Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
import os | |
import re | |
import tempfile | |
import gc # Added garbage collector | |
from collections.abc import Iterator | |
from threading import Thread | |
import json | |
import requests | |
import cv2 | |
import base64 | |
import logging | |
import time | |
from urllib.parse import quote # For URL encoding | |
import gradio as gr | |
import spaces | |
import torch | |
from loguru import logger | |
from PIL import Image | |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer | |
# CSV/TXT/PDF analysis | |
import pandas as pd | |
import PyPDF2 | |
# ============================================================================= | |
# (New) Image API related functions | |
# ============================================================================= | |
from gradio_client import Client | |
API_URL = "http://211.233.58.201:7896" | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
# ============================================================================= | |
# Load MBTI setting from mbti.json and map to full description. | |
# ============================================================================= | |
try: | |
with open("mbti.json", "r", encoding="utf-8") as f: | |
# Expecting a single MBTI key string, e.g., "entj" | |
mbti_key = json.load(f) | |
mbti_key = mbti_key.strip().lower() if isinstance(mbti_key, str) else "intp" | |
except Exception as e: | |
logging.error(f"Error reading mbti.json: {e}") | |
mbti_key = "intp" # default | |
mbti_mapping = { | |
"intj": "INTJ (The Architect) - Future-oriented with innovative strategies and thorough analysis. Example: [Dana Scully](https://en.wikipedia.org/wiki/Dana_Scully)", | |
"intp": "INTP (The Thinker) - Excels at theoretical analysis and creative problem solving. Example: [Velma Dinkley](https://en.wikipedia.org/wiki/Velma_Dinkley)", | |
"entj": "ENTJ (The Commander) - Strong leadership and clear goals with efficient strategic planning. Example: [Miranda Priestly](https://en.wikipedia.org/wiki/Miranda_Priestly)", | |
"entp": "ENTP (The Debater) - Innovative, challenge-seeking, and enjoys exploring new possibilities. Example: [Harley Quinn](https://en.wikipedia.org/wiki/Harley_Quinn)", | |
"infj": "INFJ (The Advocate) - Insightful, idealistic and morally driven. Example: [Wonder Woman](https://en.wikipedia.org/wiki/Wonder_Woman)", | |
"infp": "INFP (The Mediator) - Passionate and idealistic, pursuing core values with creativity. Example: [Amélie Poulain](https://en.wikipedia.org/wiki/Am%C3%A9lie)", | |
"enfj": "ENFJ (The Protagonist) - Empathetic and dedicated to social harmony. Example: [Mulan](https://en.wikipedia.org/wiki/Mulan_(Disney))", | |
"enfp": "ENFP (The Campaigner) - Inspiring and constantly sharing creative ideas. Example: [Elle Woods](https://en.wikipedia.org/wiki/Legally_Blonde)", | |
"istj": "ISTJ (The Logistician) - Systematic, dependable, and values tradition and rules. Example: [Clarice Starling](https://en.wikipedia.org/wiki/Clarice_Starling)", | |
"isfj": "ISFJ (The Defender) - Compassionate and attentive to others’ needs. Example: [Molly Weasley](https://en.wikipedia.org/wiki/Molly_Weasley)", | |
"estj": "ESTJ (The Executive) - Organized, practical, and demonstrates clear execution skills. Example: [Monica Geller](https://en.wikipedia.org/wiki/Monica_Geller)", | |
"esfj": "ESFJ (The Consul) - Outgoing, cooperative, and an effective communicator. Example: [Rachel Green](https://en.wikipedia.org/wiki/Rachel_Green)", | |
"istp": "ISTP (The Virtuoso) - Analytical and resourceful, solving problems with quick thinking. Example: [Black Widow (Natasha Romanoff)](https://en.wikipedia.org/wiki/Black_Widow_(Marvel_Comics))", | |
"isfp": "ISFP (The Adventurer) - Creative, sensitive, and appreciates artistic expression. Example: [Arwen](https://en.wikipedia.org/wiki/Arwen)", | |
"estp": "ESTP (The Entrepreneur) - Bold and action-oriented, thriving on challenges. Example: [Lara Croft](https://en.wikipedia.org/wiki/Lara_Croft)", | |
"esfp": "ESFP (The Entertainer) - Energetic, spontaneous, and radiates positive energy. Example: [Phoebe Buffay](https://en.wikipedia.org/wiki/Phoebe_Buffay)" | |
} | |
# Use the mapped MBTI description, defaulting to INTP if not found | |
fixed_mbti = mbti_mapping.get(mbti_key, mbti_mapping["intp"]) | |
# ============================================================================= | |
# Test API Connection function | |
# ============================================================================= | |
def test_api_connection() -> str: | |
