Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import numpy as np | |
import os | |
import random | |
import json | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
import zipfile | |
from diffusers import FluxFillPipeline, AutoencoderKL | |
from PIL import Image | |
# from samgeo.text_sam import LangSAM | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# sam = LangSAM(model_type="sam2-hiera-large").to(device) | |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda") | |
with open("lora_models.json", "r") as f: | |
lora_models = json.load(f) | |
def download_model(model_name, model_path): | |
print(f"Downloading model: {model_name} from {model_path}") | |
try: | |
pipe.load_lora_weights(model_path) | |
print(f"Successfully downloaded model: {model_name}") | |
except Exception as e: | |
print(f"Failed to download model: {model_name}. Error: {e}") | |
# Iterate through the models and download each one | |
for model_name, model_path in lora_models.items(): | |
download_model(model_name, model_path) | |
lora_models["None"] = None | |
def calculate_optimal_dimensions(image: Image.Image): | |
# Extract the original dimensions | |
original_width, original_height = image.size | |
# Set constants | |
MIN_ASPECT_RATIO = 9 / 16 | |
MAX_ASPECT_RATIO = 16 / 9 | |
FIXED_DIMENSION = 1024 | |
# Calculate the aspect ratio of the original image | |
original_aspect_ratio = original_width / original_height | |
# Determine which dimension to fix | |
if original_aspect_ratio > 1: # Wider than tall | |
width = FIXED_DIMENSION | |
height = round(FIXED_DIMENSION / original_aspect_ratio) | |
else: # Taller than wide | |
height = FIXED_DIMENSION | |
width = round(FIXED_DIMENSION * original_aspect_ratio) | |
# Ensure dimensions are multiples of 8 | |
width = (width // 8) * 8 | |
height = (height // 8) * 8 | |
# Enforce aspect ratio limits | |
calculated_aspect_ratio = width / height | |
if calculated_aspect_ratio > MAX_ASPECT_RATIO: | |
width = (height * MAX_ASPECT_RATIO // 8) * 8 | |
elif calculated_aspect_ratio < MIN_ASPECT_RATIO: | |
height = (width / MIN_ASPECT_RATIO // 8) * 8 | |
# Ensure width and height remain above the minimum dimensions | |
width = max(width, 576) if width == FIXED_DIMENSION else width | |
height = max(height, 576) if height == FIXED_DIMENSION else height | |
return width, height | |
def infer(edit_images, prompt, lora_model, strength, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
# pipe.enable_xformers_memory_efficient_attention() | |
gr.Info("Infering") | |
if lora_model != "None": | |
pipe.load_lora_weights(lora_models[lora_model]) | |
pipe.enable_lora() | |
gr.Info("starting checks") | |
image = edit_images["background"] | |
mask = edit_images["layers"][0] | |
if not image: | |
gr.Info("Please upload an image.") | |
return None, None | |
width, height = calculate_optimal_dimensions(image) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# controlImage = processor(image) | |
gr.Info("generating image") | |
image = pipe( | |
# mask_image_latent=vae.encode(controlImage), | |
prompt=prompt, | |
prompt_2=prompt, | |
image=image, | |
mask_image=mask, | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
# strength=strength, | |
num_inference_steps=num_inference_steps, | |
generator=torch.Generator(device='cuda').manual_seed(seed), | |
# generator=torch.Generator().manual_seed(seed), | |
# lora_scale=0.75 // not supported in this version | |
).images[0] | |
output_image_jpg = image.convert("RGB") | |
output_image_jpg.save("output.jpg", "JPEG") | |
return output_image_jpg, seed | |
# return image, seed | |
def download_image(image): | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
image.save("output.png", "PNG") | |
return "output.png" | |
def save_details(result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps): | |
image = edit_image["background"] | |
mask = edit_image["layers"][0] | |
if isinstance(result, np.ndarray): | |
result = Image.fromarray(result) | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
if isinstance(mask, np.ndarray): | |
mask = Image.fromarray(mask) | |
result.save("saved_result.png", "PNG") | |
image.save("saved_image.png", "PNG") | |
