Upload ViT_new.py
Browse files- ViT_new.py +975 -0
    	
        ViT_new.py
    ADDED
    
    | @@ -0,0 +1,975 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """ Vision Transformer (ViT) in PyTorch
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            A PyTorch implement of Vision Transformers as described in:
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale'
         | 
| 6 | 
            +
                - https://arxiv.org/abs/2010.11929
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            `How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers`
         | 
| 9 | 
            +
                - https://arxiv.org/abs/2106.10270
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            The official jax code is released and available at https://github.com/google-research/vision_transformer
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            DeiT model defs and weights from https://github.com/facebookresearch/deit,
         | 
| 14 | 
            +
            paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            Acknowledgments:
         | 
| 17 | 
            +
            * The paper authors for releasing code and weights, thanks!
         | 
| 18 | 
            +
            * I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
         | 
| 19 | 
            +
            for some einops/einsum fun
         | 
| 20 | 
            +
            * Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
         | 
| 21 | 
            +
            * Bert reference code checks against Huggingface Transformers and Tensorflow Bert
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            Hacked together by / Copyright 2020, Ross Wightman
         | 
| 24 | 
            +
            """
         | 
| 25 | 
            +
            import math
         | 
| 26 | 
            +
            import logging
         | 
| 27 | 
            +
            from functools import partial
         | 
| 28 | 
            +
            from collections import OrderedDict
         | 
| 29 | 
            +
            from copy import deepcopy
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            import torch
         | 
| 32 | 
            +
            import torch.nn as nn
         | 
| 33 | 
            +
            import torch.nn.functional as F
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
         | 
| 36 | 
            +
            from timm.models.helpers import build_model_with_cfg, named_apply, adapt_input_conv
         | 
| 37 | 
            +
            from timm.models.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_
         | 
| 38 | 
            +
            from timm.models.registry import register_model
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            _logger = logging.getLogger(__name__)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            def _cfg(url='', **kwargs):
         | 
| 44 | 
            +
                return {
         | 
| 45 | 
            +
                    'url': url,
         | 
| 46 | 
            +
                    'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
         | 
| 47 | 
            +
                    'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
         | 
| 48 | 
            +
                    'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
         | 
| 49 | 
            +
                    'first_conv': 'patch_embed.proj', 'classifier': 'head',
         | 
| 50 | 
            +
                    **kwargs
         | 
| 51 | 
            +
                }
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            default_cfgs = {
         | 
| 55 | 
            +
                # patch models (weights from official Google JAX impl)
         | 
| 56 | 
            +
                'vit_tiny_patch16_224': _cfg(
         | 
| 57 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 58 | 
            +
                        'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
         | 
| 59 | 
            +
                'vit_tiny_patch16_384': _cfg(
         | 
| 60 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 61 | 
            +
                        'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
         | 
| 62 | 
            +
                    input_size=(3, 384, 384), crop_pct=1.0),
         | 
| 63 | 
            +
                'vit_small_patch32_224': _cfg(
         | 
| 64 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 65 | 
            +
                        'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
         | 
| 66 | 
            +
                'vit_small_patch32_384': _cfg(
         | 
| 67 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 68 | 
            +
                        'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
         | 
| 69 | 
            +
                    input_size=(3, 384, 384), crop_pct=1.0),
         | 
| 70 | 
            +
                'vit_small_patch16_224': _cfg(
         | 
| 71 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 72 | 
            +
                        'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
         | 
| 73 | 
            +
                'vit_small_patch16_384': _cfg(
         | 
| 74 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 75 | 
            +
                        'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
         | 
| 76 | 
            +
                    input_size=(3, 384, 384), crop_pct=1.0),
         | 
| 77 | 
            +
                'vit_base_patch32_224': _cfg(
         | 
| 78 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 79 | 
            +
                        'B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
         | 
| 80 | 
            +
                'vit_base_patch32_384': _cfg(
         | 
| 81 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 82 | 
            +
                        'B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
         | 
| 83 | 
            +
                    input_size=(3, 384, 384), crop_pct=1.0),
         | 
| 84 | 
            +
                'vit_base_patch16_224': _cfg(
         | 
| 85 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 86 | 
            +
                        'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'),
         | 
| 87 | 
            +
                'vit_base_patch16_384': _cfg(
         | 
| 88 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 89 | 
            +
                        'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz',
         | 
| 90 | 
            +
                    input_size=(3, 384, 384), crop_pct=1.0),
         | 
| 91 | 
            +
                'vit_base_patch8_224': _cfg(
         | 
| 92 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 93 | 
            +
                        'B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'),
         | 
| 94 | 
            +
                'vit_large_patch32_224': _cfg(
         | 
| 95 | 
            +
                    url='',  # no official model weights for this combo, only for in21k
         | 
| 96 | 
            +
                    ),
         | 
| 97 | 
            +
                'vit_large_patch32_384': _cfg(
         | 
| 98 | 
            +
                    url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
         | 
| 99 | 
            +
                    input_size=(3, 384, 384), crop_pct=1.0),
         | 
| 100 | 
            +
                'vit_large_patch16_224': _cfg(
         | 
| 101 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 102 | 
            +
                        'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz'),
         | 
| 103 | 
            +
                'vit_large_patch16_384': _cfg(
         | 
| 104 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/'
         | 
| 105 | 
            +
                        'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz',
         | 
| 106 | 
            +
                    input_size=(3, 384, 384), crop_pct=1.0),
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                'vit_huge_patch14_224': _cfg(url=''),
         | 
| 109 | 
            +
                'vit_giant_patch14_224': _cfg(url=''),
         | 
| 110 | 
            +
                'vit_gigantic_patch14_224': _cfg(url=''),
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                # patch models, imagenet21k (weights from official Google JAX impl)
         | 
| 113 | 
            +
                'vit_tiny_patch16_224_in21k': _cfg(
         | 
| 114 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz',
         | 
| 115 | 
            +
                    num_classes=21843),
         | 
| 116 | 
            +
                'vit_small_patch32_224_in21k': _cfg(
         | 
| 117 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
         | 
| 118 | 
            +
                    num_classes=21843),
         | 
| 119 | 
            +
                'vit_small_patch16_224_in21k': _cfg(
         | 
| 120 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
         | 
| 121 | 
            +
                    num_classes=21843),
         | 
| 122 | 
            +
                'vit_base_patch32_224_in21k': _cfg(
         | 
| 123 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz',
         | 
| 124 | 
            +
                    num_classes=21843),
         | 
| 125 | 
            +
                'vit_base_patch16_224_in21k': _cfg(
         | 
| 126 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
         | 
| 127 | 
            +
                    num_classes=21843),
         | 
| 128 | 
            +
                'vit_base_patch8_224_in21k': _cfg(
         | 
| 129 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
         | 
| 130 | 
            +
                    num_classes=21843),
         | 
| 131 | 
            +
                'vit_large_patch32_224_in21k': _cfg(
         | 
| 132 | 
            +
                    url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth',
         | 
| 133 | 
            +
                    num_classes=21843),
         | 
| 134 | 
            +
                'vit_large_patch16_224_in21k': _cfg(
         | 
| 135 | 
            +
                    url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz',
         | 
| 136 | 
            +
                    num_classes=21843),
         | 
| 137 | 
            +
                'vit_huge_patch14_224_in21k': _cfg(
         | 
| 138 | 
            +
