Spaces:
Build error
Build error
Zero GPU
Browse files- app.py +86 -103
- diffrhythm/infer/infer.py +4 -5
- diffrhythm/infer/infer_utils.py +1 -2
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from einops import rearrange
|
|
| 9 |
import argparse
|
| 10 |
import json
|
| 11 |
import os
|
|
|
|
| 12 |
from tqdm import tqdm
|
| 13 |
import random
|
| 14 |
import numpy as np
|
|
@@ -22,13 +23,15 @@ from diffrhythm.infer.infer_utils import (
|
|
| 22 |
)
|
| 23 |
from diffrhythm.infer.infer import inference
|
| 24 |
|
| 25 |
-
|
|
|
|
| 26 |
cfm, tokenizer, muq, vae = prepare_model(device)
|
| 27 |
cfm = torch.compile(cfm)
|
| 28 |
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
-
sway_sampling_coef = -1 if
|
| 32 |
lrc_prompt, start_time = get_lrc_token(lrc, tokenizer, device)
|
| 33 |
style_prompt = get_style_prompt(muq, ref_audio_path)
|
| 34 |
negative_style_prompt = get_negative_style_prompt(device)
|
|
@@ -48,7 +51,7 @@ def infer_music(lrc, ref_audio_path, steps, sway_sampling_coef_bool, max_frames=
|
|
| 48 |
|
| 49 |
def R1_infer1(theme, tags_gen, language):
|
| 50 |
try:
|
| 51 |
-
client = OpenAI(api_key="
|
| 52 |
|
| 53 |
llm_prompt = """
|
| 54 |
请围绕"{theme}"主题生成一首符合"{tags}"风格的完整歌词。生成的{language}语言的歌词。
|
|
@@ -82,7 +85,7 @@ def R1_infer1(theme, tags_gen, language):
|
|
| 82 |
|
| 83 |
|
| 84 |
def R1_infer2(tags_lyrics, lyrics_input):
|
| 85 |
-
client = OpenAI(api_key="
|
| 86 |
|
| 87 |
llm_prompt = """
|
| 88 |
{lyrics_input}这是一首歌的歌词,每一行是一句歌词,{tags_lyrics}是我希望这首歌的风格,我现在想要给这首歌的每一句歌词打时间戳得到LRC,我希望时间戳分配应根据歌曲的标签、歌词的情感、节奏来合理推测,而非机械地按照歌词长度分配。第一句歌词的时间戳应考虑前奏长度,避免歌词从 `[00:00.00]` 直接开始。严格按照 LRC 格式输出歌词,每行格式为 `[mm:ss.xx]歌词内容`。最后的结果只输出LRC,不需要其他的解释。
|
|
@@ -110,10 +113,32 @@ css = """
|
|
| 110 |
white-space: pre-wrap; /* 保留换行 */
|
| 111 |
line-height: 1.5; /* 行高优化 */
|
| 112 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
"""
|
| 114 |
|
| 115 |
with gr.Blocks(css=css) as demo:
|
| 116 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
with gr.Tabs() as tabs:
|
| 119 |
|
|
@@ -144,31 +169,26 @@ with gr.Blocks(css=css) as demo:
|
|
| 144 |
placeholder="Input the full lyrics",
|
| 145 |
lines=12,
|
| 146 |
max_lines=50,
|
| 147 |
-
elem_classes="lyrics-scroll-box"
|
|
|
|
| 148 |
)
|
| 149 |
-
audio_prompt = gr.Audio(label="Audio Prompt", type="filepath")
|
| 150 |
|
| 151 |
with gr.Column():
|
| 152 |
steps = gr.Slider(
|
| 153 |
minimum=10,
|
| 154 |
-
maximum=
|
| 155 |
value=32,
|
| 156 |
step=1,
|
| 157 |
label="Diffusion Steps",
|
| 158 |
interactive=True,
|
| 159 |
elem_id="step_slider"
|
| 160 |
)
|
| 161 |
-
sway_sampling_coef_bool = gr.Radio(
|
| 162 |
-
choices=[("False", False), ("True", True)],
|
| 163 |
-
label="Use sway_sampling_coef",
|
| 164 |
-
value=False,
|
| 165 |
-
interactive=True,
|
| 166 |
-
elem_classes="horizontal-radio"
|
| 167 |
-
)
|
| 168 |
lyrics_btn = gr.Button("Submit", variant="primary")
