File size: 2,032 Bytes
7754b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import torch
import torch.utils.data as data
import numpy as np

from PIL import Image
import h5py

__all__ = ['ImagenetResults']


class Imagenet_Segmentation(data.Dataset):
    CLASSES = 2

    def __init__(self,
                 path,
                 transform=None,
                 target_transform=None):
        self.path = path
        self.transform = transform
        self.target_transform = target_transform
        self.h5py = None
        tmp = h5py.File(path, 'r')
        self.data_length = len(tmp['/value/img'])
        tmp.close()
        del tmp

    def __getitem__(self, index):

        if self.h5py is None:
            self.h5py = h5py.File(self.path, 'r')

        img = np.array(self.h5py[self.h5py['/value/img'][index, 0]]).transpose((2, 1, 0))
        target = np.array(self.h5py[self.h5py[self.h5py['/value/gt'][index, 0]][0, 0]]).transpose((1, 0))

        img = Image.fromarray(img).convert('RGB')
        target = Image.fromarray(target)

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = np.array(self.target_transform(target)).astype('int32')
            target = torch.from_numpy(target).long()

        return img, target

    def __len__(self):
        return self.data_length


class ImagenetResults(data.Dataset):
    def __init__(self, path):
        super(ImagenetResults, self).__init__()

        self.path = os.path.join(path, 'results.hdf5')
        self.data = None

        print('Reading dataset length...')
        with h5py.File(self.path, 'r') as f:
            self.data_length = len(f['/image'])

    def __len__(self):
        return self.data_length

    def __getitem__(self, item):
        if self.data is None:
            self.data = h5py.File(self.path, 'r')

        image = torch.tensor(self.data['image'][item])
        vis = torch.tensor(self.data['vis'][item])
        target = torch.tensor(self.data['target'][item]).long()

        return image, vis, target