Spaces:
Running
on
Zero
Running
on
Zero
Delete app-backup.py
Browse files- app-backup.py +0 -847
app-backup.py
DELETED
@@ -1,847 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
import os
|
4 |
-
import re
|
5 |
-
import tempfile
|
6 |
-
import gc # garbage collector ์ถ๊ฐ
|
7 |
-
from collections.abc import Iterator
|
8 |
-
from threading import Thread
|
9 |
-
import json
|
10 |
-
import requests
|
11 |
-
import cv2
|
12 |
-
import gradio as gr
|
13 |
-
import spaces
|
14 |
-
import torch
|
15 |
-
from loguru import logger
|
16 |
-
from PIL import Image
|
17 |
-
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
18 |
-
|
19 |
-
# CSV/TXT ๋ถ์
|
20 |
-
import pandas as pd
|
21 |
-
# PDF ํ
์คํธ ์ถ์ถ
|
22 |
-
import PyPDF2
|
23 |
-
|
24 |
-
##############################################################################
|
25 |
-
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์ ์ถ๊ฐ
|
26 |
-
##############################################################################
|
27 |
-
def clear_cuda_cache():
|
28 |
-
"""CUDA ์บ์๋ฅผ ๋ช
์์ ์ผ๋ก ๋น์๋๋ค."""
|
29 |
-
if torch.cuda.is_available():
|
30 |
-
torch.cuda.empty_cache()
|
31 |
-
gc.collect()
|
32 |
-
|
33 |
-
##############################################################################
|
34 |
-
# SERPHouse API key from environment variable
|
35 |
-
##############################################################################
|
36 |
-
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
|
37 |
-
|
38 |
-
##############################################################################
|
39 |
-
# ๊ฐ๋จํ ํค์๋ ์ถ์ถ ํจ์ (ํ๊ธ + ์ํ๋ฒณ + ์ซ์ + ๊ณต๋ฐฑ ๋ณด์กด)
|
40 |
-
##############################################################################
|
41 |
-
def extract_keywords(text: str, top_k: int = 5) -> str:
|
42 |
-
"""
|
43 |
-
1) ํ๊ธ(๊ฐ-ํฃ), ์์ด(a-zA-Z), ์ซ์(0-9), ๊ณต๋ฐฑ๋ง ๋จ๊น
|
44 |
-
2) ๊ณต๋ฐฑ ๊ธฐ์ค ํ ํฐ ๋ถ๋ฆฌ
|
45 |
-
3) ์ต๋ top_k๊ฐ๋ง
|
46 |
-
"""
|
47 |
-
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text)
|
48 |
-
tokens = text.split()
|
49 |
-
key_tokens = tokens[:top_k]
|
50 |
-
return " ".join(key_tokens)
|
51 |
-
|
52 |
-
##############################################################################
|
53 |
-
# SerpHouse Live endpoint ํธ์ถ
|
54 |
-
# - ์์ 20๊ฐ ๊ฒฐ๊ณผ JSON์ LLM์ ๋๊ธธ ๋ link, snippet ๋ฑ ๋ชจ๋ ํฌํจ
|
55 |
-
##############################################################################
|
56 |
-
def do_web_search(query: str) -> str:
|
57 |
-
"""
|
58 |
-
์์ 20๊ฐ 'organic' ๊ฒฐ๊ณผ item ์ ์ฒด(์ ๋ชฉ, link, snippet ๋ฑ)๋ฅผ
|
59 |
-
JSON ๋ฌธ์์ด ํํ๋ก ๋ฐํ
|
60 |
-
"""
|
61 |
-
try:
|
62 |
-
url = "https://api.serphouse.com/serp/live"
|
63 |
-
|
64 |
-
# ๊ธฐ๋ณธ GET ๋ฐฉ์์ผ๋ก ํ๋ผ๋ฏธํฐ ๊ฐ์ํํ๊ณ ๊ฒฐ๊ณผ ์๋ฅผ 20๊ฐ๋ก ์ ํ
|
65 |
-
params = {
|
66 |
-
"q": query,
|
67 |
-
"domain": "google.com",
|
68 |
-
"serp_type": "web", # ๊ธฐ๋ณธ ์น ๊ฒ์
|
69 |
-
"device": "desktop",
|
70 |
-
"lang": "en",
|
71 |
-
"num": "20" # ์ต๋ 20๊ฐ ๊ฒฐ๊ณผ๋ง ์์ฒญ
|
72 |
-
}
|
73 |
-
|
74 |
-
headers = {
|
75 |
-
"Authorization": f"Bearer {SERPHOUSE_API_KEY}"
|
76 |
-
}
|
77 |
-
|
78 |
-
logger.info(f"SerpHouse API ํธ์ถ ์ค... ๊ฒ์์ด: {query}")
|
79 |
-
logger.info(f"์์ฒญ URL: {url} - ํ๋ผ๋ฏธํฐ: {params}")
|
80 |
-
|
81 |
-
# GET ์์ฒญ ์ํ
|
82 |
-
response = requests.get(url, headers=headers, params=params, timeout=60)
|
83 |
-
response.raise_for_status()
|
84 |
-
|
85 |
-
logger.info(f"SerpHouse API ์๋ต ์ํ ์ฝ๋: {response.status_code}")
|
86 |
-
data = response.json()
|
87 |
-
|
88 |
-
# ๋ค์ํ ์๋ต ๊ตฌ์กฐ ์ฒ๋ฆฌ
|
89 |
-
results = data.get("results", {})
|
90 |
-
organic = None
|
91 |
-
|
92 |
-
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 1
|
93 |
-
if isinstance(results, dict) and "organic" in results:
|
94 |
-
organic = results["organic"]
|
95 |
-
|
96 |
-
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 2 (์ค์ฒฉ๋ results)
|
97 |
-
elif isinstance(results, dict) and "results" in results:
|
98 |
-
if isinstance(results["results"], dict) and "organic" in results["results"]:
|
99 |
-
organic = results["results"]["organic"]
|
100 |
-
|
101 |
-
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 3 (์ต์์ organic)
|
102 |
-
elif "organic" in data:
|
103 |
-
organic = data["organic"]
|
104 |
-
|
105 |
-
if not organic:
|
106 |
-
logger.warning("์๋ต์์ organic ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค.")