|
| 169 |
audio_output = gr.Audio(label="Audio Result", type="filepath", elem_id="audio_output")
|
| 170 |
|
| 171 |
-
|
|
|
|
| 172 |
gr.Examples(
|
| 173 |
examples=[
|
| 174 |
["./gift_of_the_world.wav"],
|
|
@@ -177,59 +197,21 @@ with gr.Blocks(css=css) as demo:
|
|
| 177 |
],
|
| 178 |
inputs=[audio_prompt],
|
| 179 |
label="Audio Examples",
|
| 180 |
-
examples_per_page=3
|
|
|
|
| 181 |
)
|
| 182 |
|
| 183 |
gr.Examples(
|
| 184 |
examples=[
|
| 185 |
-
["""[00:
|
| 186 |
-
[00:13.20]Your shadow dances on the dashboard shrine
|
| 187 |
-
[00:16.85]Neon ghosts in gasoline rain
|
| 188 |
-
[00:20.40]I hear your laughter down the midnight train
|
| 189 |
-
[00:24.15]Static whispers through frayed wires
|
| 190 |
-
[00:27.65]Guitar strings hum our cathedral choirs
|
| 191 |
-
[00:31.30]Flicker screens show reruns of June
|
| 192 |
-
[00:34.90]I'm drowning in this mercury lagoon
|
| 193 |
-
[00:38.55]Electric veins pulse through concrete skies
|
| 194 |
-
[00:42.10]Your name echoes in the hollow where my heartbeat lies
|
| 195 |
-
[00:45.75]We're satellites trapped in parallel light
|
| 196 |
-
[00:49.25]Burning through the atmosphere of endless night
|
| 197 |
-
[01:00.00]Dusty vinyl spins reverse
|
| 198 |
-
[01:03.45]Our polaroid timeline bleeds through the verse
|
| 199 |
-
[01:07.10]Telescope aimed at dead stars
|
| 200 |
-
[01:10.65]Still tracing constellations through prison bars
|
| 201 |
-
[01:14.30]Electric veins pulse through concrete skies
|
| 202 |
-
[01:17.85]Your name echoes in the hollow where my heartbeat lies
|
| 203 |
-
[01:21.50]We're satellites trapped in parallel light
|
| 204 |
-
[01:25.05]Burning through the atmosphere of endless night
|
| 205 |
-
[02:10.00]Clockwork gears grind moonbeams to rust
|
| 206 |
-
[02:13.50]Our fingerprint smudged by interstellar dust
|
| 207 |
-
[02:17.15]Velvet thunder rolls through my veins
|
| 208 |
-
[02:20.70]Chasing phantom trains through solar plane
|
| 209 |
-
[02:24.35]Electric veins pulse through concrete skies
|
| 210 |
-
[02:27.90]Your name echoes in the hollow where my heartbeat lies"""],
|
| 211 |
-
["""[00:05.00]Stardust whispers in your eyes
|
| 212 |
-
[00:09.30]Moonlight paints our silhouettes
|
| 213 |
-
[00:13.75]Tides bring secrets from the deep
|
| 214 |
-
[00:18.20]Where forever's breath is kept
|
| 215 |
-
[00:22.90]We dance through constellations' maze
|
| 216 |
-
[00:27.15]Footprints melt in cosmic waves
|
| 217 |
-
[00:31.65]Horizons hum our silent vow
|
| 218 |
-
[00:36.10]Time unravels here and now
|
| 219 |
-
[00:40.85]Eternal embers in the night oh oh oh
|
| 220 |
-
[00:45.25]Healing scars with liquid light
|
| 221 |
-
[00:49.70]Galaxies write our refrain
|
| 222 |
-
[00:54.15]Love reborn in endless rain
|
| 223 |
-
[01:15.30]Paper boats of memories
|
| 224 |
-
[01:19.75]Float through veins of ancient trees
|
| 225 |
-
[01:24.20]Your laughter spins aurora threads