                    url='https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz',
         | 
| 139 | 
            +
                    hf_hub='timm/vit_huge_patch14_224_in21k',
         | 
| 140 | 
            +
                    num_classes=21843),
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                # SAM trained models (https://arxiv.org/abs/2106.01548)
         | 
| 143 | 
            +
                'vit_base_patch32_sam_224': _cfg(
         | 
| 144 | 
            +
                    url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz'),
         | 
| 145 | 
            +
                'vit_base_patch16_sam_224': _cfg(
         | 
| 146 | 
            +
                    url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz'),
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                # deit models (FB weights)
         | 
| 149 | 
            +
                'deit_tiny_patch16_224': _cfg(
         | 
| 150 | 
            +
                    url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth',
         | 
| 151 | 
            +
                    mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
         | 
| 152 | 
            +
                'deit_small_patch16_224': _cfg(
         | 
| 153 | 
            +
                    url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth',
         | 
| 154 | 
            +
                    mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
         | 
| 155 | 
            +
                'deit_base_patch16_224': _cfg(
         | 
| 156 | 
            +
                    url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth',
         | 
| 157 | 
            +
                    mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
         | 
| 158 | 
            +
                'deit_base_patch16_384': _cfg(
         | 
| 159 | 
            +
                    url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth',
         | 
| 160 | 
            +
                    mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 384, 384), crop_pct=1.0),
         | 
| 161 | 
            +
                'deit_tiny_distilled_patch16_224': _cfg(
         | 
| 162 | 
            +
                    url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth',
         | 
| 163 | 
            +
                    mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')),
         | 
| 164 | 
            +
                'deit_small_distilled_patch16_224': _cfg(
         | 
| 165 | 
            +
                    url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth',
         | 
| 166 | 
            +
                    mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')),
         | 
| 167 | 
            +
                'deit_base_distilled_patch16_224': _cfg(
         | 
| 168 | 
            +
                    url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth',
         | 
| 169 | 
            +
                    mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')),
         | 
| 170 | 
            +
                'deit_base_distilled_patch16_384': _cfg(
         | 
| 171 | 
            +
                    url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth',
         | 
| 172 | 
            +
                    mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 384, 384), crop_pct=1.0,
         | 
| 173 | 
            +
                    classifier=('head', 'head_dist')),
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                # ViT ImageNet-21K-P pretraining by MILL
         | 
| 176 | 
            +
                'vit_base_patch16_224_miil_in21k': _cfg(
         | 
| 177 | 
            +
                    url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/vit_base_patch16_224_in21k_miil.pth',
         | 
| 178 | 
            +
                    mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', num_classes=11221,
         | 
| 179 | 
            +
                ),
         | 
| 180 | 
            +
                'vit_base_patch16_224_miil': _cfg(
         | 
| 181 | 
            +
                    url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm'
         | 
| 182 | 
            +
                        '/vit_base_patch16_224_1k_miil_84_4.pth',
         | 
| 183 | 
            +
                    mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear',
         | 
| 184 | 
            +
                ),
         | 
| 185 | 
            +
            }
         | 
| 186 | 
            +
             | 
| 187 | 
            +
             | 
| 188 | 
            +
            class Attention(nn.Module):
         | 
| 189 | 
            +
                def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
         | 
| 190 | 
            +
                    super().__init__()
         | 
| 191 | 
            +
                    self.num_heads = num_heads
         | 
| 192 | 
            +
                    head_dim = dim // num_heads
         | 
| 193 | 
            +
                    self.scale = head_dim ** -0.5
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                    self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
         | 
| 196 | 
            +
                    self.attn_drop = nn.Dropout(attn_drop)
         | 
| 197 | 
            +
                    self.proj = nn.Linear(dim, dim)
         | 
| 198 | 
            +
                    self.proj_drop = nn.Dropout(proj_drop)
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    self.attn_gradients = None
         | 
| 201 | 
            +
                    self.attention_map = None
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                def save_attn_gradients(self, attn_gradients):
         | 
| 204 | 
            +
                    self.attn_gradients = attn_gradients
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                def get_attn_gradients(self):
         | 
| 207 | 
            +
                    return self.attn_gradients
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                def save_attention_map(self, attention_map):
         | 
| 210 | 
            +
                    self.attention_map = attention_map
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                def get_attention_map(self):
         | 
| 213 | 
            +
                    return self.attention_map
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                def forward(self, x, register_hook=False):
         | 
| 216 | 
            +
                    B, N, C = x.shape
         | 
| 217 | 
            +
                    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         | 
| 218 | 
            +
                    q, k, v = qkv.unbind(0)   # make torchscript happy (cannot use tensor as tuple)
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    attn = (q @ k.transpose(-2, -1)) * self.scale
         | 
| 221 | 
            +
                    attn = attn.softmax(dim=-1)
         | 
| 222 | 
            +
                    attn = self.attn_drop(attn)
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    self.save_attention_map(attn)
         | 
| 225 | 
            +
                    if register_hook:
         | 
| 226 | 
            +
                        attn.register_hook(self.save_attn_gradients)
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                    x = (attn @ v).transpose(1, 2).reshape(B, N, C)
         | 
| 229 | 
            +
                    x = self.proj(x)
         | 
| 230 | 
            +
                    x = self.proj_drop(x)
         | 
| 231 | 
            +
                    return x
         | 
| 232 | 
            +
             | 
| 233 | 
            +
             | 
| 234 | 
            +
            class Block(nn.Module):
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
         | 
| 237 | 
            +
                             drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
         | 
| 238 | 
            +
                    super().__init__()
         | 
| 239 | 
            +
                    self.norm1 = norm_layer(dim)
         | 
| 240 | 
            +
                    self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
         | 
| 241 | 
            +
                    # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
         | 
| 242 | 
            +
                    self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
         | 
| 243 | 
            +
                    self.norm2 = norm_layer(dim)
         | 
| 244 | 
            +
                    mlp_hidden_dim = int(dim * mlp_ratio)
         | 
| 245 | 
            +
                    self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                def forward(self, x, register_hook=False):
         | 
| 248 | 
            +
                    x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
         | 
| 249 | 
            +
                    x = x + self.drop_path(self.mlp(self.norm2(x)))
         | 
| 250 | 
            +
                    return x
         | 
| 251 | 
            +
             | 
| 252 | 
            +
             | 
| 253 | 
            +
            class VisionTransformer(nn.Module):
         | 
| 254 | 
            +
                """ Vision Transformer
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
         | 
| 257 | 
            +
                    - https://arxiv.org/abs/2010.11929
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                Includes distillation token & head support for `DeiT: Data-efficient Image Transformers`
         | 
| 260 | 
            +
                    - https://arxiv.org/abs/2012.12877
         | 
| 261 | 
            +
                """
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
         | 
| 264 | 
            +
                             num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False,
         | 
| 265 | 
            +
                             drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None,
         | 
| 266 | 
            +
                             act_layer=None, weight_init=''):
         | 
| 267 | 
            +
                    """
         | 
| 268 | 
            +
                    Args:
         | 
| 269 | 
            +
                        img_size (int, tuple): input image size
         | 
| 270 | 
            +
                        patch_size (int, tuple): patch size
         | 
| 271 | 
            +
                        in_chans (int): number of input channels
         | 
| 272 | 
            +
