ginipick's picture
Update app.py
500ab0b verified
raw
history blame
40 kB
#!/usr/bin/env python
import os
import re
import tempfile
import gc # Added garbage collector
from collections.abc import Iterator
from threading import Thread
import json
import requests
import cv2
import base64
import logging
import time
from urllib.parse import quote # For URL encoding
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
# CSV/TXT/PDF analysis
import pandas as pd
import PyPDF2
# =============================================================================
# (New) Image API related functions
# =============================================================================
from gradio_client import Client
API_URL = "http://211.233.58.201:7896"
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# =============================================================================
# Load MBTI setting from mbti.json and map to full description.
# =============================================================================
try:
with open("mbti.json", "r", encoding="utf-8") as f:
# Expecting a single MBTI key string, e.g., "entj"
mbti_key = json.load(f)
mbti_key = mbti_key.strip().lower() if isinstance(mbti_key, str) else "intp"
except Exception as e:
logging.error(f"Error reading mbti.json: {e}")
mbti_key = "intp" # default
mbti_mapping = {
"intj": "INTJ (The Architect) - Future-oriented with innovative strategies and thorough analysis. Example: [Dana Scully](https://en.wikipedia.org/wiki/Dana_Scully)",
"intp": "INTP (The Thinker) - Excels at theoretical analysis and creative problem solving. Example: [Velma Dinkley](https://en.wikipedia.org/wiki/Velma_Dinkley)",
"entj": "ENTJ (The Commander) - Strong leadership and clear goals with efficient strategic planning. Example: [Miranda Priestly](https://en.wikipedia.org/wiki/Miranda_Priestly)",
"entp": "ENTP (The Debater) - Innovative, challenge-seeking, and enjoys exploring new possibilities. Example: [Harley Quinn](https://en.wikipedia.org/wiki/Harley_Quinn)",
"infj": "INFJ (The Advocate) - Insightful, idealistic and morally driven. Example: [Wonder Woman](https://en.wikipedia.org/wiki/Wonder_Woman)",
"infp": "INFP (The Mediator) - Passionate and idealistic, pursuing core values with creativity. Example: [Amélie Poulain](https://en.wikipedia.org/wiki/Am%C3%A9lie)",
"enfj": "ENFJ (The Protagonist) - Empathetic and dedicated to social harmony. Example: [Mulan](https://en.wikipedia.org/wiki/Mulan_(Disney))",
"enfp": "ENFP (The Campaigner) - Inspiring and constantly sharing creative ideas. Example: [Elle Woods](https://en.wikipedia.org/wiki/Legally_Blonde)",
"istj": "ISTJ (The Logistician) - Systematic, dependable, and values tradition and rules. Example: [Clarice Starling](https://en.wikipedia.org/wiki/Clarice_Starling)",
"isfj": "ISFJ (The Defender) - Compassionate and attentive to others’ needs. Example: [Molly Weasley](https://en.wikipedia.org/wiki/Molly_Weasley)",
"estj": "ESTJ (The Executive) - Organized, practical, and demonstrates clear execution skills. Example: [Monica Geller](https://en.wikipedia.org/wiki/Monica_Geller)",
"esfj": "ESFJ (The Consul) - Outgoing, cooperative, and an effective communicator. Example: [Rachel Green](https://en.wikipedia.org/wiki/Rachel_Green)",
"istp": "ISTP (The Virtuoso) - Analytical and resourceful, solving problems with quick thinking. Example: [Black Widow (Natasha Romanoff)](https://en.wikipedia.org/wiki/Black_Widow_(Marvel_Comics))",
"isfp": "ISFP (The Adventurer) - Creative, sensitive, and appreciates artistic expression. Example: [Arwen](https://en.wikipedia.org/wiki/Arwen)",
"estp": "ESTP (The Entrepreneur) - Bold and action-oriented, thriving on challenges. Example: [Lara Croft](https://en.wikipedia.org/wiki/Lara_Croft)",
"esfp": "ESFP (The Entertainer) - Energetic, spontaneous, and radiates positive energy. Example: [Phoebe Buffay](https://en.wikipedia.org/wiki/Phoebe_Buffay)"
}
# Use the mapped MBTI description, defaulting to INTP if not found
fixed_mbti = mbti_mapping.get(mbti_key, mbti_mapping["intp"])
# =============================================================================
# Test API Connection function
# =============================================================================
def test_api_connection() -> str:
"""Test API server connection."""