|
107 |
-
logger.debug(f"์๋ต ๊ตฌ์กฐ: {list(data.keys())}")
|
108 |
-
if isinstance(results, dict):
|
109 |
-
logger.debug(f"results ๊ตฌ์กฐ: {list(results.keys())}")
|
110 |
-
return "No web search results found or unexpected API response structure."
|
111 |
-
|
112 |
-
# ๊ฒฐ๊ณผ ์ ์ ํ ๋ฐ ์ปจํ
์คํธ ๊ธธ์ด ์ต์ ํ
|
113 |
-
max_results = min(20, len(organic))
|
114 |
-
limited_organic = organic[:max_results]
|
115 |
-
|
116 |
-
# ๊ฒฐ๊ณผ ํ์ ๊ฐ์ - ๋งํฌ๋ค์ด ํ์์ผ๋ก ์ถ๋ ฅํ์ฌ ๊ฐ๋
์ฑ ํฅ์
|
117 |
-
summary_lines = []
|
118 |
-
for idx, item in enumerate(limited_organic, start=1):
|
119 |
-
title = item.get("title", "No title")
|
120 |
-
link = item.get("link", "#")
|
121 |
-
snippet = item.get("snippet", "No description")
|
122 |
-
displayed_link = item.get("displayed_link", link)
|
123 |
-
|
124 |
-
# ๋งํฌ๋ค์ด ํ์ (๋งํฌ ํด๋ฆญ ๊ฐ๋ฅ)
|
125 |
-
summary_lines.append(
|
126 |
-
f"### Result {idx}: {title}\n\n"
|
127 |
-
f"{snippet}\n\n"
|
128 |
-
f"**์ถ์ฒ**: [{displayed_link}]({link})\n\n"
|
129 |
-
f"---\n"
|
130 |
-
)
|
131 |
-
|
132 |
-
# ๋ชจ๋ธ์๊ฒ ๋ช
ํํ ์ง์นจ ์ถ๊ฐ
|
133 |
-
instructions = """
|
134 |
-
# ์น ๊ฒ์ ๊ฒฐ๊ณผ
|
135 |
-
์๋๋ ๊ฒ์ ๊ฒฐ๊ณผ์
๋๋ค. ์ง๋ฌธ์ ๋ต๋ณํ ๋ ์ด ์ ๋ณด๋ฅผ ํ์ฉํ์ธ์:
|
136 |
-
1. ๊ฐ ๊ฒฐ๊ณผ์ ์ ๋ชฉ, ๋ด์ฉ, ์ถ์ฒ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ์ธ์
|
137 |
-
2. ๋ต๋ณ์ ๊ด๋ จ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ช
์์ ์ผ๋ก ์ธ์ฉํ์ธ์ (์: "X ์ถ์ฒ์ ๋ฐ๋ฅด๋ฉด...")
|
138 |
-
3. ์๋ต์ ์ค์ ์ถ์ฒ ๋งํฌ๋ฅผ ํฌํจํ์ธ์
|
139 |
-
4. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข
ํฉํ์ฌ ๋ต๋ณํ์ธ์
|
140 |
-
"""
|
141 |
-
|
142 |
-
search_results = instructions + "\n".join(summary_lines)
|
143 |
-
logger.info(f"๊ฒ์ ๊ฒฐ๊ณผ {len(limited_organic)}๊ฐ ์ฒ๋ฆฌ ์๋ฃ")
|
144 |
-
return search_results
|
145 |
-
|
146 |
-
except Exception as e:
|
147 |
-
logger.error(f"Web search failed: {e}")
|
148 |
-
return f"Web search failed: {str(e)}"
|
149 |
-
|
150 |
-
|
151 |
-
##############################################################################
|
152 |
-
# ๋ชจ๋ธ/ํ๋ก์ธ์ ๋ก๋ฉ
|
153 |
-
##############################################################################
|
154 |
-
MAX_CONTENT_CHARS = 2000
|
155 |
-
MAX_INPUT_LENGTH = 2096 # ์ต๋ ์
๋ ฅ ํ ํฐ ์ ์ ํ ์ถ๊ฐ
|
156 |
-
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")
|
157 |
-
|
158 |
-
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
159 |
-
model = Gemma3ForConditionalGeneration.from_pretrained(
|
160 |
-
model_id,
|
161 |
-
device_map="auto",
|
162 |
-
torch_dtype=torch.bfloat16,
|
163 |
-
attn_implementation="eager" # ๊ฐ๋ฅํ๋ค๋ฉด "flash_attention_2"๋ก ๋ณ๊ฒฝ
|
164 |
-
)
|
165 |
-
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
166 |
-
|
167 |
-
|
168 |
-
##############################################################################
|
169 |
-
# CSV, TXT, PDF ๋ถ์ ํจ์
|
170 |
-
##############################################################################
|
171 |
-
def analyze_csv_file(path: str) -> str:
|
172 |
-
"""
|
173 |
-
CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์.