                        num_classes (int): number of classes for classification head
         | 
| 273 | 
            +
                        embed_dim (int): embedding dimension
         | 
| 274 | 
            +
                        depth (int): depth of transformer
         | 
| 275 | 
            +
                        num_heads (int): number of attention heads
         | 
| 276 | 
            +
                        mlp_ratio (int): ratio of mlp hidden dim to embedding dim
         | 
| 277 | 
            +
                        qkv_bias (bool): enable bias for qkv if True
         | 
| 278 | 
            +
                        representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
         | 
| 279 | 
            +
                        distilled (bool): model includes a distillation token and head as in DeiT models
         | 
| 280 | 
            +
                        drop_rate (float): dropout rate
         | 
| 281 | 
            +
                        attn_drop_rate (float): attention dropout rate
         | 
| 282 | 
            +
                        drop_path_rate (float): stochastic depth rate
         | 
| 283 | 
            +
                        embed_layer (nn.Module): patch embedding layer
         | 
| 284 | 
            +
                        norm_layer: (nn.Module): normalization layer
         | 
| 285 | 
            +
                        weight_init: (str): weight init scheme
         | 
| 286 | 
            +
                    """
         | 
| 287 | 
            +
                    super().__init__()
         | 
| 288 | 
            +
                    self.num_classes = num_classes
         | 
| 289 | 
            +
                    self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
         | 
| 290 | 
            +
                    self.num_tokens = 2 if distilled else 1
         | 
| 291 | 
            +
                    norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
         | 
| 292 | 
            +
                    act_layer = act_layer or nn.GELU
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    self.patch_embed = embed_layer(
         | 
| 295 | 
            +
                        img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
         | 
| 296 | 
            +
                    num_patches = self.patch_embed.num_patches
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
         | 
| 299 | 
            +
                    self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
         | 
| 300 | 
            +
                    self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
         | 
| 301 | 
            +
                    self.pos_drop = nn.Dropout(p=drop_rate)
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                    dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
         | 
| 304 | 
            +
                    self.blocks = nn.ModuleList([Block(
         | 
| 305 | 
            +
                            dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
         | 
| 306 | 
            +
                            attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer)
         | 
| 307 | 
            +
                        for i in range(depth)])
         | 
| 308 | 
            +
                    self.norm = norm_layer(embed_dim)
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                    # Representation layer
         | 
| 311 | 
            +
                    if representation_size and not distilled:
         | 
| 312 | 
            +
                        self.num_features = representation_size
         | 
| 313 | 
            +
                        self.pre_logits = nn.Sequential(OrderedDict([
         | 
| 314 | 
            +
                            ('fc', nn.Linear(embed_dim, representation_size)),
         | 
| 315 | 
            +
                            ('act', nn.Tanh())
         | 
| 316 | 
            +
                        ]))
         | 
| 317 | 
            +
                    else:
         | 
| 318 | 
            +
                        self.pre_logits = nn.Identity()
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    # Classifier head(s)
         | 
| 321 | 
            +
                    self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
         | 
| 322 | 
            +
                    self.head_dist = None
         | 
| 323 | 
            +
                    if distilled:
         | 
| 324 | 
            +
                        self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                    self.init_weights(weight_init)
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                def init_weights(self, mode=''):
         | 
| 329 | 
            +
                    assert mode in ('jax', 'jax_nlhb', 'nlhb', '')
         | 
| 330 | 
            +
                    head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
         | 
| 331 | 
            +
                    trunc_normal_(self.pos_embed, std=.02)
         | 
| 332 | 
            +
                    if self.dist_token is not None:
         | 
| 333 | 
            +
                        trunc_normal_(self.dist_token, std=.02)
         | 
| 334 | 
            +
                    if mode.startswith('jax'):
         | 
| 335 | 
            +
                        # leave cls token as zeros to match jax impl
         | 
| 336 | 
            +
                        named_apply(partial(_init_vit_weights, head_bias=head_bias, jax_impl=True), self)
         | 
| 337 | 
            +
                    else:
         | 
| 338 | 
            +
                        trunc_normal_(self.cls_token, std=.02)
         | 
| 339 | 
            +
                        self.apply(_init_vit_weights)
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                def _init_weights(self, m):
         | 
| 342 | 
            +
                    # this fn left here for compat with downstream users
         | 
| 343 | 
            +
                    _init_vit_weights(m)
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                @torch.jit.ignore()
         | 
| 346 | 
            +
                def load_pretrained(self, checkpoint_path, prefix=''):
         | 
| 347 | 
            +
                    _load_weights(self, checkpoint_path, prefix)
         | 
| 348 | 
            +
             | 
| 349 | 
            +
                @torch.jit.ignore
         | 
| 350 | 
            +
                def no_weight_decay(self):
         | 
| 351 | 
            +
                    return {'pos_embed', 'cls_token', 'dist_token'}
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                def get_classifier(self):
         | 
| 354 | 
            +
                    if self.dist_token is None:
         | 
| 355 | 
            +
                        return self.head
         | 
| 356 | 
            +
                    else:
         | 
| 357 | 
            +
                        return self.head, self.head_dist
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                def reset_classifier(self, num_classes, global_pool=''):
         | 
| 360 | 
            +
                    self.num_classes = num_classes
         | 
| 361 | 
            +
                    self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
         | 
| 362 | 
            +
                    if self.num_tokens == 2:
         | 
| 363 | 
            +
                        self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                def forward_features(self, x, register_hook=False):
         | 
| 366 | 
            +
                    x = self.patch_embed(x)
         | 
| 367 | 
            +
                    cls_token = self.cls_token.expand(x.shape[0], -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
         | 
| 368 | 
            +
                    if self.dist_token is None:
         | 
| 369 | 
            +
                        x = torch.cat((cls_token, x), dim=1)
         | 
| 370 | 
            +
                    else:
         | 
| 371 | 
            +
                        x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
         | 
| 372 | 
            +
                    x = self.pos_drop(x + self.pos_embed)
         | 
| 373 | 
            +
                    # x = self.blocks(x)
         | 
| 374 | 
            +
                    for blk in self.blocks:
         | 
| 375 | 
            +
                        x = blk(x, register_hook=register_hook)
         | 
| 376 | 
            +
                    x = self.norm(x)
         | 
| 377 | 
            +
                    if self.dist_token is None:
         | 
| 378 | 
            +
                        return self.pre_logits(x[:, 0])
         | 
| 379 | 
            +
                    else:
         | 
| 380 | 
            +
                        return x[:, 0], x[:, 1]
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                def forward(self, x, register_hook=False):
         | 
| 383 | 
            +
                    x = self.forward_features(x, register_hook=register_hook)
         | 
| 384 | 
            +
                    if self.head_dist is not None:
         | 
| 385 | 
            +
                        x, x_dist = self.head(x[0]), self.head_dist(x[1])  # x must be a tuple
         | 
| 386 | 
            +
                        if self.training and not torch.jit.is_scripting():
         | 
| 387 | 
            +
                            # during inference, return the average of both classifier predictions
         | 
| 388 | 
            +
                            return x, x_dist
         | 
| 389 | 
            +
                        else:
         | 
| 390 | 
            +
                            return (x + x_dist) / 2
         | 
| 391 | 
            +
                    else:
         | 
| 392 | 
            +
                        x = self.head(x)
         | 
| 393 | 
            +
                    return x
         | 
| 394 | 
            +
             | 
| 395 | 
            +
             | 
| 396 | 
            +
            def _init_vit_weights(module: nn.Module, name: str = '', head_bias: float = 0., jax_impl: bool = False):
         | 
| 397 | 
            +
                """ ViT weight initialization
         | 
| 398 | 
            +
                * When called without n, head_bias, jax_impl args it will behave exactly the same
         | 
| 399 | 
            +
                  as my original init for compatibility with prev hparam / downstream use cases (ie DeiT).