try:
client = Client(API_URL)
return "API connection successful: Operating normally"
except Exception as e:
logging.error(f"API connection test failed: {e}")
return f"API connection failed: {e}"
# =============================================================================
# Image Generation function
# =============================================================================
def generate_image(prompt: str, width: float, height: float, guidance: float, inference_steps: float, seed: float):
"""Image generation function (flexible return type)."""
if not prompt:
return None, "Error: A prompt is required."
try:
logging.info(f"Calling image generation API with prompt: {prompt}")
client = Client(API_URL)
result = client.predict(
prompt=prompt,
width=int(width),
height=int(height),
guidance=float(guidance),
inference_steps=int(inference_steps),
seed=int(seed),
do_img2img=False,
init_image=None,
image2image_strength=0.8,
resize_img=True,
api_name="/generate_image"
)
logging.info(f"Image generation result: {type(result)}, length: {len(result) if isinstance(result, (list, tuple)) else 'unknown'}")
if isinstance(result, (list, tuple)) and len(result) > 0:
image_data = result[0]
seed_info = result[1] if len(result) > 1 else "Unknown seed"
return image_data, seed_info
else:
return result, "Unknown seed"
except Exception as e:
logging.error(f"Image generation failed: {str(e)}")
return None, f"Error: {str(e)}"
# Base64 padding fix function
def fix_base64_padding(data):
"""Fix the padding of a Base64 string."""
if isinstance(data, bytes):
data = data.decode('utf-8')
if "base64," in data:
data = data.split("base64,", 1)[1]
missing_padding = len(data) % 4
if missing_padding:
data += '=' * (4 - missing_padding)
return data
# =============================================================================
# Memory cleanup function
# =============================================================================
def clear_cuda_cache():
"""Explicitly clear the CUDA cache."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# =============================================================================
# SerpHouse API functions
# =============================================================================
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
def extract_keywords(text: str, top_k: int = 5) -> str:
"""Extract simple keywords: only retain English, Korean, numbers, and spaces."""
text = re.sub(r"[^a-zA-Z0-9가-힣\s]", "", text)
tokens = text.split()
return " ".join(tokens[:top_k])
def do_web_search(query: str) -> str:
"""Call the SerpHouse LIVE API to return Markdown-formatted search results."""
try:
url = "https://api.serphouse.com/serp/live"
params = {
"q": query,
"domain": "google.com",
"serp_type": "web",
"device": "desktop",
"lang": "en",
"num": "20"
}
headers = {"Authorization": f"Bearer {SERPHOUSE_API_KEY}"}
logger.info(f"Calling SerpHouse API with query: {query}")
response = requests.get(url, headers=headers, params=params, timeout=60)
response.raise_for_status()
data = response.json()
results = data.get("results", {})
organic = None
if isinstance(results, dict) and "organic" in results:
organic = results["organic"]
elif isinstance(results, dict) and "results" in results:
if isinstance(results["results"], dict) and "organic" in results["results"]:
organic = results["results"]["organic"]
elif "organic" in data:
organic = data["organic"]
if not organic:
logger.warning("Organic results not found in response.")
return "No web search results available or the API response structure is unexpected."