|
174 |
-
"""
|
175 |
-
try:
|
176 |
-
df = pd.read_csv(path)
|
177 |
-
if df.shape[0] > 50 or df.shape[1] > 10:
|
178 |
-
df = df.iloc[:50, :10]
|
179 |
-
df_str = df.to_string()
|
180 |
-
if len(df_str) > MAX_CONTENT_CHARS:
|
181 |
-
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
182 |
-
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
|
183 |
-
except Exception as e:
|
184 |
-
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"
|
185 |
-
|
186 |
-
|
187 |
-
def analyze_txt_file(path: str) -> str:
|
188 |
-
"""
|
189 |
-
TXT ํ์ผ ์ ๋ฌธ ์ฝ๊ธฐ. ๋๋ฌด ๊ธธ๋ฉด ์ผ๋ถ๋ง ํ์.
|
190 |
-
"""
|
191 |
-
try:
|
192 |
-
with open(path, "r", encoding="utf-8") as f:
|
193 |
-
text = f.read()
|
194 |
-
if len(text) > MAX_CONTENT_CHARS:
|
195 |
-
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
196 |
-
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
|
197 |
-
except Exception as e:
|
198 |
-
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"
|
199 |
-
|
200 |
-
|
201 |
-
def pdf_to_markdown(pdf_path: str) -> str:
|
202 |
-
"""
|
203 |
-
PDF ํ
์คํธ๋ฅผ Markdown์ผ๋ก ๋ณํ. ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํ
์คํธ ์ถ์ถ.
|
204 |
-
"""
|
205 |
-
text_chunks = []
|
206 |
-
try:
|
207 |
-
with open(pdf_path, "rb") as f:
|
208 |
-
reader = PyPDF2.PdfReader(f)
|
209 |
-
max_pages = min(5, len(reader.pages))
|
210 |
-
for page_num in range(max_pages):
|
211 |
-
page = reader.pages[page_num]
|
212 |
-
page_text = page.extract_text() or ""
|
213 |
-
page_text = page_text.strip()
|
214 |
-
if page_text:
|
215 |
-
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
|
216 |
-
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
|
217 |
-
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
|
218 |
-
if len(reader.pages) > max_pages:
|
219 |
-
text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
|
220 |
-
except Exception as e:
|
221 |
-
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"
|
222 |
-
|
223 |
-
full_text = "\n".join(text_chunks)
|
224 |
-
if len(full_text) > MAX_CONTENT_CHARS:
|
225 |
-
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
226 |
-
|
227 |
-
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
228 |
-
|
229 |
-
|
230 |
-
##############################################################################
|
231 |
-
# ์ด๋ฏธ์ง/๋น๋์ค ์
๋ก๋ ์ ํ ๊ฒ์ฌ
|
232 |
-
##############################################################################
|
233 |
-
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
234 |
-
image_count = 0
|
235 |
-
video_count = 0
|
236 |
-
for path in paths:
|
237 |
-
if path.endswith(".mp4"):
|
238 |
-
video_count += 1
|
239 |
-
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
|
240 |
-
image_count += 1
|
241 |
-
return image_count, video_count
|
242 |
-
|
243 |
-
|
244 |
-
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
245 |
-
image_count = 0
|
246 |
-
video_count = 0
|
247 |
-
for item in history:
|
248 |
-
if item["role"] != "user" or isinstance(item["content"], str):
|
249 |
-
continue
|
250 |
-
if isinstance(item["content"], list) and len(item["content"]) > 0:
|
251 |
-
file_path = item["content"][0]
|
252 |
-
if isinstance(file_path, str):
|
253 |
-
if file_path.endswith(".mp4"):
|
254 |
-
video_count += 1
|
255 |
-
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
|
256 |
-
image_count += 1
|
257 |
-
return image_count, video_count
|
258 |
-
|
259 |
-
|
260 |
-
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
261 |
-
media_files = []
|
262 |
-
for f in message["files"]:
|
263 |
-
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
|
264 |
-
media_files.append(f)
|
265 |
-
|
266 |
-
new_image_count, new_video_count = count_files_in_new_message(media_files)
|
267 |
-
history_image_count, history_video_count = count_files_in_history(history)
|
268 |
-
image_count = history_image_count + new_image_count
|
269 |
-
video_count = history_video_count + new_video_count
|
270 |
-
|
271 |
-
if video_count > 1:
|
272 |
-
gr.Warning("Only one video is supported.")
|
273 |
-
return False
|
274 |
-
if video_count == 1:
|
275 |
-
if image_count > 0:
|
276 |
-
gr.Warning("Mixing images and videos is not allowed.")
|
277 |
-
return False
|
278 |
-
if "<image>" in message["text"]:
|
279 |
-
gr.Warning("Using <image> tags with video files is not supported.")
|
280 |
-
return False
|
281 |
-
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
282 |
-
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
283 |
-
return False
|
284 |
-
|
285 |
-
if "<image>" in message["text"]:
|
286 |
-
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
287 |
-
image_tag_count = message["text"].count("<image>")
|
288 |
-
if image_tag_count != len(image_files):
|
289 |
-
gr.Warning("The number of <image> tags in the text does not match the number of image files.")