         | 
| 400 | 
            +
                * When called w/ valid n (module name) and jax_impl=True, will (hopefully) match JAX impl
         | 
| 401 | 
            +
                """
         | 
| 402 | 
            +
                if isinstance(module, nn.Linear):
         | 
| 403 | 
            +
                    if name.startswith('head'):
         | 
| 404 | 
            +
                        nn.init.zeros_(module.weight)
         | 
| 405 | 
            +
                        nn.init.constant_(module.bias, head_bias)
         | 
| 406 | 
            +
                    elif name.startswith('pre_logits'):
         | 
| 407 | 
            +
                        lecun_normal_(module.weight)
         | 
| 408 | 
            +
                        nn.init.zeros_(module.bias)
         | 
| 409 | 
            +
                    else:
         | 
| 410 | 
            +
                        if jax_impl:
         | 
| 411 | 
            +
                            nn.init.xavier_uniform_(module.weight)
         | 
| 412 | 
            +
                            if module.bias is not None:
         | 
| 413 | 
            +
                                if 'mlp' in name:
         | 
| 414 | 
            +
                                    nn.init.normal_(module.bias, std=1e-6)
         | 
| 415 | 
            +
                                else:
         | 
| 416 | 
            +
                                    nn.init.zeros_(module.bias)
         | 
| 417 | 
            +
                        else:
         | 
| 418 | 
            +
                            trunc_normal_(module.weight, std=.02)
         | 
| 419 | 
            +
                            if module.bias is not None:
         | 
| 420 | 
            +
                                nn.init.zeros_(module.bias)
         | 
| 421 | 
            +
                elif jax_impl and isinstance(module, nn.Conv2d):
         | 
| 422 | 
            +
                    # NOTE conv was left to pytorch default in my original init
         | 
| 423 | 
            +
                    lecun_normal_(module.weight)
         | 
| 424 | 
            +
                    if module.bias is not None:
         | 
| 425 | 
            +
                        nn.init.zeros_(module.bias)
         | 
| 426 | 
            +
                elif isinstance(module, (nn.LayerNorm, nn.GroupNorm, nn.BatchNorm2d)):
         | 
| 427 | 
            +
                    nn.init.zeros_(module.bias)
         | 
| 428 | 
            +
                    nn.init.ones_(module.weight)
         | 
| 429 | 
            +
             | 
| 430 | 
            +
             | 
| 431 | 
            +
            @torch.no_grad()
         | 
| 432 | 
            +
            def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
         | 
| 433 | 
            +
                """ Load weights from .npz checkpoints for official Google Brain Flax implementation
         | 
| 434 | 
            +
                """
         | 
| 435 | 
            +
                import numpy as np
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                def _n2p(w, t=True):
         | 
| 438 | 
            +
                    if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
         | 
| 439 | 
            +
                        w = w.flatten()
         | 
| 440 | 
            +
                    if t:
         | 
| 441 | 
            +
                        if w.ndim == 4:
         | 
| 442 | 
            +
                            w = w.transpose([3, 2, 0, 1])
         | 
| 443 | 
            +
                        elif w.ndim == 3:
         | 
| 444 | 
            +
                            w = w.transpose([2, 0, 1])
         | 
| 445 | 
            +
                        elif w.ndim == 2:
         | 
| 446 | 
            +
                            w = w.transpose([1, 0])
         | 
| 447 | 
            +
                    return torch.from_numpy(w)
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                w = np.load(checkpoint_path)
         | 
| 450 | 
            +
                if not prefix and 'opt/target/embedding/kernel' in w:
         | 
| 451 | 
            +
                    prefix = 'opt/target/'
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                if hasattr(model.patch_embed, 'backbone'):
         | 
| 454 | 
            +
                    # hybrid
         | 
| 455 | 
            +
                    backbone = model.patch_embed.backbone
         | 
| 456 | 
            +
                    stem_only = not hasattr(backbone, 'stem')
         | 
| 457 | 
            +
                    stem = backbone if stem_only else backbone.stem
         | 
| 458 | 
            +
                    stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
         | 
| 459 | 
            +
                    stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
         | 
| 460 | 
            +
                    stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
         | 
| 461 | 
            +
                    if not stem_only:
         | 
| 462 | 
            +
                        for i, stage in enumerate(backbone.stages):
         | 
| 463 | 
            +
                            for j, block in enumerate(stage.blocks):
         | 
| 464 | 
            +
                                bp = f'{prefix}block{i + 1}/unit{j + 1}/'
         | 
| 465 | 
            +
                                for r in range(3):
         | 
| 466 | 
            +
                                    getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
         | 
| 467 | 
            +
                                    getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
         | 
| 468 | 
            +
                                    getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
         | 
| 469 | 
            +
                                if block.downsample is not None:
         | 
| 470 | 
            +
                                    block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
         | 
| 471 | 
            +
                                    block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
         | 
| 472 | 
            +
                                    block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
         | 
| 473 | 
            +
                    embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
         | 
| 474 | 
            +
                else:
         | 
| 475 | 
            +
                    embed_conv_w = adapt_input_conv(
         | 
| 476 | 
            +
                        model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
         | 
| 477 | 
            +
                model.patch_embed.proj.weight.copy_(embed_conv_w)
         | 
| 478 | 
            +
                model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
         | 
| 479 | 
            +
                model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
         | 
| 480 | 
            +
                pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
         | 
| 481 | 
            +
                if pos_embed_w.shape != model.pos_embed.shape:
         | 
| 482 | 
            +
                    pos_embed_w = resize_pos_embed(  # resize pos embedding when different size from pretrained weights
         | 
| 483 | 
            +
                        pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
         | 
| 484 | 
            +
                model.pos_embed.copy_(pos_embed_w)
         | 
| 485 | 
            +
                model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
         | 
| 486 | 
            +
                model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
         | 
| 487 | 
            +
                if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
         | 
| 488 | 
            +
                    model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
         | 
| 489 | 
            +
                    model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
         | 
| 490 | 
            +
                if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
         | 
| 491 | 
            +
                    model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
         | 
| 492 | 
            +
                    model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
         | 
| 493 | 
            +
                for i, block in enumerate(model.blocks.children()):
         | 
| 494 | 
            +
                    block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
         | 
| 495 | 
            +
                    mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
         | 
| 496 | 
            +
                    block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
         | 
| 497 | 
            +
                    block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
         | 
| 498 | 
            +
                    block.attn.qkv.weight.copy_(torch.cat([
         | 
| 499 | 
            +
                        _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