|
| 226 |
-
[01:28.65]Weaving dawn through featherbed"""]
|
| 227 |
],
|
| 228 |
-
inputs=[lrc],
|
| 229 |
label="Lrc Examples",
|
| 230 |
-
examples_per_page=2
|
|
|
|
| 231 |
)
|
| 232 |
-
|
| 233 |
# page 2
|
| 234 |
with gr.Tab("LLM Generate LRC", id=1):
|
| 235 |
with gr.Row():
|
|
@@ -241,8 +223,26 @@ with gr.Blocks(css=css) as demo:
|
|
| 241 |
gr.Markdown("### Method 1: Generate from Theme")
|
| 242 |
theme = gr.Textbox(label="theme", placeholder="Enter song theme, e.g. Love and Heartbreak")
|
| 243 |
tags_gen = gr.Textbox(label="tags", placeholder="Example: male pop confidence healing")
|
| 244 |
-
language = gr.Dropdown(["zh", "en"], label="language", value="en")
|
|
|
|
| 245 |
gen_from_theme_btn = gr.Button("Generate LRC (From Theme)", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
with gr.Group(visible=True):
|
| 248 |
gr.Markdown("### Method 2: Add Timestamps to Lyrics")
|
|
@@ -250,55 +250,37 @@ with gr.Blocks(css=css) as demo:
|
|
| 250 |
lyrics_input = gr.Textbox(
|
| 251 |
label="Raw Lyrics (without timestamps)",
|
| 252 |
placeholder="Enter plain lyrics (without timestamps), e.g.:\nYesterday\nAll my troubles...",
|
| 253 |
-
lines=
|
| 254 |
max_lines=50,
|
| 255 |
elem_classes="lyrics-scroll-box"
|
| 256 |
)
|
|
|
|
| 257 |
gen_from_lyrics_btn = gr.Button("Generate LRC (From Lyrics)", variant="primary")
|
| 258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
with gr.Column():
|
| 260 |
lrc_output = gr.Textbox(
|
| 261 |
label="Generated LRC Lyrics",
|
| 262 |
placeholder="Timed lyrics will appear here",
|
| 263 |
-
lines=
|
| 264 |
elem_classes="lrc-output",
|
| 265 |
show_copy_button=True
|
| 266 |
)
|
| 267 |
-
|
| 268 |
-
# Examples section
|
| 269 |
-
gr.Examples(
|
| 270 |
-
examples=[
|
| 271 |
-
[
|
| 272 |
-
"Love and Heartbreak",
|
| 273 |
-
"female vocal emotional piano pop",
|
| 274 |
-
"en"
|
| 275 |
-
],
|
| 276 |
-
[
|
| 277 |
-
"Heroic Epic",
|
| 278 |
-
"male choir orchestral powerful",
|
| 279 |
-
"zh"
|
| 280 |
-
]
|
| 281 |
-
],
|
| 282 |
-
inputs=[theme, tags_gen, language],
|
| 283 |
-
label="Examples: Generate from Theme"
|
| 284 |
-
)
|
| 285 |
-
|
| 286 |
-
gr.Examples(
|
| 287 |
-
examples=[
|
| 288 |
-
[
|
| 289 |
-
"acoustic folk happy",
|
| 290 |
-
"""I'm sitting here in the boring room
|
| 291 |
-
It's just another rainy Sunday afternoon"""
|
| 292 |
-
],
|
| 293 |
-
[
|
| 294 |
-
"electronic dance energetic",
|
| 295 |
-
"""We're living in a material world
|
| 296 |
-
And I am a material girl"""
|
| 297 |
-
]
|
| 298 |
-
],
|
| 299 |
-
inputs=[tags_lyrics, lyrics_input],
|
| 300 |
-
label="Examples: Generate from Lyrics"
|
| 301 |
-
)
|
| 302 |
|
| 303 |
# Bind functions
|
| 304 |
gen_from_theme_btn.click(
|
|
@@ -321,10 +303,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 321 |
|
| 322 |
lyrics_btn.click(
|
| 323 |
fn=infer_music,
|
| 324 |
-