|
290 |
-
return False
|
291 |
-
|
292 |
-
return True
|
293 |
-
|
294 |
-
|
295 |
-
##############################################################################
|
296 |
-
# ๋น๋์ค ์ฒ๋ฆฌ - ์์ ํ์ผ ์ถ์ ์ฝ๋ ์ถ๊ฐ
|
297 |
-
##############################################################################
|
298 |
-
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
299 |
-
vidcap = cv2.VideoCapture(video_path)
|
300 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
301 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
302 |
-
frame_interval = max(int(fps), int(total_frames / 10))
|
303 |
-
frames = []
|
304 |
-
|
305 |
-
for i in range(0, total_frames, frame_interval):
|
306 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
307 |
-
success, image = vidcap.read()
|
308 |
-
if success:
|
309 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
310 |
-
# ์ด๋ฏธ์ง ํฌ๊ธฐ ์ค์ด๊ธฐ ์ถ๊ฐ
|
311 |
-
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
|
312 |
-
pil_image = Image.fromarray(image)
|
313 |
-
timestamp = round(i / fps, 2)
|
314 |
-
frames.append((pil_image, timestamp))
|
315 |
-
if len(frames) >= 5:
|
316 |
-
break
|
317 |
-
|
318 |
-
vidcap.release()
|
319 |
-
return frames
|
320 |
-
|
321 |
-
|
322 |
-
def process_video(video_path: str) -> tuple[list[dict], list[str]]:
|
323 |
-
content = []
|
324 |
-
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ ์ํ ๋ฆฌ์คํธ
|
325 |
-
|
326 |
-
frames = downsample_video(video_path)
|
327 |
-
for frame in frames:
|
328 |
-
pil_image, timestamp = frame
|
329 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
330 |
-
pil_image.save(temp_file.name)
|
331 |
-
temp_files.append(temp_file.name) # ์ถ์ ์ ์ํด ๊ฒฝ๋ก ์ ์ฅ
|
332 |
-
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
333 |
-
content.append({"type": "image", "url": temp_file.name})
|
334 |
-
|
335 |
-
return content, temp_files
|
336 |
-
|
337 |
-
|
338 |
-
##############################################################################
|
339 |
-
# interleaved <image> ์ฒ๋ฆฌ
|
340 |
-
##############################################################################
|
341 |
-
def process_interleaved_images(message: dict) -> list[dict]:
|
342 |
-
parts = re.split(r"(<image>)", message["text"])
|
343 |
-
content = []
|
344 |
-
image_index = 0
|
345 |
-
|
346 |
-
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
347 |
-
|
348 |
-
for part in parts:
|
349 |
-
if part == "<image>" and image_index < len(image_files):
|
350 |
-
content.append({"type": "image", "url": image_files[image_index]})
|
351 |
-
image_index += 1
|
352 |
-
elif part.strip():
|
353 |
-
content.append({"type": "text", "text": part.strip()})
|
354 |
-
else:
|
355 |
-
if isinstance(part, str) and part != "<image>":
|
356 |
-
content.append({"type": "text", "text": part})
|
357 |
-
return content
|
358 |
-
|
359 |
-
|
360 |
-
##############################################################################
|
361 |
-
# PDF + CSV + TXT + ์ด๋ฏธ์ง/๋น๋์ค
|
362 |
-
##############################################################################
|
363 |
-
def is_image_file(file_path: str) -> bool:
|
364 |
-
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
|
365 |
-
|
366 |
-
def is_video_file(file_path: str) -> bool:
|
367 |
-
return file_path.endswith(".mp4")
|
368 |
-
|
369 |
-
def is_document_file(file_path: str) -> bool:
|
370 |
-
return (
|
371 |
-
file_path.lower().endswith(".pdf")
|
372 |
-
or file_path.lower().endswith(".csv")
|
373 |
-
or file_path.lower().endswith(".txt")
|
374 |
-
)
|
375 |
-
|
376 |
-
|
377 |
-
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
|
378 |
-
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ฉ ๏ฟฝ๏ฟฝ์คํธ
|
379 |
-
|
380 |
-
if not message["files"]:
|
381 |
-
return [{"type": "text", "text": message["text"]}], temp_files
|
382 |
-
|
383 |
-
video_files = [f for f in message["files"] if is_video_file(f)]
|
384 |
-
image_files = [f for f in message["files"] if is_image_file(f)]
|
385 |
-
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
|
386 |
-
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
|
387 |
-
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
|
388 |
-
|
389 |
-
content_list = [{"type": "text", "text": message["text"]}]
|
390 |
-
|
391 |
-
for csv_path in csv_files:
|
392 |
-
csv_analysis = analyze_csv_file(csv_path)
|
393 |
-
content_list.append({"type": "text", "text": csv_analysis})
|
394 |
-
|
395 |
-
for txt_path in txt_files:
|
396 |
-
txt_analysis = analyze_txt_file(txt_path)
|
397 |
-
content_list.append({"type": "text", "text": txt_analysis})
|
398 |
-
|
399 |
-
for pdf_path in pdf_files:
|
400 |
-