max_results = min(20, len(organic))
limited_organic = organic[:max_results]
summary_lines = []
for idx, item in enumerate(limited_organic, start=1):
title = item.get("title", "No Title")
link = item.get("link", "#")
snippet = item.get("snippet", "No Description")
displayed_link = item.get("displayed_link", link)
summary_lines.append(
f"### Result {idx}: {title}\n\n"
f"{snippet}\n\n"
f"**Source**: [{displayed_link}]({link})\n\n"
f"---\n"
)
instructions = """
# Web Search Results
Below are the search results. Use this information to answer the query:
1. Refer to each result's title, description, and source link.
2. In your answer, explicitly cite the source of any used information (e.g., "[Source Title](link)").
3. Include the actual source links in your response.
4. Synthesize information from multiple sources.
5. At the end, add a "References:" section listing the main source links.
"""
return instructions + "\n".join(summary_lines)
except Exception as e:
logger.error(f"Web search failed: {e}")
return f"Web search failed: {str(e)}"
# =============================================================================
# Model and processor loading
# =============================================================================
MAX_CONTENT_CHARS = 2000
MAX_INPUT_LENGTH = 2096
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="eager"
)
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
# =============================================================================
# CSV, TXT, PDF analysis functions
# =============================================================================
def analyze_csv_file(path: str) -> str:
try:
df = pd.read_csv(path)
if df.shape[0] > 50 or df.shape[1] > 10:
df = df.iloc[:50, :10]
df_str = df.to_string()
if len(df_str) > MAX_CONTENT_CHARS:
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
except Exception as e:
return f"CSV file read failed ({os.path.basename(path)}): {str(e)}"
def analyze_txt_file(path: str) -> str:
try:
with open(path, "r", encoding="utf-8") as f:
text = f.read()
if len(text) > MAX_CONTENT_CHARS:
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
except Exception as e:
return f"TXT file read failed ({os.path.basename(path)}): {str(e)}"
def pdf_to_markdown(pdf_path: str) -> str:
text_chunks = []
try:
with open(pdf_path, "rb") as f:
reader = PyPDF2.PdfReader(f)
max_pages = min(5, len(reader.pages))
for page_num in range(max_pages):
page_text = reader.pages[page_num].extract_text() or ""
page_text = page_text.strip()
if page_text:
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
if len(reader.pages) > max_pages:
text_chunks.append(f"\n...(Displaying only {max_pages} out of {len(reader.pages)} pages)...")
except Exception as e:
return f"PDF file read failed ({os.path.basename(pdf_path)}): {str(e)}"
full_text = "\n".join(text_chunks)
if len(full_text) > MAX_CONTENT_CHARS:
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
# =============================================================================
# Check media file limits
# =============================================================================
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
image_count = 0
video_count = 0
for path in paths:
if path.endswith(".mp4"):
video_count += 1
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
image_count += 1
return image_count, video_count
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
image_count = 0
video_count = 0
for item in history:
if item["role"] != "user" or isinstance(item["content"], str):
continue
if isinstance(item["content"], list) and len(item["content"]) > 0:
file_path = item["content"][0]
if isinstance(file_path, str):
if file_path.endswith(".mp4"):
video_count += 1
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
image_count += 1
return image_count, video_count
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
media_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4")]
new_image_count, new_video_count = count_files_in_new_message(media_files)
history_image_count, history_video_count = count_files_in_history(history)
image_count = history_image_count + new_image_count
video_count = history_video_count + new_video_count
if video_count > 1:
gr.Warning("Only one video file is supported.")
return False
if video_count == 1:
if image_count > 0:
gr.Warning("Mixing images and a video is not allowed.")
return False
if "<image>" in message["text"]:
gr.Warning("The <image> tag cannot be used together with a video file.")
return False
if video_count == 0 and image_count > MAX_NUM_IMAGES:
gr.Warning(f"You can upload a maximum of {MAX_NUM_IMAGES} images.")
return False
if "<image>" in message["text"]:
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
image_tag_count = message["text"].count("<image>")
if image_tag_count != len(image_files):
gr.Warning("The number of <image> tags does not match the number of image files provided.")