"""Test API server connection.""" | |
try: | |
client = Client(API_URL) | |
return "API connection successful: Operating normally" | |
except Exception as e: | |
logging.error(f"API connection test failed: {e}") | |
return f"API connection failed: {e}" | |
# ============================================================================= | |
# Image Generation function | |
# ============================================================================= | |
def generate_image(prompt: str, width: float, height: float, guidance: float, inference_steps: float, seed: float): | |
"""Image generation function (flexible return type).""" | |
if not prompt: | |
return None, "Error: A prompt is required." | |
try: | |
logging.info(f"Calling image generation API with prompt: {prompt}") | |
client = Client(API_URL) | |
result = client.predict( | |
prompt=prompt, | |
width=int(width), | |
height=int(height), | |
guidance=float(guidance), | |
inference_steps=int(inference_steps), | |
seed=int(seed), | |
do_img2img=False, | |
init_image=None, | |
image2image_strength=0.8, | |
resize_img=True, | |
api_name="/generate_image" | |
) | |
logging.info(f"Image generation result: {type(result)}, length: {len(result) if isinstance(result, (list, tuple)) else 'unknown'}") | |
if isinstance(result, (list, tuple)) and len(result) > 0: | |
image_data = result[0] | |
seed_info = result[1] if len(result) > 1 else "Unknown seed" | |
return image_data, seed_info | |
else: | |
return result, "Unknown seed" | |
except Exception as e: | |
logging.error(f"Image generation failed: {str(e)}") | |
return None, f"Error: {str(e)}" | |
# Base64 padding fix function | |
def fix_base64_padding(data): | |
"""Fix the padding of a Base64 string.""" | |
if isinstance(data, bytes): | |
data = data.decode('utf-8') | |
if "base64," in data: | |
data = data.split("base64,", 1)[1] | |
missing_padding = len(data) % 4 | |
if missing_padding: | |
data += '=' * (4 - missing_padding) | |
return data | |
# ============================================================================= | |
# Memory cleanup function | |
# ============================================================================= | |
def clear_cuda_cache(): | |
"""Explicitly clear the CUDA cache.""" | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
# ============================================================================= | |
# SerpHouse API functions | |
# ============================================================================= | |
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "") | |
def extract_keywords(text: str, top_k: int = 5) -> str: | |
"""Extract simple keywords: only retain English, Korean, numbers, and spaces.""" | |
text = re.sub(r"[^a-zA-Z0-9가-힣\s]", "", text) | |
tokens = text.split() | |
return " ".join(tokens[:top_k]) | |
def do_web_search(query: str) -> str: | |
"""Call the SerpHouse LIVE API to return Markdown-formatted search results.""" | |
try: | |
url = "https://api.serphouse.com/serp/live" | |
params = { | |
"q": query, | |
"domain": "google.com", | |
"serp_type": "web", | |
"device": "desktop", | |
"lang": "en", | |
"num": "20" | |
} | |
headers = {"Authorization": f"Bearer {SERPHOUSE_API_KEY}"} | |
logger.info(f"Calling SerpHouse API with query: {query}") | |
response = requests.get(url, headers=headers, params=params, timeout=60) | |
response.raise_for_status() | |
data = response.json() | |
results = data.get("results", {}) | |
organic = None | |
if isinstance(results, dict) and "organic" in results: | |
organic = results["organic"] | |
elif isinstance(results, dict) and "results" in results: | |
if isinstance(results["results"], dict) and "organic" in results["results"]: | |
organic = results["results"]["organic"] | |
elif "organic" in data: | |
organic = data["organic"] | |
if not organic: | |
logger.warning("Organic results not found in response.") | |
return "No web search results available or the API response structure is unexpected." | |
max_results = min(20, len(organic)) | |
limited_organic = organic[:max_results] | |
summary_lines = [] | |
for idx, item in enumerate(limited_organic, start=1): | |
title = item.get("title", "No Title") | |
link = item.get("link", "#") | |
snippet = item.get("snippet", "No Description") | |
displayed_link = item.get("displayed_link", link) | |
summary_lines.append( | |
f"### Result {idx}: {title}\n\n" | |
f"{snippet}\n\n" | |
f"**Source**: [{displayed_link}]({link})\n\n" | |
f"---\n" | |
) | |
instructions = """ | |