pdf_markdown = pdf_to_markdown(pdf_path)
|
401 |
-
content_list.append({"type": "text", "text": pdf_markdown})
|
402 |
-
|
403 |
-
if video_files:
|
404 |
-
video_content, video_temp_files = process_video(video_files[0])
|
405 |
-
content_list += video_content
|
406 |
-
temp_files.extend(video_temp_files)
|
407 |
-
return content_list, temp_files
|
408 |
-
|
409 |
-
if "<image>" in message["text"] and image_files:
|
410 |
-
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
|
411 |
-
if content_list and content_list[0]["type"] == "text":
|
412 |
-
content_list = content_list[1:]
|
413 |
-
return interleaved_content + content_list, temp_files
|
414 |
-
else:
|
415 |
-
for img_path in image_files:
|
416 |
-
content_list.append({"type": "image", "url": img_path})
|
417 |
-
|
418 |
-
return content_list, temp_files
|
419 |
-
|
420 |
-
|
421 |
-
##############################################################################
|
422 |
-
# history -> LLM ๋ฉ์์ง ๋ณํ
|
423 |
-
##############################################################################
|
424 |
-
def process_history(history: list[dict]) -> list[dict]:
|
425 |
-
messages = []
|
426 |
-
current_user_content: list[dict] = []
|
427 |
-
for item in history:
|
428 |
-
if item["role"] == "assistant":
|
429 |
-
if current_user_content:
|
430 |
-
messages.append({"role": "user", "content": current_user_content})
|
431 |
-
current_user_content = []
|
432 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
|
433 |
-
else:
|
434 |
-
content = item["content"]
|
435 |
-
if isinstance(content, str):
|
436 |
-
current_user_content.append({"type": "text", "text": content})
|
437 |
-
elif isinstance(content, list) and len(content) > 0:
|
438 |
-
file_path = content[0]
|
439 |
-
if is_image_file(file_path):
|
440 |
-
current_user_content.append({"type": "image", "url": file_path})
|
441 |
-
else:
|
442 |
-
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})
|
443 |
-
|
444 |
-
if current_user_content:
|
445 |
-
messages.append({"role": "user", "content": current_user_content})
|
446 |
-
|
447 |
-
return messages
|
448 |
-
|
449 |
-
|
450 |
-
##############################################################################
|
451 |
-
# ๋ชจ๋ธ ์์ฑ ํจ์์์ OOM ์บ์น
|
452 |
-
##############################################################################
|
453 |
-
def _model_gen_with_oom_catch(**kwargs):
|
454 |
-
"""
|
455 |
-
๋ณ๋ ์ค๋ ๋์์ OutOfMemoryError๋ฅผ ์ก์์ฃผ๊ธฐ ์ํด
|
456 |
-
"""
|
457 |
-
try:
|
458 |
-
model.generate(**kwargs)
|
459 |
-
except torch.cuda.OutOfMemoryError:
|
460 |
-
raise RuntimeError(
|
461 |
-
"[OutOfMemoryError] GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ๋ถ์กฑํฉ๋๋ค. "
|
462 |
-
"Max New Tokens์ ์ค์ด๊ฑฐ๋, ํ๋กฌํํธ ๊ธธ์ด๋ฅผ ์ค์ฌ์ฃผ์ธ์."
|
463 |
-
)
|
464 |
-
finally:
|
465 |
-
# ์์ฑ ์๋ฃ ํ ํ๋ฒ ๋ ์บ์ ๋น์ฐ๊ธฐ
|
466 |
-
clear_cuda_cache()
|
467 |
-
|
468 |
-
|
469 |
-
##############################################################################
|
470 |
-
# ๋ฉ์ธ ์ถ๋ก ํจ์ (web search ์ฒดํฌ ์ ์๋ ํค์๋์ถ์ถ->๊ฒ์->๊ฒฐ๊ณผ system msg)
|
471 |
-
##############################################################################
|
472 |
-
@spaces.GPU(duration=120)
|
473 |
-
def run(
|
474 |
-
message: dict,
|
475 |
-
history: list[dict],
|
476 |
-
system_prompt: str = "",
|
477 |
-
max_new_tokens: int = 512,
|
478 |
-
use_web_search: bool = False,
|
479 |
-
web_search_query: str = "",
|
480 |
-
) -> Iterator[str]:
|
481 |
-
|
482 |
-
if not validate_media_constraints(message, history):
|
483 |
-
yield ""
|
484 |
-
return
|
485 |
-
|
486 |
-
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ฉ
|
487 |
-
|
488 |
-
try:
|
489 |
-
combined_system_msg = ""
|
490 |
-
|
491 |
-
# ๋ด๋ถ์ ์ผ๋ก๋ง ์ฌ์ฉ (UI์์๋ ๋ณด์ด์ง ์์)
|
492 |
-
if system_prompt.strip():
|
493 |
-
combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n"
|
494 |
-
|
495 |
-
if use_web_search:
|
496 |
-
user_text = message["text"]
|
497 |
-
ws_query = extract_keywords(user_text, top_k=5)
|
498 |
-
if ws_query.strip():
|
499 |
-
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
|
500 |
-
ws_result = do_web_search(ws_query)
|
501 |
-
combined_system_msg += f"[Search top-20 Full Items Based on user prompt]\n{ws_result}\n\n"
|
502 |
-
# >>> ์ถ๊ฐ๋ ์๋ด ๋ฌธ๊ตฌ (๊ฒ๏ฟฝ๏ฟฝ๏ฟฝ ๊ฒฐ๊ณผ์ link ๋ฑ ์ถ์ฒ๋ฅผ ํ์ฉ)
|
503 |
-
combined_system_msg += "[์ฐธ๊ณ : ์ ๊ฒ์๊ฒฐ๊ณผ ๋ด์ฉ๊ณผ link๋ฅผ ์ถ์ฒ๋ก ์ธ์ฉํ์ฌ ๋ต๋ณํด ์ฃผ์ธ์.]\n\n"
|
504 |
-
combined_system_msg += """
|
505 |
-
[์ค์ ์ง์์ฌํญ]
|
506 |
-
1. ๋ต๋ณ์ ๊ฒ์ ๊ฒฐ๊ณผ์์ ์ฐพ์ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ฐ๋์ ์ธ์ฉํ์ธ์.
|
507 |
-
2. ์ถ์ฒ ์ธ์ฉ ์ "[์ถ์ฒ ์ ๋ชฉ](๋งํฌ)" ํ์์ ๋งํฌ๋ค์ด ๋งํฌ๋ฅผ ์ฌ์ฉํ์ธ์.