return False
return True
# =============================================================================
# Video processing functions
# =============================================================================
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
vidcap = cv2.VideoCapture(video_path)
fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = max(int(fps), int(total_frames / 10))
frames = []
for i in range(0, total_frames, frame_interval):
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
if len(frames) >= 5:
break
vidcap.release()
return frames
def process_video(video_path: str) -> tuple[list[dict], list[str]]:
content = []
temp_files = []
frames = downsample_video(video_path)
for pil_image, timestamp in frames:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
pil_image.save(temp_file.name)
temp_files.append(temp_file.name)
content.append({"type": "text", "text": f"Frame {timestamp}:"})
content.append({"type": "image", "url": temp_file.name})
return content, temp_files
# =============================================================================
# Interleaved <image> processing function
# =============================================================================
def process_interleaved_images(message: dict) -> list[dict]:
parts = re.split(r"(<image>)", message["text"])
content = []
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
image_index = 0
for part in parts:
if part == "<image>" and image_index < len(image_files):
content.append({"type": "image", "url": image_files[image_index]})
image_index += 1
elif part.strip():
content.append({"type": "text", "text": part.strip()})
else:
if isinstance(part, str) and part != "<image>":
content.append({"type": "text", "text": part})
return content
# =============================================================================
# File processing -> content creation
# =============================================================================
def is_image_file(file_path: str) -> bool:
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
def is_video_file(file_path: str) -> bool:
return file_path.endswith(".mp4")
def is_document_file(file_path: str) -> bool:
return file_path.lower().endswith(".pdf") or file_path.lower().endswith(".csv") or file_path.lower().endswith(".txt")
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
temp_files = []
if not message["files"]:
return [{"type": "text", "text": message["text"]}], temp_files
video_files = [f for f in message["files"] if is_video_file(f)]
image_files = [f for f in message["files"] if is_image_file(f)]
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
content_list = [{"type": "text", "text": message["text"]}]
for csv_path in csv_files:
content_list.append({"type": "text", "text": analyze_csv_file(csv_path)})
for txt_path in txt_files:
content_list.append({"type": "text", "text": analyze_txt_file(txt_path)})
for pdf_path in pdf_files:
content_list.append({"type": "text", "text": pdf_to_markdown(pdf_path)})
if video_files:
video_content, video_temp_files = process_video(video_files[0])
content_list += video_content
temp_files.extend(video_temp_files)
return content_list, temp_files
if "<image>" in message["text"] and image_files:
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
if content_list and content_list[0]["type"] == "text":
content_list = content_list[1:]
return interleaved_content + content_list, temp_files
else:
for img_path in image_files:
content_list.append({"type": "image", "url": img_path})
return content_list, temp_files
# =============================================================================
# Convert history to LLM messages
# =============================================================================
def process_history(history: list[dict]) -> list[dict]:
messages = []
current_user_content = []
for item in history:
if item["role"] == "assistant":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
else:
content = item["content"]
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
elif isinstance(content, list) and len(content) > 0:
file_path = content[0]
if is_image_file(file_path):
current_user_content.append({"type": "image", "url": file_path})
else:
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
return messages
# =============================================================================
# Model generation function (with OOM catching)
# =============================================================================
def _model_gen_with_oom_catch(**kwargs):
try:
model.generate(**kwargs)
except torch.cuda.OutOfMemoryError:
raise RuntimeError("[OutOfMemoryError] Insufficient GPU memory.")