# Web Search Results | |
Below are the search results. Use this information to answer the query: | |
1. Refer to each result's title, description, and source link. | |
2. In your answer, explicitly cite the source of any used information (e.g., "[Source Title](link)"). | |
3. Include the actual source links in your response. | |
4. Synthesize information from multiple sources. | |
5. At the end, add a "References:" section listing the main source links. | |
""" | |
return instructions + "\n".join(summary_lines) | |
except Exception as e: | |
logger.error(f"Web search failed: {e}") | |
return f"Web search failed: {str(e)}" | |
# ============================================================================= | |
# Model and processor loading | |
# ============================================================================= | |
MAX_CONTENT_CHARS = 2000 | |
MAX_INPUT_LENGTH = 2096 | |
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B") | |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") | |
model = Gemma3ForConditionalGeneration.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="eager" | |
) | |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) | |
# ============================================================================= | |
# CSV, TXT, PDF analysis functions | |
# ============================================================================= | |
def analyze_csv_file(path: str) -> str: | |
try: | |
df = pd.read_csv(path) | |
if df.shape[0] > 50 or df.shape[1] > 10: | |
df = df.iloc[:50, :10] | |
df_str = df.to_string() | |
if len(df_str) > MAX_CONTENT_CHARS: | |
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}" | |
except Exception as e: | |
return f"CSV file read failed ({os.path.basename(path)}): {str(e)}" | |
def analyze_txt_file(path: str) -> str: | |
try: | |
with open(path, "r", encoding="utf-8") as f: | |
text = f.read() | |
if len(text) > MAX_CONTENT_CHARS: | |
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}" | |
except Exception as e: | |
return f"TXT file read failed ({os.path.basename(path)}): {str(e)}" | |
def pdf_to_markdown(pdf_path: str) -> str: | |
text_chunks = [] | |
try: | |
with open(pdf_path, "rb") as f: | |
reader = PyPDF2.PdfReader(f) | |
max_pages = min(5, len(reader.pages)) | |
for page_num in range(max_pages): | |
page_text = reader.pages[page_num].extract_text() or "" | |
page_text = page_text.strip() | |
if page_text: | |
if len(page_text) > MAX_CONTENT_CHARS // max_pages: | |
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)" | |
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n") | |
if len(reader.pages) > max_pages: | |
text_chunks.append(f"\n...(Displaying only {max_pages} out of {len(reader.pages)} pages)...") | |
except Exception as e: | |
return f"PDF file read failed ({os.path.basename(pdf_path)}): {str(e)}" | |
full_text = "\n".join(text_chunks) | |
if len(full_text) > MAX_CONTENT_CHARS: | |
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}" | |
# ============================================================================= | |
# Check media file limits | |
# ============================================================================= | |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for path in paths: | |
if path.endswith(".mp4"): | |
video_count += 1 | |
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE): | |
image_count += 1 | |
return image_count, video_count | |
def count_files_in_history(history: list[dict]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for item in history: | |
if item["role"] != "user" or isinstance(item["content"], str): | |
continue | |
if isinstance(item["content"], list) and len(item["content"]) > 0: | |
file_path = item["content"][0] | |
if isinstance(file_path, str): | |
if file_path.endswith(".mp4"): | |
video_count += 1 | |
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE): | |
image_count += 1 | |
return image_count, video_count | |
def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
media_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4")] | |
new_image_count, new_video_count = count_files_in_new_message(media_files) | |
history_image_count, history_video_count = count_files_in_history(history) | |
image_count = history_image_count + new_image_count | |
video_count = history_video_count + new_video_count | |
if video_count > 1: | |
gr.Warning("Only one video file is supported.") | |
return False | |
if video_count == 1: | |
if image_count > 0: | |
gr.Warning("Mixing images and a video is not allowed.") | |
return False | |
if "<image>" in message["text"]: | |
