
text_prompt=text_prompt,
|
| 157 |
+
image_base64=image_base64,
|
| 158 |
+
system_role=system_role
|
| 159 |
+
)
|
| 160 |
+
return response if response else "No response received or an error occurred."
|
| 161 |
+
except Exception as e:
|
| 162 |
+
return f"Error: {str(e)}"
|
| 163 |
+
|
| 164 |
+
# Create Gradio interface
|
| 165 |
+
iface = gr.Interface(
|
| 166 |
+
fn=debug_gptclient,
|
| 167 |
+
inputs=[
|
| 168 |
+
gr.Textbox(label="Text Prompt", placeholder="Enter your text prompt here"),
|
| 169 |
+
gr.File(label="Images (Optional)", type="filepath", file_count="multiple"),
|
| 170 |
+
gr.Textbox(
|
| 171 |
+
label="System Role (Optional)",
|
| 172 |
+
placeholder="Enter system role or leave empty for default",
|
| 173 |
+
value="You are a highly knowledgeable assistant specializing in physics, engineering, and object properties."
|
| 174 |
+
)
|
| 175 |
+
],
|
| 176 |
+
outputs=gr.Textbox(label="Response"),
|
| 177 |
+
title="GPTclient Debug Interface",
|
| 178 |
+
description="A simple interface to debug GPTclient inputs and outputs."
|
| 179 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
|
| 182 |
if __name__ == "__main__":
|
| 183 |
+
iface.launch()
|
embodied_gen/utils/gpt_clients.py
CHANGED
|
@@ -61,6 +61,7 @@ class GPTclient:
|
|
| 61 |
|
| 62 |
self.endpoint = endpoint
|
| 63 |
self.model_name = model_name
|
|
|
|
| 64 |
self.image_formats = {".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif"}
|
| 65 |
self.verbose = verbose
|
| 66 |
logger.info(f"Using GPT model: {self.model_name}.")
|
|
|
|
| 61 |
|
| 62 |
self.endpoint = endpoint
|
| 63 |
self.model_name = model_name
|
| 64 |
+
self.api_version = api_version
|
| 65 |
self.image_formats = {".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif"}
|
| 66 |
self.verbose = verbose
|
| 67 |
logger.info(f"Using GPT model: {self.model_name}.")
|