inputs=[lrc, audio_prompt, steps
|
| 325 |
outputs=audio_output
|
| 326 |
)
|
| 327 |
-
|
|
|
|
| 328 |
demo.queue().launch(show_api=False, show_error=True)
|
| 329 |
|
| 330 |
|
|
|
|
| 9 |
import argparse
|
| 10 |
import json
|
| 11 |
import os
|
| 12 |
+
import spaces
|
| 13 |
from tqdm import tqdm
|
| 14 |
import random
|
| 15 |
import numpy as np
|
|
|
|
| 23 |
)
|
| 24 |
from diffrhythm.infer.infer import inference
|
| 25 |
|
| 26 |
+
|
| 27 |
+
device='cuda'
|
| 28 |
cfm, tokenizer, muq, vae = prepare_model(device)
|
| 29 |
cfm = torch.compile(cfm)
|
| 30 |
|
| 31 |
+
@spaces.GPU
|
| 32 |
+
def infer_music(lrc, ref_audio_path, steps, max_frames=2048, device='cuda'):
|
| 33 |
|
| 34 |
+
sway_sampling_coef = -1 if steps < 32 else None
|
| 35 |
lrc_prompt, start_time = get_lrc_token(lrc, tokenizer, device)
|
| 36 |
style_prompt = get_style_prompt(muq, ref_audio_path)
|
| 37 |
negative_style_prompt = get_negative_style_prompt(device)
|
|
|
|
| 51 |
|
| 52 |
def R1_infer1(theme, tags_gen, language):
|
| 53 |
try:
|
| 54 |
+
client = OpenAI(api_key="3581722f-9abc-49cf-9792-fa962cad9c4f", base_url = "https://ark.cn-beijing.volces.com/api/v3")
|
| 55 |
|
| 56 |
llm_prompt = """
|
| 57 |
请围绕"{theme}"主题生成一首符合"{tags}"风格的完整歌词。生成的{language}语言的歌词。
|
|
|
|
| 85 |
|
| 86 |
|
| 87 |
def R1_infer2(tags_lyrics, lyrics_input):
|
| 88 |
+
client = OpenAI(api_key="3581722f-9abc-49cf-9792-fa962cad9c4f", base_url = "https://ark.cn-beijing.volces.com/api/v3")
|
| 89 |
|
| 90 |
llm_prompt = """
|
| 91 |
{lyrics_input}这是一首歌的歌词,每一行是一句歌词,{tags_lyrics}是我希望这首歌的风格,我现在想要给这首歌的每一句歌词打时间戳得到LRC,我希望时间戳分配应根据歌曲的标签、歌词的情感、节奏来合理推测,而非机械地按照歌词长度分配。第一句歌词的时间戳应考虑前奏长度,避免歌词从 `[00:00.00]` 直接开始。严格按照 LRC 格式输出歌词,每行格式为 `[mm:ss.xx]歌词内容`。最后的结果只输出LRC,不需要其他的解释。
|
|
|
|
| 113 |
white-space: pre-wrap; /* 保留换行 */
|
| 114 |
line-height: 1.5; /* 行高优化 */
|
| 115 |
}
|
| 116 |
+
|
| 117 |
+
.gr-examples {
|
| 118 |
+
background: transparent !important;
|
| 119 |
+
border: 1px solid #e0e0e0 !important;
|
| 120 |
+
border-radius: 8px;
|
| 121 |
+
margin: 1rem 0 !important;
|
| 122 |
+
padding: 1rem !important;
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
"""
|
| 126 |
|
| 127 |
with gr.Blocks(css=css) as demo:
|
| 128 |
+
gr.Markdown("<h1 style='text-align: center'>DiffRhythm(谛韵)</h1>")
|
| 129 |
+
gr.HTML("""
|
| 130 |
+
<div style="display:flex; justify-content: center; column-gap:4px;">
|
| 131 |
+
<a href="https://github.com/ASLP-lab/DiffRhythm">
|
| 132 |
+
<img src='https://img.shields.io/badge/Arxiv-Paper-blue'>
|
| 133 |
+
</a>
|
| 134 |
+
<a href="https://github.com/ASLP-lab/DiffRhythm">
|
| 135 |
+
<img src='https://img.shields.io/badge/GitHub-Repo-green'>
|
| 136 |
+
</a>
|
| 137 |
+
<a href="https://aslp-lab.github.io/DiffRhythm.github.io/">
|
| 138 |
+
<img src='https://img.shields.io/badge/Project-Page-brown'>
|
| 139 |
+
</a>
|
| 140 |
+
</div>
|
| 141 |
+
""")
|
| 142 |
|
| 143 |