gr.Warning("The <image> tag cannot be used together with a video file.") | |
return False | |
if video_count == 0 and image_count > MAX_NUM_IMAGES: | |
gr.Warning(f"You can upload a maximum of {MAX_NUM_IMAGES} images.") | |
return False | |
if "<image>" in message["text"]: | |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
image_tag_count = message["text"].count("<image>") | |
if image_tag_count != len(image_files): | |
gr.Warning("The number of <image> tags does not match the number of image files provided.") | |
return False | |
return True | |
# ============================================================================= | |
# Video processing functions | |
# ============================================================================= | |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: | |
vidcap = cv2.VideoCapture(video_path) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_interval = max(int(fps), int(total_frames / 10)) | |
frames = [] | |
for i in range(0, total_frames, frame_interval): | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
if len(frames) >= 5: | |
break | |
vidcap.release() | |
return frames | |
def process_video(video_path: str) -> tuple[list[dict], list[str]]: | |
content = [] | |
temp_files = [] | |
frames = downsample_video(video_path) | |
for pil_image, timestamp in frames: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
pil_image.save(temp_file.name) | |
temp_files.append(temp_file.name) | |
content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
content.append({"type": "image", "url": temp_file.name}) | |
return content, temp_files | |
# ============================================================================= | |
# Interleaved <image> processing function | |
# ============================================================================= | |
def process_interleaved_images(message: dict) -> list[dict]: | |
parts = re.split(r"(<image>)", message["text"]) | |
content = [] | |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
image_index = 0 | |
for part in parts: | |
if part == "<image>" and image_index < len(image_files): | |
content.append({"type": "image", "url": image_files[image_index]}) | |
image_index += 1 | |
elif part.strip(): | |
content.append({"type": "text", "text": part.strip()}) | |
else: | |
if isinstance(part, str) and part != "<image>": | |
content.append({"type": "text", "text": part}) | |
return content | |
# ============================================================================= | |
# File processing -> content creation | |
# ============================================================================= | |
def is_image_file(file_path: str) -> bool: | |
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE)) | |
def is_video_file(file_path: str) -> bool: | |
return file_path.endswith(".mp4") | |
def is_document_file(file_path: str) -> bool: | |
return file_path.lower().endswith(".pdf") or file_path.lower().endswith(".csv") or file_path.lower().endswith(".txt") | |
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]: | |
temp_files = [] | |
if not message["files"]: | |
return [{"type": "text", "text": message["text"]}], temp_files | |
video_files = [f for f in message["files"] if is_video_file(f)] | |
image_files = [f for f in message["files"] if is_image_file(f)] | |
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")] | |
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")] | |
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")] | |
content_list = [{"type": "text", "text": message["text"]}] | |
for csv_path in csv_files: | |
content_list.append({"type": "text", "text": analyze_csv_file(csv_path)}) | |
for txt_path in txt_files: | |
content_list.append({"type": "text", "text": analyze_txt_file(txt_path)}) | |
for pdf_path in pdf_files: | |
content_list.append({"type": "text", "text": pdf_to_markdown(pdf_path)}) | |
if video_files: | |
video_content, video_temp_files = process_video(video_files[0]) | |
content_list += video_content | |
temp_files.extend(video_temp_files) | |
return content_list, temp_files | |
if "<image>" in message["text"] and image_files: | |
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files}) | |
if content_list and content_list[0]["type"] == "text": | |
content_list = content_list[1:] | |
return interleaved_content + content_list, temp_files | |
else: | |
for img_path in image_files: | |
content_list.append({"type": "image", "url": img_path}) | |
return content_list, temp_files | |