         | 
| 500 | 
            +
                    block.attn.qkv.bias.copy_(torch.cat([
         | 
| 501 | 
            +
                        _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
         | 
| 502 | 
            +
                    block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
         | 
| 503 | 
            +
                    block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
         | 
| 504 | 
            +
                    for r in range(2):
         | 
| 505 | 
            +
                        getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
         | 
| 506 | 
            +
                        getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
         | 
| 507 | 
            +
                    block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
         | 
| 508 | 
            +
                    block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
         | 
| 509 | 
            +
             | 
| 510 | 
            +
             | 
| 511 | 
            +
            def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()):
         | 
| 512 | 
            +
                # Rescale the grid of position embeddings when loading from state_dict. Adapted from
         | 
| 513 | 
            +
                # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
         | 
| 514 | 
            +
                _logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
         | 
| 515 | 
            +
                ntok_new = posemb_new.shape[1]
         | 
| 516 | 
            +
                if num_tokens:
         | 
| 517 | 
            +
                    posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:]
         | 
| 518 | 
            +
                    ntok_new -= num_tokens
         | 
| 519 | 
            +
                else:
         | 
| 520 | 
            +
                    posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
         | 
| 521 | 
            +
                gs_old = int(math.sqrt(len(posemb_grid)))
         | 
| 522 | 
            +
                if not len(gs_new):  # backwards compatibility
         | 
| 523 | 
            +
                    gs_new = [int(math.sqrt(ntok_new))] * 2
         | 
| 524 | 
            +
                assert len(gs_new) >= 2
         | 
| 525 | 
            +
                _logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new)
         | 
| 526 | 
            +
                posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
         | 
| 527 | 
            +
                posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bicubic', align_corners=False)
         | 
| 528 | 
            +
                posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
         | 
| 529 | 
            +
                posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
         | 
| 530 | 
            +
                return posemb
         | 
| 531 | 
            +
             | 
| 532 | 
            +
             | 
| 533 | 
            +
            def checkpoint_filter_fn(state_dict, model):
         | 
| 534 | 
            +
                """ convert patch embedding weight from manual patchify + linear proj to conv"""
         | 
| 535 | 
            +
                out_dict = {}
         | 
| 536 | 
            +
                if 'model' in state_dict:
         | 
| 537 | 
            +
                    # For deit models
         | 
| 538 | 
            +
                    state_dict = state_dict['model']
         | 
| 539 | 
            +
                for k, v in state_dict.items():
         | 
| 540 | 
            +
                    if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
         | 
| 541 | 
            +
                        # For old models that I trained prior to conv based patchification
         | 
| 542 | 
            +
                        O, I, H, W = model.patch_embed.proj.weight.shape
         | 
| 543 | 
            +
                        v = v.reshape(O, -1, H, W)
         | 
| 544 | 
            +
                    elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
         | 
| 545 | 
            +
                        # To resize pos embedding when using model at different size from pretrained weights
         | 
| 546 | 
            +
                        v = resize_pos_embed(
         | 
| 547 | 
            +
                            v, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
         | 
| 548 | 
            +
                    out_dict[k] = v
         | 
| 549 | 
            +
                return out_dict
         | 
| 550 | 
            +
             | 
| 551 | 
            +
             | 
| 552 | 
            +
            def _create_vision_transformer(variant, pretrained=False, default_cfg=None, **kwargs):
         | 
| 553 | 
            +
                default_cfg = default_cfg or default_cfgs[variant]
         | 
| 554 | 
            +
                if kwargs.get('features_only', None):
         | 
| 555 | 
            +
                    raise RuntimeError('features_only not implemented for Vision Transformer models.')
         | 
| 556 | 
            +
             | 
| 557 | 
            +
                # NOTE this extra code to support handling of repr size for in21k pretrained models
         | 
| 558 | 
            +
                default_num_classes = default_cfg['num_classes']
         | 
| 559 | 
            +
                num_classes = kwargs.get('num_classes', default_num_classes)
         | 
| 560 | 
            +
                repr_size = kwargs.pop('representation_size', None)
         | 
| 561 | 
            +
                if repr_size is not None and num_classes != default_num_classes:
         | 
| 562 | 
            +
                    # Remove representation layer if fine-tuning. This may not always be the desired action,
         | 
| 563 | 
            +
                    # but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface?
         | 
| 564 | 
            +
                    _logger.warning("Removing representation layer for fine-tuning.")
         | 
| 565 | 
            +
                    repr_size = None
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                model = build_model_with_cfg(
         | 
| 568 | 
            +
                    VisionTransformer, variant, pretrained,
         | 
| 569 | 
            +
                    default_cfg=default_cfg,
         | 
| 570 | 
            +
                    representation_size=repr_size,
         | 
| 571 | 
            +
                    pretrained_filter_fn=checkpoint_filter_fn,
         | 
| 572 | 
            +
                    pretrained_custom_load='npz' in default_cfg['url'],
         | 
| 573 | 
            +
                    **kwargs)
         | 
| 574 | 
            +
                return model
         | 
| 575 | 
            +
             | 
| 576 | 
            +
             | 
| 577 | 
            +
            @register_model
         | 
| 578 | 
            +
            def vit_tiny_patch16_224(pretrained=False, **kwargs):
         | 
| 579 | 
            +
                """ ViT-Tiny (Vit-Ti/16)
         | 
| 580 | 
            +
                """
         | 
| 581 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
         | 
| 582 | 
            +
                model = _create_vision_transformer('vit_tiny_patch16_224', pretrained=pretrained, **model_kwargs)
         | 
| 583 | 
            +
                return model
         | 
| 584 | 
            +
             | 
| 585 | 
            +
             | 
| 586 | 
            +
            @register_model
         | 
| 587 | 
            +
            def vit_tiny_patch16_384(pretrained=False, **kwargs):
         | 
| 588 | 
            +
                """ ViT-Tiny (Vit-Ti/16) @ 384x384.
         | 
| 589 | 
            +
                """
         | 
| 590 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
         | 
| 591 | 
            +
                model = _create_vision_transformer('vit_tiny_patch16_384', pretrained=pretrained, **model_kwargs)
         | 
| 592 | 
            +
                return model
         | 
| 593 | 
            +
             | 
| 594 | 
            +
             | 
| 595 | 
            +
            @register_model
         | 
| 596 | 
            +
            def vit_small_patch32_224(pretrained=False, **kwargs):
         | 
| 597 | 
            +
                """ ViT-Small (ViT-S/32)
         | 
| 598 | 
            +
                """
         | 
| 599 | 
            +
                model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs)
         | 
| 600 | 
            +
                model = _create_vision_transformer('vit_small_patch32_224', pretrained=pretrained, **model_kwargs)
         | 
| 601 | 
            +
                return model
         | 
| 602 | 
            +
             | 
| 603 | 
            +
             | 
| 604 | 
            +
            @register_model
         | 
| 605 | 
            +
            def vit_small_patch32_384(pretrained=False, **kwargs):
         | 
| 606 | 
            +
                """ ViT-Small (ViT-S/32) at 384x384.