mask.save("saved_mask.png", "PNG") | |
details = { | |
"prompt": prompt, | |
"lora_model": lora_model, | |
"strength": strength, | |
"seed": seed, | |
"guidance_scale": guidance_scale, | |
"num_inference_steps": num_inference_steps | |
} | |
with open("details.json", "w") as f: | |
json.dump(details, f) | |
# Create a ZIP file | |
with zipfile.ZipFile("output.zip", "w") as zipf: | |
zipf.write("saved_result.png") | |
zipf.write("saved_image.png") | |
zipf.write("saved_mask.png") | |
zipf.write("details.json") | |
return "output.zip" | |
def set_image_as_inpaint(image): | |
return image | |
# def generate_mask(image, click_x, click_y): | |
# text_prompt = "face" | |
# mask = sam.predict(image, text_prompt, box_threshold=0.24, text_threshold=0.24) | |
# return mask | |
examples = [ | |
"photography of a young woman, accent lighting, (front view:1.4), " | |
# "a tiny astronaut hatching from an egg on the moon", | |
# "a cat holding a sign that says hello world", | |
# "an anime illustration of a wiener schnitzel", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 1000px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 [dev] | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
edit_image = gr.ImageEditor( | |
label='Upload and draw mask for inpainting', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"]), | |
# height=600 | |
) | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=2, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
lora_model = gr.Dropdown( | |
label="Select LoRA Model", | |
choices=list(lora_models.keys()), | |
value="None", | |
) | |
run_button = gr.Button("Run") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=30, | |
step=0.5, | |
value=50, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
with gr.Row(): | |
strength = gr.Slider( | |
label="Strength", | |
minimum=0, | |
maximum=1, | |
step=0.01, | |
value=0.85, | |
) | |
# width = gr.Slider( | |
# label="width", | |
# minimum=512, | |
# maximum=3072, | |
# step=1, | |
# value=1024, | |
# ) | |
# height = gr.Slider( | |
# label="height", | |
# minimum=512, | |
# maximum=3072, | |
# step=1, | |
# value=1024, | |
# ) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [edit_image, prompt, lora_model, strength, seed, randomize_seed, guidance_scale, num_inference_steps], | |
outputs = [result, seed] | |
) | |
download_button = gr.Button("Download Image as PNG") | |
set_inpaint_button = gr.Button("Set Image as Inpaint") | |
save_button = gr.Button("Save Details") | |
download_button.click( | |
fn=download_image, | |
inputs=[result], | |
outputs=gr.File(label="Download Image") | |
) | |
set_inpaint_button.click( | |
fn=set_image_as_inpaint, | |
inputs=[result], | |
outputs=[edit_image] | |
) | |
save_button.click( | |
fn=save_details, | |
inputs=[result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps], | |
outputs=gr.File(label="Download/Save Status") | |
) | |
# edit_image.select( | |
# fn=generate_mask, | |
# inputs=[edit_image, gr.Number(), gr.Number()], | |
# outputs=[edit_image] | |
# ) | |
# demo.launch() | |
PASSWORD = os.getenv("GRADIO_PASSWORD") | |
USERNAME = os.getenv("GRADIO_USERNAME") | |
# Create an authentication object | |
def authenticate(username, password): | |
if username == USERNAME and password == PASSWORD: | |
return True | |
else: | |
return False | |
# Launch the app with authentication | |
demo.launch(debug=True, auth=authenticate) | |
# demo.launch() | |
# import gradio as gr | |
# import numpy as np | |
# import torch | |
# import random | |
# from PIL import Image | |
# import cv2 | |
# import spaces | |
# import os | |
# # ------------------ Inpainting Pipeline Setup ------------------ # | |
# from diffusers import FluxFillPipeline | |
# MAX_SEED = np.iinfo(np.int32).max | |
# MAX_IMAGE_SIZE = 2048 | |
# pipe = FluxFillPipeline.from_pretrained( | |
# "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16 | |
# ) | |
# pipe.load_lora_weights("alvdansen/flux-koda") | |
# pipe.enable_lora() | |
# def calculate_optimal_dimensions(image: Image.Image): | |
# # Extract the original dimensions | |
# original_width, original_height = image.size | |
# # Set constants | |
# MIN_ASPECT_RATIO = 9 / 16 | |
# MAX_ASPECT_RATIO = 16 / 9 | |
# FIXED_DIMENSION = 1024 | |
# # Calculate the aspect ratio of the original image | |
# original_aspect_ratio = original_width / original_height | |
# # Determine which dimension to fix | |
# if original_aspect_ratio > 1: # Wider than tall | |
# width = FIXED_DIMENSION | |
# height = round(FIXED_DIMENSION / original_aspect_ratio) | |
# else: # Taller than wide | |
# height = FIXED_DIMENSION | |
# width = round(FIXED_DIMENSION * original_aspect_ratio) | |
# # Ensure dimensions are multiples of 8 | |
# width = (width // 8) * 8 | |
# height = (height // 8) * 8 | |
# # Enforce aspect ratio limits | |
# calculated_aspect_ratio = width / height | |
# if calculated_aspect_ratio > MAX_ASPECT_RATIO: | |
# width = (height * MAX_ASPECT_RATIO // 8) * 8 | |
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO: | |
# height = (width / MIN_ASPECT_RATIO // 8) * 8 | |
# # Ensure minimum dimensions are met | |
# width = max(width, 576) if width == FIXED_DIMENSION else width | |
# height = max(height, 576) if height == FIXED_DIMENSION else height | |
# return width, height | |
# # ------------------ SAM (Transformers) Imports and Initialization ------------------ # | |
# from transformers import SamModel, SamProcessor | |
# # Load the model and processor from Hugging Face. | |
# sam_model = SamModel.from_pretrained("facebook/sam-vit-base") | |
# sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base") | |
# @spaces.GPU(durations=300) | |
# def generate_mask_with_sam(image: Image.Image, mask_prompt: str): | |
# """ | |
# Generate a segmentation mask using SAM (via Hugging Face Transformers). | |
# The mask_prompt is expected to be a comma-separated string of two integers, | |
# e.g. "450,600" representing an (x,y) coordinate in the image. | |
# The function converts the coordinate into the proper input format for SAM and returns a binary mask. | |
# """ | |
# if mask_prompt.strip() == "": | |
# raise ValueError("No mask prompt provided.") | |
# try: | |
# # Parse the mask_prompt into a coordinate | |
# coords = [int(x.strip()) for x in mask_prompt.split(",")] | |
# if len(coords) != 2: | |
# raise ValueError("Expected two comma-separated integers (x,y).") | |
# except Exception as e: | |
# raise ValueError("Invalid mask prompt. Please provide coordinates as 'x,y'. Error: " + str(e)) | |
# # The SAM processor expects a list of input points. | |
# # Format the point as a list of lists; here we assume one point per image. | |
# # (The Transformers SAM expects the points in [x, y] order.) | |
# input_points = [coords] # e.g. [[450,600]] | |
# # Optionally, you can supply input_labels (1 for foreground, 0 for background) | |
# input_labels = [1] | |
# # Prepare the inputs for the SAM processor. | |
# inputs = sam_processor(images=image, | |
# input_points=[input_points], | |
# input_labels=[input_labels], | |
# return_tensors="pt") | |
# # Move tensors to the same device as the model. | |
# device = next(sam_model.parameters()).device | |
# inputs = {k: v.to(device) for k, v in inputs.items()} | |
# # Forward pass through SAM. | |
# with torch.no_grad(): | |
# outputs = sam_model(**inputs) | |
# # The output contains predicted masks; we take the first mask from the first prompt. | |
# # (Assuming outputs.pred_masks is of shape (batch_size, num_masks, H, W)) | |
# pred_masks = outputs.pred_masks # Tensor of shape (1, num_masks, H, W) | |
# mask = pred_masks[0][0].detach().cpu().numpy() | |
# # Convert the mask to binary (0 or 255) using a threshold. | |
# mask_bin = (mask > 0.5).astype(np.uint8) * 255 | |
# mask_pil = Image.fromarray(mask_bin) | |
# return mask_pil | |
# # ------------------ Inference Function ------------------ # | |
# @spaces.GPU(durations=300) | |
# def infer(edit_images, prompt, mask_prompt, | |
# seed=42, randomize_seed=False, width=1024, height=1024, | |
# guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
# # Get the base image from the "background" layer. | |
# image = edit_images["background"] | |
# width, height = calculate_optimal_dimensions(image) | |
# # If a mask prompt is provided, use the SAM-based mask