with gr.Tabs() as tabs:
|
| 144 |
|
|
|
|
| 169 |
placeholder="Input the full lyrics",
|
| 170 |
lines=12,
|
| 171 |
max_lines=50,
|
| 172 |
+
elem_classes="lyrics-scroll-box",
|
| 173 |
+
value="""[00:05.00]Stardust whispers in your eyes\n[00:09.30]Moonlight paints our silhouettes\n[00:13.75]Tides bring secrets from the deep\n[00:18.20]Where forever's breath is kept\n[00:22.90]We dance through constellations' maze\n[00:27.15]Footprints melt in cosmic waves\n[00:31.65]Horizons hum our silent vow\n[00:36.10]Time unravels here and now\n[00:40.85]Eternal embers in the night oh oh oh\n[00:45.25]Healing scars with liquid light\n[00:49.70]Galaxies write our refrain\n[00:54.15]Love reborn in endless rain\n[01:00.00]Interlude\n[01:15.30]Paper boats of memories\n[01:19.75]Float through veins of ancient trees\n[01:24.20]Your laughter spins aurora threads\n[01:28.65]Weaving dawn through featherbed"""
|
| 174 |
)
|
| 175 |
+
audio_prompt = gr.Audio(label="Audio Prompt", type="filepath", value="./gift_of_the_world.wav")
|
| 176 |
|
| 177 |
with gr.Column():
|
| 178 |
steps = gr.Slider(
|
| 179 |
minimum=10,
|
| 180 |
+
maximum=100,
|
| 181 |
value=32,
|
| 182 |
step=1,
|
| 183 |
label="Diffusion Steps",
|
| 184 |
interactive=True,
|
| 185 |
elem_id="step_slider"
|
| 186 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
lyrics_btn = gr.Button("Submit", variant="primary")
|
| 188 |
audio_output = gr.Audio(label="Audio Result", type="filepath", elem_id="audio_output")
|
| 189 |
|
| 190 |
+
|
| 191 |
+
|
| 192 |
gr.Examples(
|
| 193 |
examples=[
|
| 194 |
["./gift_of_the_world.wav"],
|
|
|
|
| 197 |
],
|
| 198 |
inputs=[audio_prompt],
|
| 199 |
label="Audio Examples",
|
| 200 |
+
examples_per_page=3,
|
| 201 |
+
elem_id="audio-examples-container"
|
| 202 |
)
|
| 203 |
|
| 204 |
gr.Examples(
|
| 205 |
examples=[
|
| 206 |
+
["""[00:05.00]Stardust whispers in your eyes\n[00:09.30]Moonlight paints our silhouettes\n[00:13.75]Tides bring secrets from the deep\n[00:18.20]Where forever's breath is kept\n[00:22.90]We dance through constellations' maze\n[00:27.15]Footprints melt in cosmic waves\n[00:31.65]Horizons hum our silent vow\n[00:36.10]Time unravels here and now\n[00:40.85]Eternal embers in the night oh oh oh\n[00:45.25]Healing scars with liquid light\n[00:49.70]Galaxies write our refrain\n[00:54.15]Love reborn in endless rain\n[01:00.00]Interlude\n[01:15.30]Paper boats of memories\n[01:19.75]Float through veins of ancient trees\n[01:24.20]Your laughter spins aurora threads\n[01:28.65]Weaving dawn through featherbed"""],
|
| 207 |
+