         | 
| 607 | 
            +
                """
         | 
| 608 | 
            +
                model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs)
         | 
| 609 | 
            +
                model = _create_vision_transformer('vit_small_patch32_384', pretrained=pretrained, **model_kwargs)
         | 
| 610 | 
            +
                return model
         | 
| 611 | 
            +
             | 
| 612 | 
            +
             | 
| 613 | 
            +
            @register_model
         | 
| 614 | 
            +
            def vit_small_patch16_224(pretrained=False, **kwargs):
         | 
| 615 | 
            +
                """ ViT-Small (ViT-S/16)
         | 
| 616 | 
            +
                NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper
         | 
| 617 | 
            +
                """
         | 
| 618 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
         | 
| 619 | 
            +
                model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **model_kwargs)
         | 
| 620 | 
            +
                return model
         | 
| 621 | 
            +
             | 
| 622 | 
            +
             | 
| 623 | 
            +
            @register_model
         | 
| 624 | 
            +
            def vit_small_patch16_384(pretrained=False, **kwargs):
         | 
| 625 | 
            +
                """ ViT-Small (ViT-S/16)
         | 
| 626 | 
            +
                NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper
         | 
| 627 | 
            +
                """
         | 
| 628 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
         | 
| 629 | 
            +
                model = _create_vision_transformer('vit_small_patch16_384', pretrained=pretrained, **model_kwargs)
         | 
| 630 | 
            +
                return model
         | 
| 631 | 
            +
             | 
| 632 | 
            +
             | 
| 633 | 
            +
            @register_model
         | 
| 634 | 
            +
            def vit_base_patch32_224(pretrained=False, **kwargs):
         | 
| 635 | 
            +
                """ ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 636 | 
            +
                ImageNet-1k weights fine-tuned from in21k, source https://github.com/google-research/vision_transformer.
         | 
| 637 | 
            +
                """
         | 
| 638 | 
            +
                model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
         | 
| 639 | 
            +
                model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **model_kwargs)
         | 
| 640 | 
            +
                return model
         | 
| 641 | 
            +
             | 
| 642 | 
            +
             | 
| 643 | 
            +
            @register_model
         | 
| 644 | 
            +
            def vit_base_patch32_384(pretrained=False, **kwargs):
         | 
| 645 | 
            +
                """ ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 646 | 
            +
                ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
         | 
| 647 | 
            +
                """
         | 
| 648 | 
            +
                model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
         | 
| 649 | 
            +
                model = _create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **model_kwargs)
         | 
| 650 | 
            +
                return model
         | 
| 651 | 
            +
             | 
| 652 | 
            +
             | 
| 653 | 
            +
            @register_model
         | 
| 654 | 
            +
            def vit_base_patch16_224(pretrained=False, **kwargs):
         | 
| 655 | 
            +
                """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 656 | 
            +
                ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
         | 
| 657 | 
            +
                """
         | 
| 658 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
         | 
| 659 | 
            +
                model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs)
         | 
| 660 | 
            +
                return model
         | 
| 661 | 
            +
             | 
| 662 | 
            +
             | 
| 663 | 
            +
            @register_model
         | 
| 664 | 
            +
            def vit_base_patch16_384(pretrained=False, **kwargs):
         | 
| 665 | 
            +
                """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 666 | 
            +
                ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
         | 
| 667 | 
            +
                """
         | 
| 668 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
         | 
| 669 | 
            +
                model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **model_kwargs)
         | 
| 670 | 
            +
                return model
         | 
| 671 | 
            +
             | 
| 672 | 
            +
             | 
| 673 | 
            +
            @register_model
         | 
| 674 | 
            +
            def vit_base_patch8_224(pretrained=False, **kwargs):
         | 
| 675 | 
            +
                """ ViT-Base (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 676 | 
            +
                ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
         | 
| 677 | 
            +
                """
         | 
| 678 | 
            +
                model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs)
         | 
| 679 | 
            +
                model = _create_vision_transformer('vit_base_patch8_224', pretrained=pretrained, **model_kwargs)
         | 
| 680 | 
            +
                return model
         | 
| 681 | 
            +
             | 
| 682 | 
            +
             | 
| 683 | 
            +
            @register_model
         | 
| 684 | 
            +
            def vit_large_patch32_224(pretrained=False, **kwargs):
         | 
| 685 | 
            +
                """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights.
         | 
| 686 | 
            +
                """
         | 
| 687 | 
            +
                model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs)
         | 
| 688 | 
            +
                model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **model_kwargs)
         | 
| 689 | 
            +
                return model
         | 
| 690 | 
            +
             | 
| 691 | 
            +
             | 
| 692 | 
            +
            @register_model
         | 
| 693 | 
            +
            def vit_large_patch32_384(pretrained=False, **kwargs):
         | 
| 694 | 
            +
                """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 695 | 
            +
                ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
         | 
| 696 | 
            +
                """
         | 
| 697 | 
            +
                model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs)
         | 
| 698 | 
            +
                model = _create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **model_kwargs)
         | 
| 699 | 
            +
                return model
         | 
| 700 | 
            +
             | 
| 701 | 
            +
             | 
| 702 | 
            +
            @register_model
         | 
| 703 | 
            +
            def vit_large_patch16_224(pretrained=False, **kwargs):
         | 
| 704 | 
            +
                """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 705 | 
            +
                ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
         | 
| 706 | 
            +
                """
         | 
| 707 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs)
         | 
| 708 | 
            +
                model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **model_kwargs)
         | 
| 709 | 
            +
                return model
         | 
| 710 | 
            +
             | 
| 711 | 
            +
             | 
| 712 | 
            +
            @register_model
         | 
| 713 | 
            +
            def vit_large_patch16_384(pretrained=False, **kwargs):
         | 
| 714 | 
            +
                """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 715 | 
            +
                ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
         | 
| 716 | 
            +
                """
         | 
| 717 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs)
         | 
| 718 | 
            +
                model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **model_kwargs)
         | 
| 719 | 
            +
                return model
         | 
| 720 | 
            +
             | 
| 721 | 
            +
             | 
| 722 | 
            +
            @register_model
         | 
| 723 | 
            +
            def vit_base_patch16_sam_224(pretrained=False, **kwargs):
         | 
| 724 | 
            +
                """ ViT-Base (ViT-B/16) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548
         | 
| 725 | 
            +
                """
         | 
| 726 | 
            +
                # NOTE original SAM weights release worked with representation_size=768
         | 
| 727 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, representation_size=0, **kwargs)
         | 
| 728 | 
            +
                model = _create_vision_transformer('vit_base_patch16_sam_224', pretrained=pretrained, **model_kwargs)
         | 
| 729 | 
            +
                return model
         | 
| 730 | 
            +
             | 
| 731 | 
            +
             | 
| 732 | 
            +
            @register_model
         | 
| 733 | 
            +
            def vit_base_patch32_sam_224(pretrained=False, **kwargs):
         | 
| 734 | 
            +
                """ ViT-Base (ViT-B/32) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548
         | 
| 735 | 
            +
                """
         | 
| 736 | 
            +
                # NOTE original SAM weights release worked with representation_size=768
         | 
| 737 | 
            +
                model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, representation_size=0, **kwargs)
         | 
| 738 | 
            +
                model = _create_vision_transformer('vit_base_patch32_sam_224', pretrained=pretrained, **model_kwargs)
         | 
| 739 | 
            +
                return model
         | 
| 740 | 
            +
             | 
| 741 | 
            +
             | 
| 742 | 
            +
            @register_model
         | 
| 743 | 
            +
            def vit_huge_patch14_224(pretrained=False, **kwargs):
         | 
| 744 | 
            +
                """ ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 745 | 
            +
                """
         | 
| 746 | 
            +