|
508 |
-
3. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข
ํฉํ์ฌ ๋ต๋ณํ์ธ์.
|
509 |
-
4. ๋ต๋ณ ๋ง์ง๋ง์ "์ฐธ๊ณ ์๋ฃ:" ์น์
์ ์ถ๊ฐํ๊ณ ์ฌ์ฉํ ์ฃผ์ ์ถ์ฒ ๋งํฌ๋ฅผ ๋์ดํ์ธ์.
|
510 |
-
"""
|
511 |
-
else:
|
512 |
-
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"
|
513 |
-
|
514 |
-
messages = []
|
515 |
-
if combined_system_msg.strip():
|
516 |
-
messages.append({
|
517 |
-
"role": "system",
|
518 |
-
"content": [{"type": "text", "text": combined_system_msg.strip()}],
|
519 |
-
})
|
520 |
-
|
521 |
-
messages.extend(process_history(history))
|
522 |
-
|
523 |
-
user_content, user_temp_files = process_new_user_message(message)
|
524 |
-
temp_files.extend(user_temp_files) # ์์ ํ์ผ ์ถ์
|
525 |
-
|
526 |
-
for item in user_content:
|
527 |
-
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
|
528 |
-
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
529 |
-
messages.append({"role": "user", "content": user_content})
|
530 |
-
|
531 |
-
inputs = processor.apply_chat_template(
|
532 |
-
messages,
|
533 |
-
add_generation_prompt=True,
|
534 |
-
tokenize=True,
|
535 |
-
return_dict=True,
|
536 |
-
return_tensors="pt",
|
537 |
-
).to(device=model.device, dtype=torch.bfloat16)
|
538 |
-
|
539 |
-
# ์
๋ ฅ ํ ํฐ ์ ์ ํ ์ถ๊ฐ
|
540 |
-
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
|
541 |
-
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
|
542 |
-
if 'attention_mask' in inputs:
|
543 |
-
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
|
544 |
-
|
545 |
-
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
546 |
-
gen_kwargs = dict(
|
547 |
-
inputs,
|
548 |
-
streamer=streamer,
|
549 |
-
max_new_tokens=max_new_tokens,
|
550 |
-
)
|
551 |
-
|
552 |
-
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
|
553 |
-
t.start()
|
554 |
-
|
555 |
-
output = ""
|
556 |
-
for new_text in streamer:
|
557 |
-
output += new_text
|
558 |
-
yield output
|
559 |
-
|
560 |
-
except Exception as e:
|
561 |
-
logger.error(f"Error in run: {str(e)}")
|
562 |
-
yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
|
563 |
-
|
564 |
-
finally:
|
565 |
-
# ์์ ํ์ผ ์ญ์
|
566 |
-
for temp_file in temp_files:
|
567 |
-
try:
|
568 |
-
if os.path.exists(temp_file):
|
569 |
-
os.unlink(temp_file)
|
570 |
-
logger.info(f"Deleted temp file: {temp_file}")
|
571 |
-
except Exception as e:
|
572 |
-
logger.warning(f"Failed to delete temp file {temp_file}: {e}")
|
573 |
-
|
574 |
-
# ๋ช
์์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
575 |
-
try:
|
576 |
-
del inputs, streamer
|
577 |
-
except:
|
578 |
-
pass
|
579 |
-
|
580 |
-
clear_cuda_cache()
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
##############################################################################
|
585 |
-
# ์์๋ค (๋ชจ๋ ์์ด๋ก)
|
586 |
-
##############################################################################
|
587 |
-
examples = [
|
588 |
-
[
|
589 |
-
{
|
590 |
-
"text": "Compare the contents of the two PDF files.",
|
591 |
-
"files": [
|
592 |
-
"assets/additional-examples/before.pdf",
|
593 |
-
"assets/additional-examples/after.pdf",
|
594 |
-
],
|
595 |
-
}
|
596 |
-
],
|
597 |
-
[
|
598 |
-
{
|
599 |
-
"text": "Summarize and analyze the contents of the CSV file.",
|
600 |
-
"files": ["assets/additional-examples/sample-csv.csv"],
|
601 |
-
}
|
602 |
-
],
|
603 |
-
[
|
604 |
-
{
|
605 |
-
"text": "Assume the role of a friendly and understanding girlfriend. Describe this video.",
|
606 |
-
"files": ["assets/additional-examples/tmp.mp4"],
|
607 |
-
}
|
608 |
-
],
|
609 |
-
[
|
610 |
-
{
|
611 |
-
"text": "Describe the cover and read the text on it.",
|
612 |
-
"files": ["assets/additional-examples/maz.jpg"],
|
613 |
-
}
|
614 |
-
],
|
615 |
-
[
|
616 |
-
{
|
617 |
-
"text": "I already have this supplement <image> and I plan to buy this product <image>. Are there any precautions when taking them together?",
|
618 |
-
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
|
619 |
-
}
|
620 |
-
],
