File size: 1,861 Bytes
9e21259
200226c
9e21259
edfcd79
200226c
c5cb933
74aec6d
edfcd79
5cfd0f2
edfcd79
200226c
 
 
 
 
6694cc8
edfcd79
 
9e21259
 
 
 
 
 
 
200226c
9e21259
 
edfcd79
9e21259
 
 
 
 
200226c
5e52cf2
 
 
 
 
 
 
 
 
9e21259
 
a1ff9d0
 
 
 
 
 
 
 
200226c
9e21259
200226c
fb31468
8f9c91d
fb31468
9e21259
edfcd79
 
200226c
a1ff9d0
 
200226c
9e21259
 
200226c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import gradio as gr
from optimum.intel import OVStableDiffusionPipeline

model_id = "yujiepan/dreamshaper-8-lcm-openvino-w8a8"
pipeline = OVStableDiffusionPipeline.from_pretrained(model_id, device='CPU')
pipeline.sampler = "dpm++2s_a" 
num_inference_steps = 28

def infer(prompt):
    image = pipeline(
        prompt=prompt,
        guidance_scale=1.0,
        num_inference_steps=num_inference_steps,
        width=512,
        height=512,
        num_images_per_prompt=1,
    ).images[0]
    return image

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# Demo : yujiepan/dreamshaper-8-lcm-openvino-w8a8 ⚡")
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(label="Result", show_label=False)

        #with gr.Accordion("Advanced Settings", open=False):
        #    num_inference_steps = gr.Slider(
        #        label="Number of inference steps",
        #        minimum=1,
        #        maximum=50,
        #        step=1,
        #        value=28,
        #    )

        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result]
        )

    run_button.click(
        fn=infer,
        #inputs=[prompt, num_inference_steps],
        inputs=[prompt],
        outputs=[result]
    )

demo.queue().launch(share=True)