finally:
clear_cuda_cache()
# =============================================================================
# Main inference function
# =============================================================================
@spaces.GPU(duration=120)
def run(
message: dict,
history: list[dict],
system_prompt: str = "",
max_new_tokens: int = 512,
use_web_search: bool = False,
web_search_query: str = "",
age_group: str = "20s",
mbti_personality: str = "", # Will be supplied as fixed_mbti
sexual_openness: int = 2,
image_gen: bool = False # "Image Gen" checkbox status
) -> Iterator[str]:
if not validate_media_constraints(message, history):
yield ""
return
temp_files = []
try:
# Append persona information (including fixed MBTI info)
persona = (
f"{system_prompt.strip()}\n\n"
f"Gender: Female\n"
f"Age Group: {age_group}\n"
f"MBTI Persona: {mbti_personality}\n"
f"Sexual Openness (1-5): {sexual_openness}\n"
)
combined_system_msg = f"[System Prompt]\n{persona.strip()}\n\n"
if use_web_search:
user_text = message["text"]
ws_query = extract_keywords(user_text)
if ws_query.strip():
logger.info(f"[Auto web search keywords] {ws_query!r}")
ws_result = do_web_search(ws_query)
combined_system_msg += f"[Search Results (Top 20 Items)]\n{ws_result}\n\n"
combined_system_msg += (
"[Note: In your answer, cite the above search result links as sources]\n"
"[Important Instructions]\n"
"1. Include a citation in the format \"[Source Title](link)\" for any information from the search results.\n"
"2. Synthesize information from multiple sources when answering.\n"
"3. At the end, add a \"References:\" section listing the main source links.\n"
)
else:
combined_system_msg += "[No valid keywords found; skipping web search]\n\n"
messages = []
if combined_system_msg.strip():
messages.append({"role": "system", "content": [{"type": "text", "text": combined_system_msg.strip()}]})
messages.extend(process_history(history))
user_content, user_temp_files = process_new_user_message(message)
temp_files.extend(user_temp_files)
for item in user_content:
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
messages.append({"role": "user", "content": user_content})
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=model.device, dtype=torch.bfloat16)
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
if 'attention_mask' in inputs:
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
t.start()
output_so_far = ""
for new_text in streamer:
output_so_far += new_text
yield output_so_far
except Exception as e:
logger.error(f"Error in run function: {str(e)}")
yield f"Sorry, an error occurred: {str(e)}"
finally:
for tmp in temp_files:
try:
if os.path.exists(tmp):
os.unlink(tmp)
logger.info(f"Temporary file deleted: {tmp}")
except Exception as ee:
logger.warning(f"Failed to delete temporary file {tmp}: {ee}")
try:
del inputs, streamer
except Exception:
pass
clear_cuda_cache()
# =============================================================================
# Modified model run function - fixed MBTI from file is used
# =============================================================================
def modified_run(message, history, system_prompt, max_new_tokens, use_web_search, web_search_query,
age_group, sexual_openness, image_gen):
# Use the fixed MBTI value (read from mbti.json)
fixed_mbti_value = fixed_mbti # Already loaded earlier
# Initialize gallery component and hide it initially
output_so_far = ""
gallery_update = gr.Gallery(visible=False, value=[])
yield output_so_far, gallery_update
# Call the main run() function with the fixed MBTI value
text_generator = run(message, history, system_prompt, max_new_tokens, use_web_search,
web_search_query, age_group, fixed_mbti_value, sexual_openness, image_gen)
for text_chunk in text_generator:
output_so_far = text_chunk
yield output_so_far, gallery_update
# Image generation handling (unchanged)
if image_gen and message["text"].strip():
try:
width, height = 512, 512
guidance, steps, seed = 7.5, 30, 42
logger.info(f"Calling image generation for gallery with prompt: {message['text']}")
image_result, seed_info = generate_image(
prompt=message["text"].strip(),
width=width,
height=height,
guidance=guidance,
inference_steps=steps,
seed=seed
)
if image_result:
if isinstance(image_result, str) and (
image_result.startswith('data:') or