                model_kwargs = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, **kwargs)
         | 
| 747 | 
            +
                model = _create_vision_transformer('vit_huge_patch14_224', pretrained=pretrained, **model_kwargs)
         | 
| 748 | 
            +
                return model
         | 
| 749 | 
            +
             | 
| 750 | 
            +
             | 
| 751 | 
            +
            @register_model
         | 
| 752 | 
            +
            def vit_giant_patch14_224(pretrained=False, **kwargs):
         | 
| 753 | 
            +
                """ ViT-Giant model (ViT-g/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560
         | 
| 754 | 
            +
                """
         | 
| 755 | 
            +
                model_kwargs = dict(patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16, **kwargs)
         | 
| 756 | 
            +
                model = _create_vision_transformer('vit_giant_patch14_224', pretrained=pretrained, **model_kwargs)
         | 
| 757 | 
            +
                return model
         | 
| 758 | 
            +
             | 
| 759 | 
            +
             | 
| 760 | 
            +
            @register_model
         | 
| 761 | 
            +
            def vit_gigantic_patch14_224(pretrained=False, **kwargs):
         | 
| 762 | 
            +
                """ ViT-Gigantic model (ViT-G/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560
         | 
| 763 | 
            +
                """
         | 
| 764 | 
            +
                model_kwargs = dict(patch_size=14, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16, **kwargs)
         | 
| 765 | 
            +
                model = _create_vision_transformer('vit_gigantic_patch14_224', pretrained=pretrained, **model_kwargs)
         | 
| 766 | 
            +
                return model
         | 
| 767 | 
            +
             | 
| 768 | 
            +
             | 
| 769 | 
            +
            @register_model
         | 
| 770 | 
            +
            def vit_tiny_patch16_224_in21k(pretrained=False, **kwargs):
         | 
| 771 | 
            +
                """ ViT-Tiny (Vit-Ti/16).
         | 
| 772 | 
            +
                ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
         | 
| 773 | 
            +
                NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
         | 
| 774 | 
            +
                """
         | 
| 775 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
         | 
| 776 | 
            +
                model = _create_vision_transformer('vit_tiny_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
         | 
| 777 | 
            +
                return model
         | 
| 778 | 
            +
             | 
| 779 | 
            +
             | 
| 780 | 
            +
            @register_model
         | 
| 781 | 
            +
            def vit_small_patch32_224_in21k(pretrained=False, **kwargs):
         | 
| 782 | 
            +
                """ ViT-Small (ViT-S/16)
         | 
| 783 | 
            +
                ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
         | 
| 784 | 
            +
                NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
         | 
| 785 | 
            +
                """
         | 
| 786 | 
            +
                model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs)
         | 
| 787 | 
            +
                model = _create_vision_transformer('vit_small_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
         | 
| 788 | 
            +
                return model
         | 
| 789 | 
            +
             | 
| 790 | 
            +
             | 
| 791 | 
            +
            @register_model
         | 
| 792 | 
            +
            def vit_small_patch16_224_in21k(pretrained=False, **kwargs):
         | 
| 793 | 
            +
                """ ViT-Small (ViT-S/16)
         | 
| 794 | 
            +
                ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
         | 
| 795 | 
            +
                NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
         | 
| 796 | 
            +
                """
         | 
| 797 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
         | 
| 798 | 
            +
                model = _create_vision_transformer('vit_small_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
         | 
| 799 | 
            +
                return model
         | 
| 800 | 
            +
             | 
| 801 | 
            +
             | 
| 802 | 
            +
            @register_model
         | 
| 803 | 
            +
            def vit_base_patch32_224_in21k(pretrained=False, **kwargs):
         | 
| 804 | 
            +
                """ ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 805 | 
            +
                ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
         | 
| 806 | 
            +
                NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
         | 
| 807 | 
            +
                """
         | 
| 808 | 
            +
                model_kwargs = dict(
         | 
| 809 | 
            +
                    patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
         | 
| 810 | 
            +
                model = _create_vision_transformer('vit_base_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
         | 
| 811 | 
            +
                return model
         | 
| 812 | 
            +
             | 
| 813 | 
            +
             | 
| 814 | 
            +
            @register_model
         | 
| 815 | 
            +
            def vit_base_patch16_224_in21k(pretrained=False, **kwargs):
         | 
| 816 | 
            +
                """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 817 | 
            +
                ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
         | 
| 818 | 
            +
                NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
         | 
| 819 | 
            +
                """
         | 
| 820 | 
            +
                model_kwargs = dict(
         | 
| 821 | 
            +
                    patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
         | 
| 822 | 
            +
                model = _create_vision_transformer('vit_base_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
         | 
| 823 | 
            +
                return model
         | 
| 824 | 
            +
             | 
| 825 | 
            +
             | 
| 826 | 
            +
            @register_model
         | 
| 827 | 
            +
            def vit_base_patch8_224_in21k(pretrained=False, **kwargs):
         | 
| 828 | 
            +
                """ ViT-Base model (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 829 | 
            +
                ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
         | 
| 830 | 
            +
                NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
         | 
| 831 | 
            +
                """
         | 
| 832 | 
            +
                model_kwargs = dict(
         | 
| 833 | 
            +
                    patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs)
         | 
| 834 | 
            +
                model = _create_vision_transformer('vit_base_patch8_224_in21k', pretrained=pretrained, **model_kwargs)
         | 
| 835 | 
            +
                return model
         | 
| 836 | 
            +
             | 
| 837 | 
            +
             | 
| 838 | 
            +
            @register_model
         | 
| 839 | 
            +
            def vit_large_patch32_224_in21k(pretrained=False, **kwargs):
         | 
| 840 | 
            +
                """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 841 | 
            +
                ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
         | 
| 842 | 
            +
                NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights
         | 
| 843 | 
            +
                """
         | 
| 844 | 
            +
                model_kwargs = dict(
         | 
| 845 | 
            +
                    patch_size=32, embed_dim=1024, depth=24, num_heads=16, representation_size=1024, **kwargs)
         | 
| 846 | 
            +
                model = _create_vision_transformer('vit_large_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
         | 
| 847 | 
            +
                return model
         | 
| 848 | 
            +
             | 
| 849 | 
            +
             | 
| 850 | 
            +
            @register_model
         | 
| 851 | 
            +
            def vit_large_patch16_224_in21k(pretrained=False, **kwargs):
         | 
| 852 | 
            +
                """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 853 | 
            +
                ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
         | 
| 854 | 
            +
                NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
         | 
| 855 | 
            +
                """
         | 
| 856 | 
            +
                model_kwargs = dict(
         | 
| 857 | 
            +
                    patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs)
         | 
| 858 | 
            +
                model = _create_vision_transformer('vit_large_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
         | 
| 859 | 
            +
                return model
         | 
| 860 | 
            +
             | 
| 861 | 
            +
             | 
| 862 | 
            +
            @register_model
         | 
| 863 | 
            +
            def vit_huge_patch14_224_in21k(pretrained=False, **kwargs):
         | 
| 864 | 
            +
                """ ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 865 | 
            +
                ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
         | 
| 866 | 
            +
                NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights
         | 
| 867 | 
            +
                """
         | 
| 868 | 
            +
                model_kwargs = dict(
         | 
| 869 | 
            +
                    patch_size=14, embed_dim=1280, depth=32, num_heads=16, representation_size=1280, **kwargs)
         | 
| 870 | 
            +
                model = _create_vision_transformer('vit_huge_patch14_224_in21k', pretrained=pretrained, **model_kwargs)
         | 
| 871 | 
            +
                return model
         | 
| 872 | 
            +
             | 
| 873 | 
            +
             | 
| 874 | 
            +
            @register_model
         | 
| 875 | 
            +
            def deit_tiny_patch16_224(pretrained=False, **kwargs):
         | 
| 876 | 
            +
                """ DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
         | 
| 877 | 
            +
                ImageNet-1k weights from https://github.com/facebookresearch/deit.