|
621 |
-
[
|
622 |
-
{
|
623 |
-
"text": "Solve this integral.",
|
624 |
-
"files": ["assets/additional-examples/4.png"],
|
625 |
-
}
|
626 |
-
],
|
627 |
-
[
|
628 |
-
{
|
629 |
-
"text": "When was this ticket issued, and what is its price?",
|
630 |
-
"files": ["assets/additional-examples/2.png"],
|
631 |
-
}
|
632 |
-
],
|
633 |
-
[
|
634 |
-
{
|
635 |
-
"text": "Based on the sequence of these images, create a short story.",
|
636 |
-
"files": [
|
637 |
-
"assets/sample-images/09-1.png",
|
638 |
-
"assets/sample-images/09-2.png",
|
639 |
-
"assets/sample-images/09-3.png",
|
640 |
-
"assets/sample-images/09-4.png",
|
641 |
-
"assets/sample-images/09-5.png",
|
642 |
-
],
|
643 |
-
}
|
644 |
-
],
|
645 |
-
[
|
646 |
-
{
|
647 |
-
"text": "Write Python code using matplotlib to plot a bar chart that matches this image.",
|
648 |
-
"files": ["assets/additional-examples/barchart.png"],
|
649 |
-
}
|
650 |
-
],
|
651 |
-
[
|
652 |
-
{
|
653 |
-
"text": "Read the text in the image and write it out in Markdown format.",
|
654 |
-
"files": ["assets/additional-examples/3.png"],
|
655 |
-
}
|
656 |
-
],
|
657 |
-
[
|
658 |
-
{
|
659 |
-
"text": "What does this sign say?",
|
660 |
-
"files": ["assets/sample-images/02.png"],
|
661 |
-
}
|
662 |
-
],
|
663 |
-
[
|
664 |
-
{
|
665 |
-
"text": "Compare the two images and describe their similarities and differences.",
|
666 |
-
"files": ["assets/sample-images/03.png"],
|
667 |
-
}
|
668 |
-
],
|
669 |
-
]
|
670 |
-
|
671 |
-
##############################################################################
|
672 |
-
# Gradio UI (Blocks) ๊ตฌ์ฑ (์ข์ธก ์ฌ์ด๋ ๋ฉ๋ด ์์ด ์ ์ฒดํ๋ฉด ์ฑํ
)
|
673 |
-
##############################################################################
|
674 |
-
css = """
|
675 |
-
/* 1) UI๋ฅผ ์ฒ์๋ถํฐ ๊ฐ์ฅ ๋๊ฒ (width 100%) ๊ณ ์ ํ์ฌ ํ์ */
|
676 |
-
.gradio-container {
|
677 |
-
background: rgba(255, 255, 255, 0.7); /* ๋ฐฐ๊ฒฝ ํฌ๋ช
๋ ์ฆ๊ฐ */
|
678 |
-
padding: 30px 40px;
|
679 |
-
margin: 20px auto; /* ์์๋ ์ฌ๋ฐฑ๋ง ์ ์ง */
|
680 |
-
width: 100% !important;
|
681 |
-
max-width: none !important; /* 1200px ์ ํ ์ ๊ฑฐ */
|
682 |
-
}
|
683 |
-
.fillable {
|
684 |
-
width: 100% !important;
|
685 |
-
max-width: 100% !important;
|
686 |
-
}
|
687 |
-
/* 2) ๋ฐฐ๊ฒฝ์ ์์ ํ ํฌ๋ช
ํ๊ฒ ๋ณ๊ฒฝ */
|
688 |
-
body {
|
689 |
-
background: transparent; /* ์์ ํฌ๋ช
๋ฐฐ๊ฒฝ */
|
690 |
-
margin: 0;
|
691 |
-
padding: 0;
|
692 |
-
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
|
693 |
-
color: #333;
|
694 |
-
}
|
695 |
-
/* ๋ฒํผ ์์ ์์ ํ ์ ๊ฑฐํ๊ณ ํฌ๋ช
ํ๊ฒ */
|
696 |
-
button, .btn {
|
697 |
-
background: transparent !important; /* ์์ ์์ ํ ์ ๊ฑฐ */
|
698 |
-
border: 1px solid #ddd; /* ๊ฒฝ๊ณ์ ๋ง ์ด์ง ์ถ๊ฐ */
|
699 |
-
color: #333;
|
700 |
-
padding: 12px 24px;
|
701 |
-
text-transform: uppercase;
|
702 |
-
font-weight: bold;
|
703 |
-
letter-spacing: 1px;
|
704 |
-
cursor: pointer;
|
705 |
-
}
|
706 |
-
button:hover, .btn:hover {
|
707 |
-
background: rgba(0, 0, 0, 0.05) !important; /* ํธ๋ฒ ์ ์์ฃผ ์ด์ง ์ด๋ก๊ฒ๋ง */
|
708 |
-
}
|
709 |
-
|
710 |
-
/* examples ๊ด๋ จ ๋ชจ๋ ์์ ์ ๊ฑฐ */
|
711 |
-
#examples_container, .examples-container {
|
712 |
-
margin: auto;
|
713 |
-
width: 90%;
|
714 |
-
background: transparent !important;
|
715 |
-
}
|
716 |
-
#examples_row, .examples-row {
|
717 |
-
justify-content: center;
|
718 |
-
background: transparent !important;
|
719 |
-
}
|
720 |
-
|
721 |
-
/* examples ๋ฒํผ ๋ด๋ถ์ ๋ชจ๋ ์์ ์ ๊ฑฐ */
|
722 |
-
.gr-samples-table button,
|
723 |
-
.gr-samples-table .gr-button,
|
724 |
-
.gr-samples-table .gr-sample-btn,
|
725 |
-
.gr-examples button,
|
726 |
-
.gr-examples .gr-button,
|
727 |
-
.gr-examples .gr-sample-btn,
|
728 |
-
.examples button,
|
729 |
-
.examples .gr-button,
|
730 |
-
.examples .gr-sample-btn {
|
731 |
-
background: transparent !important;
|
732 |
-
border: 1px solid #ddd;
|
733 |
-
color: #333;
|
734 |
-
}
|
735 |
-
|
736 |
-
/* examples ๋ฒํผ ํธ๋ฒ ์์๋ ์์ ์๊ฒ */
|
737 |
-
.gr-samples-table button:hover,
