Spaces:
Runtime error
Runtime error
Create train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from model import CFM, UNetT, DiT, Trainer
|
| 2 |
+
from model.utils import get_tokenizer
|
| 3 |
+
from model.dataset import load_dataset
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# -------------------------- Dataset Settings --------------------------- #
|
| 7 |
+
|
| 8 |
+
target_sample_rate = 24000
|
| 9 |
+
n_mel_channels = 100
|
| 10 |
+
hop_length = 256
|
| 11 |
+
|
| 12 |
+
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
|
| 13 |
+
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
| 14 |
+
dataset_name = "Emilia_ZH_EN"
|
| 15 |
+
|
| 16 |
+
# -------------------------- Training Settings -------------------------- #
|
| 17 |
+
|
| 18 |
+
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
|
| 19 |
+
|
| 20 |
+
learning_rate = 7.5e-5
|
| 21 |
+
|
| 22 |
+
batch_size_per_gpu = 38400 # 8 GPUs, 8 * 38400 = 307200
|
| 23 |
+
batch_size_type = "frame" # "frame" or "sample"
|
| 24 |
+
max_samples = 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
| 25 |
+
grad_accumulation_steps = 1 # note: updates = steps / grad_accumulation_steps
|
| 26 |
+
max_grad_norm = 1.0
|
| 27 |
+
|
| 28 |
+
epochs = 11 # use linear decay, thus epochs control the slope
|
| 29 |
+
num_warmup_updates = 20000 # warmup steps
|
| 30 |
+
save_per_updates = 50000 # save checkpoint per steps
|
| 31 |
+
last_per_steps = 5000 # save last checkpoint per steps
|
| 32 |
+
|
| 33 |
+
# model params
|
| 34 |
+
if exp_name == "F5TTS_Base":
|
| 35 |
+
wandb_resume_id = None
|
| 36 |
+
model_cls = DiT
|
| 37 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
| 38 |
+
elif exp_name == "E2TTS_Base":
|
| 39 |
+
wandb_resume_id = None
|
| 40 |
+
model_cls = UNetT
|
| 41 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# ----------------------------------------------------------------------- #
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def main():
|
| 48 |
+
if tokenizer == "custom":
|
| 49 |
+
tokenizer_path = tokenizer_path
|
| 50 |
+
else:
|
| 51 |
+
tokenizer_path = dataset_name
|
| 52 |
+
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
| 53 |
+
|
| 54 |
+
mel_spec_kwargs = dict(
|
| 55 |
+
target_sample_rate=target_sample_rate,
|
| 56 |
+
n_mel_channels=n_mel_channels,
|
| 57 |
+
hop_length=hop_length,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
model = CFM(
|
| 61 |
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
| 62 |
+
mel_spec_kwargs=mel_spec_kwargs,
|
| 63 |
+
vocab_char_map=vocab_char_map,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
trainer = Trainer(
|
| 67 |
+
model,
|
| 68 |
+
epochs,
|
| 69 |
+
learning_rate,
|
| 70 |
+
num_warmup_updates=num_warmup_updates,
|
| 71 |
+
save_per_updates=save_per_updates,
|
| 72 |
+
checkpoint_path=f"ckpts/{exp_name}",
|
| 73 |
+
batch_size=batch_size_per_gpu,
|
| 74 |
+
batch_size_type=batch_size_type,
|
| 75 |
+
max_samples=max_samples,
|
| 76 |
+
grad_accumulation_steps=grad_accumulation_steps,
|
| 77 |
+
max_grad_norm=max_grad_norm,
|
| 78 |
+
wandb_project="CFM-TTS",
|
| 79 |
+
wandb_run_name=exp_name,
|
| 80 |
+
wandb_resume_id=wandb_resume_id,
|
| 81 |
+
last_per_steps=last_per_steps,
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
| 85 |
+
trainer.train(
|
| 86 |
+
train_dataset,
|
| 87 |
+
resumable_with_seed=666, # seed for shuffling dataset
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
if __name__ == "__main__":
|
| 92 |
+
main()
|