import gradio as gr import numpy as np import os import spaces import random import json # from image_gen_aux import DepthPreprocessor from PIL import Image import torch from torchvision import transforms from diffusers import FluxFillPipeline, AutoencoderKL from PIL import Image MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda") # pipe.load_lora_weights("Himanshu806/testLora") # pipe.enable_lora() with open("lora_models.json", "r") as f: lora_models = json.load(f) def download_model(model_name, model_path): print(f"Downloading model: {model_name} from {model_path}") try: pipe.load_lora_weights(model_path) print(f"Successfully downloaded model: {model_name}") except Exception as e: print(f"Failed to download model: {model_name}. Error: {e}") # Iterate through the models and download each one for model_name, model_path in lora_models.items(): download_model(model_name, model_path) lora_models["None"] = None @spaces.GPU(durations=300) def infer(edit_images, prompt, width, height, lora_model, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): # pipe.enable_xformers_memory_efficient_attention() if lora_model != "None": pipe.load_lora_weights(lora_models[lora_model]) pipe.enable_lora() image = edit_images["background"] # width, height = calculate_optimal_dimensions(image) mask = edit_images["layers"][0] if randomize_seed: seed = random.randint(0, MAX_SEED) # controlImage = processor(image) image = pipe( # mask_image_latent=vae.encode(controlImage), prompt=prompt, prompt_2=prompt, image=image, mask_image=mask, height=height, width=width, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=torch.Generator(device='cuda').manual_seed(seed), # lora_scale=0.75 // not supported in this version ).images[0] output_image_jpg = image.convert("RGB") output_image_jpg.save("output.jpg", "JPEG") return output_image_jpg, seed # return image, seed examples = [ "photography of a young woman, accent lighting, (front view:1.4), " # "a tiny astronaut hatching from an egg on the moon", # "a cat holding a sign that says hello world", # "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 1000px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [dev] """) with gr.Row(): with gr.Column(): edit_image = gr.ImageEditor( label='Upload and draw mask for inpainting', type='pil', sources=["upload", "webcam"], image_mode='RGB', layers=False, brush=gr.Brush(colors=["#FFFFFF"]), # height=600 ) prompt = gr.Text( label="Prompt", show_label=False, max_lines=2, placeholder="Enter your prompt", container=False, ) lora_model = gr.Dropdown( label="Select LoRA Model", choices=list(lora_models.keys()), value="None", ) run_button = gr.Button("Run") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=30, step=0.5, value=50, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) with gr.Row(): width = gr.Slider( label="width", minimum=512, maximum=3072, step=1, value=1024, ) height = gr.Slider( label="height", minimum=512, maximum=3072, step=1, value=1024, ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [edit_image, prompt, width, height, lora_model, seed, randomize_seed, guidance_scale, num_inference_steps], outputs = [result, seed] ) # demo.launch() PASSWORD = os.getenv("GRADIO_PASSWORD") USERNAME = os.getenv("GRADIO_USERNAME") # Create an authentication object def authenticate(username, password): if username == USERNAME and password == PASSWORD: return True else: return False # Launch the app with authentication demo.launch(auth=authenticate)