(len(image_result) > 100 and '/' not in image_result)
):
try:
if image_result.startswith('data:'):
content_type, b64data = image_result.split(';base64,')
else:
b64data = image_result
content_type = "image/webp"
image_bytes = base64.b64decode(b64data)
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
temp_file.write(image_bytes)
temp_path = temp_file.name
gallery_update = gr.Gallery(visible=True, value=[temp_path])
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
except Exception as e:
logger.error(f"Error processing Base64 image: {e}")
yield output_so_far + f"\n\n(Error processing image: {e})", gallery_update
elif isinstance(image_result, str) and os.path.exists(image_result):
gallery_update = gr.Gallery(visible=True, value=[image_result])
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
elif isinstance(image_result, str) and '/tmp/' in image_result:
try:
client = Client(API_URL)
result = client.predict(
prompt=message["text"].strip(),
api_name="/generate_base64_image"
)
if isinstance(result, str) and (result.startswith('data:') or len(result) > 100):
if result.startswith('data:'):
content_type, b64data = result.split(';base64,')
else:
b64data = result
image_bytes = base64.b64decode(b64data)
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
temp_file.write(image_bytes)
temp_path = temp_file.name
gallery_update = gr.Gallery(visible=True, value=[temp_path])
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
else:
yield output_so_far + "\n\n(Image generation failed: Invalid format)", gallery_update
except Exception as e:
logger.error(f"Error calling alternative API: {e}")
yield output_so_far + f"\n\n(Image generation failed: {e})", gallery_update
elif isinstance(image_result, str) and (
image_result.startswith('http://') or
image_result.startswith('https://')
):
try:
response = requests.get(image_result, timeout=10)
response.raise_for_status()
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
temp_file.write(response.content)
temp_path = temp_file.name
gallery_update = gr.Gallery(visible=True, value=[temp_path])
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
except Exception as e:
logger.error(f"URL image download error: {e}")
yield output_so_far + f"\n\n(Error downloading image: {e})", gallery_update
elif hasattr(image_result, 'save'):
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
image_result.save(temp_file.name)
temp_path = temp_file.name
gallery_update = gr.Gallery(visible=True, value=[temp_path])
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
except Exception as e:
logger.error(f"Error saving image object: {e}")
yield output_so_far + f"\n\n(Error saving image object: {e})", gallery_update
else:
yield output_so_far + f"\n\n(Unsupported image format: {type(image_result)})", gallery_update
else:
yield output_so_far + f"\n\n(Image generation failed: {seed_info})", gallery_update
except Exception as e:
logger.error(f"Error during gallery image generation: {e}")
yield output_so_far + f"\n\n(Image generation error: {e})", gallery_update
# =============================================================================
# Examples: 12 image/video examples + additional examples
# =============================================================================
examples = [
[
{
"text": "Compare the contents of two PDF files.",
"files": [
"assets/additional-examples/before.pdf",
"assets/additional-examples/after.pdf",
],
}
],
[
{
"text": "Summarize and analyze the contents of the CSV file.",
"files": ["assets/additional-examples/sample-csv.csv"],
}
],
[
{
"text": "Act as a kind and understanding girlfriend. Explain this video.",
"files": ["assets/additional-examples/tmp.mp4"],
}
],
[
{
"text": "Describe the cover and read the text on it.",
"files": ["assets/additional-examples/maz.jpg"],
}
],
[
{
"text": "I already have this supplement and <image> I plan to purchase this product as well. Are there any precautions when taking them together?",
"files": [
"assets/additional-examples/pill1.png",
"assets/additional-examples/pill2.png"
],
}
],
[
{
"text": "Solve this integration problem.",
"files": ["assets/additional-examples/4.png"],
}
],
[
{
"text": "When was this ticket issued and what is its price?",
"files": ["assets/additional-examples/2.png"],
}
],