["""[00:10.00]Moonlight spills through broken blinds\n[00:13.20]Your shadow dances on the dashboard shrine\n[00:16.85]Neon ghosts in gasoline rain\n[00:20.40]I hear your laughter down the midnight train\n[00:24.15]Static whispers through frayed wires\n[00:27.65]Guitar strings hum our cathedral choirs\n[00:31.30]Flicker screens show reruns of June\n[00:34.90]I'm drowning in this mercury lagoon\n[00:38.55]Electric veins pulse through concrete skies\n[00:42.10]Your name echoes in the hollow where my heartbeat lies\n[00:45.75]We're satellites trapped in parallel light\n[00:49.25]Burning through the atmosphere of endless night\n[01:00.00]Dusty vinyl spins reverse\n[01:03.45]Our polaroid timeline bleeds through the verse\n[01:07.10]Telescope aimed at dead stars\n[01:10.65]Still tracing constellations through prison bars\n[01:14.30]Electric veins pulse through concrete skies\n[01:17.85]Your name echoes in the hollow where my heartbeat lies\n[01:21.50]We're satellites trapped in parallel light\n[01:25.05]Burning through the atmosphere of endless night\n[02:10.00]Clockwork gears grind moonbeams to rust\n[02:13.50]Our fingerprint smudged by interstellar dust\n[02:17.15]Velvet thunder rolls through my veins\n[02:20.70]Chasing phantom trains through solar plane\n[02:24.35]Electric veins pulse through concrete skies\n[02:27.90]Your name echoes in the hollow where my heartbeat lies"""]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
],
|
| 209 |
+
inputs=[lrc],
|
| 210 |
label="Lrc Examples",
|
| 211 |
+
examples_per_page=2,
|
| 212 |
+
elem_id="lrc-examples-container",
|
| 213 |
)
|
| 214 |
+
|
| 215 |
# page 2
|
| 216 |
with gr.Tab("LLM Generate LRC", id=1):
|
| 217 |
with gr.Row():
|
|
|
|
| 223 |
gr.Markdown("### Method 1: Generate from Theme")
|
| 224 |
theme = gr.Textbox(label="theme", placeholder="Enter song theme, e.g. Love and Heartbreak")
|
| 225 |
tags_gen = gr.Textbox(label="tags", placeholder="Example: male pop confidence healing")
|
| 226 |
+
# language = gr.Dropdown(["zh", "en"], label="language", value="en")
|
| 227 |
+
language = gr.Radio(["zh", "en"], label="Language", value="en")
|
| 228 |
gen_from_theme_btn = gr.Button("Generate LRC (From Theme)", variant="primary")
|
| 229 |
+
|
| 230 |
+
gr.Examples(
|
| 231 |
+
examples=[
|
| 232 |
+
[
|
| 233 |
+
"Love and Heartbreak",
|
| 234 |
+
"vocal emotional piano pop",
|
| 235 |
+
"en"
|
| 236 |
+
],
|
| 237 |
+
[
|
| 238 |
+
"Heroic Epic",
|
| 239 |
+
"choir orchestral powerful",
|
| 240 |
+
"zh"
|
| 241 |
+
]
|
| 242 |
+
],
|
| 243 |
+
inputs=[theme, tags_gen, language],
|
| 244 |
+
label="Examples: Generate from Theme"
|
| 245 |
+
)
|
| 246 |
|
| 247 |
with gr.Group(visible=True):
|
| 248 |
gr.Markdown("### Method 2: Add Timestamps to Lyrics")
|
|
|
|
| 250 |
lyrics_input = gr.Textbox(
|
| 251 |
label="Raw Lyrics (without timestamps)",
|
| 252 |
placeholder="Enter plain lyrics (without timestamps), e.g.:\nYesterday\nAll my troubles...",
|
| 253 |
+
lines=10,
|
| 254 |
max_lines=50,
|
| 255 |
elem_classes="lyrics-scroll-box"
|
| 256 |
)
|
| 257 |
+
|
| 258 |
gen_from_lyrics_btn = gr.Button("Generate LRC (From Lyrics)", variant="primary")
|
| 259 |
|
| 260 |
+
gr.Examples(
|
| 261 |
+
examples=[
|