         | 
| 878 | 
            +
                """
         | 
| 879 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
         | 
| 880 | 
            +
                model = _create_vision_transformer('deit_tiny_patch16_224', pretrained=pretrained, **model_kwargs)
         | 
| 881 | 
            +
                return model
         | 
| 882 | 
            +
             | 
| 883 | 
            +
             | 
| 884 | 
            +
            @register_model
         | 
| 885 | 
            +
            def deit_small_patch16_224(pretrained=False, **kwargs):
         | 
| 886 | 
            +
                """ DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
         | 
| 887 | 
            +
                ImageNet-1k weights from https://github.com/facebookresearch/deit.
         | 
| 888 | 
            +
                """
         | 
| 889 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
         | 
| 890 | 
            +
                model = _create_vision_transformer('deit_small_patch16_224', pretrained=pretrained, **model_kwargs)
         | 
| 891 | 
            +
                return model
         | 
| 892 | 
            +
             | 
| 893 | 
            +
             | 
| 894 | 
            +
            @register_model
         | 
| 895 | 
            +
            def deit_base_patch16_224(pretrained=False, **kwargs):
         | 
| 896 | 
            +
                """ DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
         | 
| 897 | 
            +
                ImageNet-1k weights from https://github.com/facebookresearch/deit.
         | 
| 898 | 
            +
                """
         | 
| 899 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
         | 
| 900 | 
            +
                model = _create_vision_transformer('deit_base_patch16_224', pretrained=pretrained, **model_kwargs)
         | 
| 901 | 
            +
                return model
         | 
| 902 | 
            +
             | 
| 903 | 
            +
             | 
| 904 | 
            +
            @register_model
         | 
| 905 | 
            +
            def deit_base_patch16_384(pretrained=False, **kwargs):
         | 
| 906 | 
            +
                """ DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
         | 
| 907 | 
            +
                ImageNet-1k weights from https://github.com/facebookresearch/deit.
         | 
| 908 | 
            +
                """
         | 
| 909 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
         | 
| 910 | 
            +
                model = _create_vision_transformer('deit_base_patch16_384', pretrained=pretrained, **model_kwargs)
         | 
| 911 | 
            +
                return model
         | 
| 912 | 
            +
             | 
| 913 | 
            +
             | 
| 914 | 
            +
            @register_model
         | 
| 915 | 
            +
            def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs):
         | 
| 916 | 
            +
                """ DeiT-tiny distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
         | 
| 917 | 
            +
                ImageNet-1k weights from https://github.com/facebookresearch/deit.
         | 
| 918 | 
            +
                """
         | 
| 919 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
         | 
| 920 | 
            +
                model = _create_vision_transformer(
         | 
| 921 | 
            +
                    'deit_tiny_distilled_patch16_224', pretrained=pretrained,  distilled=True, **model_kwargs)
         | 
| 922 | 
            +
                return model
         | 
| 923 | 
            +
             | 
| 924 | 
            +
             | 
| 925 | 
            +
            @register_model
         | 
| 926 | 
            +
            def deit_small_distilled_patch16_224(pretrained=False, **kwargs):
         | 
| 927 | 
            +
                """ DeiT-small distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
         | 
| 928 | 
            +
                ImageNet-1k weights from https://github.com/facebookresearch/deit.
         | 
| 929 | 
            +
                """
         | 
| 930 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
         | 
| 931 | 
            +
                model = _create_vision_transformer(
         | 
| 932 | 
            +
                    'deit_small_distilled_patch16_224', pretrained=pretrained,  distilled=True, **model_kwargs)
         | 
| 933 | 
            +
                return model
         | 
| 934 | 
            +
             | 
| 935 | 
            +
             | 
| 936 | 
            +
            @register_model
         | 
| 937 | 
            +
            def deit_base_distilled_patch16_224(pretrained=False, **kwargs):
         | 
| 938 | 
            +
                """ DeiT-base distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
         | 
| 939 | 
            +
                ImageNet-1k weights from https://github.com/facebookresearch/deit.
         | 
| 940 | 
            +
                """
         | 
| 941 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
         | 
| 942 | 
            +
                model = _create_vision_transformer(
         | 
| 943 | 
            +
                    'deit_base_distilled_patch16_224', pretrained=pretrained,  distilled=True, **model_kwargs)
         | 
| 944 | 
            +
                return model
         | 
| 945 | 
            +
             | 
| 946 | 
            +
             | 
| 947 | 
            +
            @register_model
         | 
| 948 | 
            +
            def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
         | 
| 949 | 
            +
                """ DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
         | 
| 950 | 
            +
                ImageNet-1k weights from https://github.com/facebookresearch/deit.
         | 
| 951 | 
            +
                """
         | 
| 952 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
         | 
| 953 | 
            +
                model = _create_vision_transformer(
         | 
| 954 | 
            +
                    'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs)
         | 
| 955 | 
            +
                return model
         | 
| 956 | 
            +
             | 
| 957 | 
            +
             | 
| 958 | 
            +
            @register_model
         | 
| 959 | 
            +
            def vit_base_patch16_224_miil_in21k(pretrained=False, **kwargs):
         | 
| 960 | 
            +
                """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 961 | 
            +
                Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
         | 
| 962 | 
            +
                """
         | 
| 963 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs)
         | 
| 964 | 
            +
                model = _create_vision_transformer('vit_base_patch16_224_miil_in21k', pretrained=pretrained, **model_kwargs)
         | 
| 965 | 
            +
                return model
         | 
| 966 | 
            +
             | 
| 967 | 
            +
             | 
| 968 | 
            +
            @register_model
         | 
| 969 | 
            +
            def vit_base_patch16_224_miil(pretrained=False, **kwargs):
         | 
| 970 | 
            +
                """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
         | 
| 971 | 
            +
                Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
         | 
| 972 | 
            +
                """
         | 
| 973 | 
            +
                model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs)
         | 
| 974 | 
            +
                model = _create_vision_transformer('vit_base_patch16_224_miil', pretrained=pretrained, **model_kwargs)
         | 
| 975 | 
            +
                return model
         | 