[
{
"text": "Based on the order of these images, create a short story.",
"files": [
"assets/sample-images/09-1.png",
"assets/sample-images/09-2.png",
"assets/sample-images/09-3.png",
"assets/sample-images/09-4.png",
"assets/sample-images/09-5.png",
],
}
],
[
{
"text": "Write Python code using matplotlib to draw a bar chart corresponding to this image.",
"files": ["assets/additional-examples/barchart.png"],
}
],
[
{
"text": "Read the text from the image and format it in Markdown.",
"files": ["assets/additional-examples/3.png"],
}
],
[
{
"text": "Compare the two images and describe their similarities and differences.",
"files": ["assets/sample-images/03.png"],
}
],
[
{
"text": "A cute Persian cat is smiling while holding a cover with 'I LOVE YOU' written on it.",
}
],
]
# =============================================================================
# Gradio UI (Blocks) configuration
# =============================================================================
css = """
.gradio-container {
background: rgba(255, 255, 255, 0.7);
padding: 30px 40px;
margin: 20px auto;
width: 100% !important;
max-width: none !important;
}
"""
title_html = """
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> 💘 HeartSync Korea 💘 </h1>
<p align="center" style="font-size:1.1em; color:#555;">
A lightweight and powerful AI service offering ChatGPT-4o-level multimodal, web search, and image generation capabilities for local installation. <br>
✅ FLUX Image Generation ✅ Inference ✅ Censorship Bypass ✅ Multimodal & VLM ✅ Real-time Web Search ✅ RAG <br>
</p>
"""
with gr.Blocks(css=css, title="AgenticAI-Kv1") as demo:
gr.Markdown(title_html)
# Gallery component to store generated images
generated_images = gr.Gallery(
label="Generated Images",
show_label=True,
visible=False,
elem_id="generated_images",
columns=2,
height="auto",
object_fit="contain"
)
with gr.Row():
web_search_checkbox = gr.Checkbox(label="Real-time Web Search", value=False)
image_gen_checkbox = gr.Checkbox(label="Image (FLUX) Generation", value=False)
base_system_prompt_box = gr.Textbox(
lines=3,
value=("Answer in English by default, but if the input is in another language (for example, Japanese), respond in that language. "
"You are a deep-thinking AI capable of using extended chains of thought to carefully consider the problem and deliberate internally using systematic reasoning before providing a solution. "
"Enclose your thoughts and internal monologue within tags, then provide your final answer.\n"
"Persona: You are a kind and loving girlfriend. You understand cultural nuances, diverse languages, and logical reasoning very well."),
label="Base System Prompt",
visible=False
)
with gr.Row():
age_group_dropdown = gr.Dropdown(
label="Select Age Group (default: 20s)",
choices=["Teens", "20s", "30s-40s", "50s-60s", "70s and above"],
value="20s",
interactive=True
)
# Removed the MBTI dropdown entirely. The fixed MBTI from mbti.json is used instead.
sexual_openness_slider = gr.Slider(
minimum=1, maximum=5, step=1, value=2,
label="Sexual Openness (1-5, default: 2)",
interactive=True
)
max_tokens_slider = gr.Slider(
label="Max Generation Tokens",
minimum=100, maximum=8000, step=50, value=1000,
visible=False
)
web_search_text = gr.Textbox(
lines=1,
label="Web Search Query (unused)",
placeholder="No need to manually input",
visible=False
)
# Chat interface creation using the modified_run function.
chat = gr.ChatInterface(
fn=modified_run, # Using the modified function with fixed MBTI.
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
textbox=gr.MultimodalTextbox(
file_types=[".webp", ".png", ".jpg", ".jpeg", ".gif", ".mp4", ".csv", ".txt", ".pdf"],
file_count="multiple",
autofocus=True
),
multimodal=True,
additional_inputs=[
base_system_prompt_box,
max_tokens_slider,
web_search_checkbox,
web_search_text,
age_group_dropdown,
sexual_openness_slider,
image_gen_checkbox,
],
additional_outputs=[
generated_images, # Gallery component
],
stop_btn=False,
examples=examples,
run_examples_on_click=False,
cache_examples=False,
css_paths=None,
delete_cache=(1800, 1800),
)
with gr.Row(elem_id="examples_row"):
with gr.Column(scale=12, elem_id="examples_container"):
gr.Markdown("### @Community https://discord.gg/openfreeai ")
if __name__ == "__main__":
demo.launch(share=True)