generator. | |
# if mask_prompt and mask_prompt.strip() != "": | |
# try: | |
# mask = generate_mask_with_sam(image, mask_prompt) | |
# except Exception as e: | |
# raise ValueError("Error generating mask from prompt: " + str(e)) | |
# else: | |
# # Fall back to using a manually drawn mask (from the first layer). | |
# try: | |
# mask = edit_images["layers"][0] | |
# except (TypeError, IndexError): | |
# raise ValueError("No mask provided. Please either draw a mask or supply a mask prompt.") | |
# if randomize_seed: | |
# seed = random.randint(0, MAX_SEED) | |
# # Run the inpainting diffusion pipeline with the provided prompt and mask. | |
# image_out = pipe( | |
# prompt=prompt, | |
# image=image, | |
# mask_image=mask, | |
# height=height, | |
# width=width, | |
# guidance_scale=guidance_scale, | |
# num_inference_steps=num_inference_steps, | |
# generator=torch.Generator(device='cuda').manual_seed(seed), | |
# ).images[0] | |
# output_image_jpg = image_out.convert("RGB") | |
# output_image_jpg.save("output.jpg", "JPEG") | |
# return output_image_jpg, seed | |
# # ------------------ Gradio UI ------------------ # | |
# css = """ | |
# #col-container { | |
# margin: 0 auto; | |
# max-width: 1000px; | |
# } | |
# """ | |
# with gr.Blocks(css=css) as demo: | |
# with gr.Column(elem_id="col-container"): | |
# gr.Markdown("# FLUX.1 [dev] with SAM (Transformers) Mask Generation") | |
# with gr.Row(): | |
# with gr.Column(): | |
# # The image editor now allows you to optionally draw a mask. | |
# edit_image = gr.ImageEditor( | |
# label='Upload Image (and optionally draw a mask)', | |
# type='pil', | |
# sources=["upload", "webcam"], | |
# image_mode='RGB', | |
# layers=False, # We will generate a mask automatically if needed. | |
# brush=gr.Brush(colors=["#FFFFFF"]), | |
# ) | |
# prompt = gr.Text( | |
# label="Inpainting Prompt", | |
# show_label=False, | |
# max_lines=2, | |
# placeholder="Enter your inpainting prompt", | |
# container=False, | |
# ) | |
# mask_prompt = gr.Text( | |
# label="Mask Prompt (enter a coordinate as 'x,y')", | |
# show_label=True, | |
# placeholder="E.g. 450,600", | |
# container=True, | |
# ) | |
# generate_mask_btn = gr.Button("Generate Mask") | |
# mask_preview = gr.Image(label="Mask Preview", show_label=True) | |
# run_button = gr.Button("Run") | |
# result = gr.Image(label="Result", show_label=False) | |
# # Button to preview the generated mask. | |
# def on_generate_mask(image, mask_prompt): | |
# if image is None or mask_prompt.strip() == "": | |
# return None | |
# mask = generate_mask_with_sam(image, mask_prompt) | |
# return mask | |
# generate_mask_btn.click( | |
# fn=on_generate_mask, | |
# inputs=[edit_image, mask_prompt], | |
# outputs=[mask_preview] | |
# ) | |
# with gr.Accordion("Advanced Settings", open=False): | |
# seed = gr.Slider( | |
# label="Seed", | |
# minimum=0, | |
# maximum=MAX_SEED, | |
# step=1, | |
# value=0, | |
# ) | |
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
# with gr.Row(): | |
# width = gr.Slider( | |
# label="Width", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, | |
# visible=False | |
# ) | |
# height = gr.Slider( | |
# label="Height", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, | |
# visible=False | |
# ) | |
# with gr.Row(): | |
# guidance_scale = gr.Slider( | |
# label="Guidance Scale", | |
# minimum=1, | |
# maximum=30, | |
# step=0.5, | |
# value=3.5, | |
# ) | |
# num_inference_steps = gr.Slider( | |
# label="Number of Inference Steps", | |
# minimum=1, | |
# maximum=50, | |
# step=1, | |
# value=28, | |
# ) | |
# gr.on( | |
# triggers=[run_button.click, prompt.submit], | |
# fn=infer, | |
# inputs=[edit_image, prompt, mask_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
# outputs=[result, seed] | |
# ) | |
# # demo.launch() | |
# PASSWORD = os.getenv("GRADIO_PASSWORD") | |
# USERNAME = os.getenv("GRADIO_USERNAME") | |
# # Create an authentication object | |
# def authenticate(username, password): | |
# if username == USERNAME and password == PASSWORD: | |
# return True | |
# else: | |
# return False | |
# # Launch the app with authentication | |
# demo.launch(auth=authenticate) | |