|
738 |
-
.gr-samples-table .gr-button:hover,
|
739 |
-
.gr-samples-table .gr-sample-btn:hover,
|
740 |
-
.gr-examples button:hover,
|
741 |
-
.gr-examples .gr-button:hover,
|
742 |
-
.gr-examples .gr-sample-btn:hover,
|
743 |
-
.examples button:hover,
|
744 |
-
.examples .gr-button:hover,
|
745 |
-
.examples .gr-sample-btn:hover {
|
746 |
-
background: rgba(0, 0, 0, 0.05) !important;
|
747 |
-
}
|
748 |
-
|
749 |
-
/* ์ฑํ
์ธํฐํ์ด์ค ์์๋ค๋ ํฌ๋ช
ํ๊ฒ */
|
750 |
-
.chatbox, .chatbot, .message {
|
751 |
-
background: transparent !important;
|
752 |
-
}
|
753 |
-
|
754 |
-
/* ์
๋ ฅ์ฐฝ ํฌ๋ช
๋ ์กฐ์ */
|
755 |
-
.multimodal-textbox, textarea, input {
|
756 |
-
background: rgba(255, 255, 255, 0.5) !important;
|
757 |
-
}
|
758 |
-
|
759 |
-
/* ๋ชจ๋ ์ปจํ
์ด๋ ์์์ ๋ฐฐ๊ฒฝ์ ์ ๊ฑฐ */
|
760 |
-
.container, .wrap, .box, .panel, .gr-panel {
|
761 |
-
background: transparent !important;
|
762 |
-
}
|
763 |
-
|
764 |
-
/* ์์ ์น์
์ ๋ชจ๋ ์์์์ ๋ฐฐ๊ฒฝ์ ์ ๊ฑฐ */
|
765 |
-
.gr-examples-container, .gr-examples, .gr-sample, .gr-sample-row, .gr-sample-cell {
|
766 |
-
background: transparent !important;
|
767 |
-
}
|
768 |
-
"""
|
769 |
-
|
770 |
-
title_html = """
|
771 |
-
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐ HeartSync๐ </h1>
|
772 |
-
<p align="center" style="font-size:1.1em; color:#555;">
|
773 |
-
โ
Love Dating AI โ
Reasoning & Uncensored โ
Multimodal & VLM โ
Deep-Research & RAG <br>
|
774 |
-
</p>
|
775 |
-
"""
|
776 |
-
|
777 |
-
|
778 |
-
with gr.Blocks(css=css, title="HeartSync") as demo:
|
779 |
-
gr.Markdown(title_html)
|
780 |
-
|
781 |
-
# Display the web search option (while the system prompt and token slider remain hidden)
|
782 |
-
web_search_checkbox = gr.Checkbox(
|
783 |
-
label="Deep Research",
|
784 |
-
value=False
|
785 |
-
)
|
786 |
-
|
787 |
-
# Used internally but not visible to the user
|
788 |
-
system_prompt_box = gr.Textbox(
|
789 |
-
lines=3,
|
790 |
-
value="You are a deep thinking AI that may use extremely long chains of thought to thoroughly analyze the problem and deliberate using systematic reasoning processes to arrive at a correct solution before answering.",
|
791 |
-
visible=False # hidden from view
|
792 |
-
)
|
793 |
-
|
794 |
-
max_tokens_slider = gr.Slider(
|
795 |
-
label="Max New Tokens",
|
796 |
-
minimum=100,
|
797 |
-
maximum=8000,
|
798 |
-
step=50,
|
799 |
-
value=1000,
|
800 |
-
visible=False # hidden from view
|
801 |
-
)
|
802 |
-
|
803 |
-
web_search_text = gr.Textbox(
|
804 |
-
lines=1,
|
805 |
-
label="(Unused) Web Search Query",
|
806 |
-
placeholder="No direct input needed",
|
807 |
-
visible=False # hidden from view
|
808 |
-
)
|
809 |
-
|
810 |
-
# Configure the chat interface
|
811 |
-
chat = gr.ChatInterface(
|
812 |
-
fn=run,
|
813 |
-
type="messages",
|
814 |
-
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
815 |
-
textbox=gr.MultimodalTextbox(
|
816 |
-
file_types=[
|
817 |
-
".webp", ".png", ".jpg", ".jpeg", ".gif",
|
818 |
-
".mp4", ".csv", ".txt", ".pdf"
|
819 |
-
],
|
820 |
-
file_count="multiple",
|
821 |
-
autofocus=True
|
822 |
-
),
|
823 |
-
multimodal=True,
|
824 |
-
additional_inputs=[
|
825 |
-
system_prompt_box,
|
826 |
-
max_tokens_slider,
|
827 |
-
web_search_checkbox,
|
828 |
-
web_search_text,
|
829 |
-
],
|
830 |
-
stop_btn=False,
|
831 |
-
title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>',
|
832 |
-
examples=examples,
|
833 |
-
run_examples_on_click=False,
|
834 |
-
cache_examples=False,
|
835 |
-
css_paths=None,
|
836 |
-
delete_cache=(1800, 1800),
|
837 |
-
)
|
838 |
-
|
839 |
-
# Example section - since examples are already set in ChatInterface, this is for display only
|
840 |
-
with gr.Row(elem_id="examples_row"):
|
841 |
-
with gr.Column(scale=12, elem_id="examples_container"):
|
842 |
-
gr.Markdown("### Example Inputs (click to load)")
|
843 |
-
|
844 |
-
|
845 |
-
if __name__ == "__main__":
|
846 |
-
# Run locally
|
847 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|