| 262 |
+
[
|
| 263 |
+
"acoustic folk happy",
|
| 264 |
+
"""I'm sitting here in the boring room\nIt's just another rainy Sunday afternoon"""
|
| 265 |
+
],
|
| 266 |
+
[
|
| 267 |
+
"electronic dance energetic",
|
| 268 |
+
"""We're living in a material world\nAnd I am a material girl"""
|
| 269 |
+
]
|
| 270 |
+
],
|
| 271 |
+
inputs=[tags_lyrics, lyrics_input],
|
| 272 |
+
label="Examples: Generate from Lyrics"
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
with gr.Column():
|
| 277 |
lrc_output = gr.Textbox(
|
| 278 |
label="Generated LRC Lyrics",
|
| 279 |
placeholder="Timed lyrics will appear here",
|
| 280 |
+
lines=57,
|
| 281 |
elem_classes="lrc-output",
|
| 282 |
show_copy_button=True
|
| 283 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
# Bind functions
|
| 286 |
gen_from_theme_btn.click(
|
|
|
|
| 303 |
|
| 304 |
lyrics_btn.click(
|
| 305 |
fn=infer_music,
|
| 306 |
+
inputs=[lrc, audio_prompt, steps],
|
| 307 |
outputs=audio_output
|
| 308 |
)
|
| 309 |
+
|
| 310 |
+
|
| 311 |
demo.queue().launch(show_api=False, show_error=True)
|
| 312 |
|
| 313 |
|
diffrhythm/infer/infer.py
CHANGED
|
@@ -90,14 +90,13 @@ def inference(cfm_model, vae_model, cond, text, duration, style_prompt, negative
|
|
| 90 |
generated = generated.to(torch.float32)
|
| 91 |
latent = generated.transpose(1, 2) # [b d t]
|
| 92 |
|
| 93 |
-
output = decode_audio(latent, vae_model)
|
| 94 |
|
| 95 |
# Rearrange audio batch to a single sequence
|
| 96 |
output = rearrange(output, "b d n -> d (b n)")
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
return output
|
| 101 |
|
| 102 |
if __name__ == "__main__":
|
| 103 |
parser = argparse.ArgumentParser()
|
|
|
|
| 90 |
generated = generated.to(torch.float32)
|
| 91 |
latent = generated.transpose(1, 2) # [b d t]
|
| 92 |
|
| 93 |
+
output = decode_audio(latent, vae_model, chunked=False)
|
| 94 |
|
| 95 |
# Rearrange audio batch to a single sequence
|
| 96 |
output = rearrange(output, "b d n -> d (b n)")
|
| 97 |
+
output_tensor = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).cpu()
|
| 98 |
+
output_np = output_tensor.numpy().T.astype(np.float32)
|
| 99 |
+
return (44100, output_np)
|
|
|
|
| 100 |
|
| 101 |
if __name__ == "__main__":
|
| 102 |
parser = argparse.ArgumentParser()
|
diffrhythm/infer/infer_utils.py
CHANGED
|
@@ -34,8 +34,7 @@ def prepare_model(device):
|
|
| 34 |
|
| 35 |
# prepare vae
|
| 36 |
vae_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-vae", filename="vae_model.pt")
|
| 37 |
-
|
| 38 |
-
vae = torch.jit.load(vae_ckpt_path, map_location=device)
|
| 39 |
|
| 40 |
return cfm, tokenizer, muq, vae
|
| 41 |
|
|
|
|
| 34 |
|
| 35 |
# prepare vae
|
| 36 |
vae_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-vae", filename="vae_model.pt")
|
| 37 |
+
vae = torch.jit.load(vae_ckpt_path).to(device)
|
|
|
|
| 38 |
|
| 39 |
return cfm, tokenizer, muq, vae
|
| 40 |
|