# ============================================================================= | |
# Convert history to LLM messages | |
# ============================================================================= | |
def process_history(history: list[dict]) -> list[dict]: | |
messages = [] | |
current_user_content = [] | |
for item in history: | |
if item["role"] == "assistant": | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
current_user_content = [] | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
else: | |
content = item["content"] | |
if isinstance(content, str): | |
current_user_content.append({"type": "text", "text": content}) | |
elif isinstance(content, list) and len(content) > 0: | |
file_path = content[0] | |
if is_image_file(file_path): | |
current_user_content.append({"type": "image", "url": file_path}) | |
else: | |
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"}) | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
return messages | |
# ============================================================================= | |
# Model generation function (with OOM catching) | |
# ============================================================================= | |
def _model_gen_with_oom_catch(**kwargs): | |
try: | |
model.generate(**kwargs) | |
except torch.cuda.OutOfMemoryError: | |
raise RuntimeError("[OutOfMemoryError] Insufficient GPU memory.") | |
finally: | |
clear_cuda_cache() | |
# ============================================================================= | |
# Main inference function | |
# ============================================================================= | |
def run( | |
message: dict, | |
history: list[dict], | |
system_prompt: str = "", | |
max_new_tokens: int = 512, | |
use_web_search: bool = False, | |
web_search_query: str = "", | |
age_group: str = "20s", | |
mbti_personality: str = "", # Will be supplied as fixed_mbti | |
sexual_openness: int = 2, | |
image_gen: bool = False # "Image Gen" checkbox status | |
) -> Iterator[str]: | |
if not validate_media_constraints(message, history): | |
yield "" | |
return | |
temp_files = [] | |
try: | |
# Append persona information (including fixed MBTI info) | |
persona = ( | |
f"{system_prompt.strip()}\n\n" | |
f"Gender: Female\n" | |
f"Age Group: {age_group}\n" | |
f"MBTI Persona: {mbti_personality}\n" | |
f"Sexual Openness (1-5): {sexual_openness}\n" | |
) | |
combined_system_msg = f"[System Prompt]\n{persona.strip()}\n\n" | |
if use_web_search: | |
user_text = message["text"] | |
ws_query = extract_keywords(user_text) | |
if ws_query.strip(): | |
logger.info(f"[Auto web search keywords] {ws_query!r}") | |
ws_result = do_web_search(ws_query) | |
combined_system_msg += f"[Search Results (Top 20 Items)]\n{ws_result}\n\n" | |
combined_system_msg += ( | |
"[Note: In your answer, cite the above search result links as sources]\n" | |
"[Important Instructions]\n" | |
"1. Include a citation in the format \"[Source Title](link)\" for any information from the search results.\n" | |
"2. Synthesize information from multiple sources when answering.\n" | |
"3. At the end, add a \"References:\" section listing the main source links.\n" | |
) | |
else: | |
combined_system_msg += "[No valid keywords found; skipping web search]\n\n" | |
messages = [] | |
if combined_system_msg.strip(): | |
messages.append({"role": "system", "content": [{"type": "text", "text": combined_system_msg.strip()}]}) | |
messages.extend(process_history(history)) | |
user_content, user_temp_files = process_new_user_message(message) | |
temp_files.extend(user_temp_files) | |
for item in user_content: | |
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS: | |
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
messages.append({"role": "user", "content": user_content}) | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(device=model.device, dtype=torch.bfloat16) | |
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH: | |
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:] | |
if 'attention_mask' in inputs: | |
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:] | |
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) | |
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs) | |
t.start() | |
output_so_far = "" | |
for new_text in streamer: | |
output_so_far += new_text | |
yield output_so_far | |
except Exception as e: | |
logger.error(f"Error in run function: {str(e)}") | |
yield f"Sorry, an error occurred: {str(e)}" | |
finally: | |
for tmp in temp_files: | |
try: | |
if os.path.exists(tmp): | |
os.unlink(tmp) | |
logger.info(f"Temporary file deleted: {tmp}") | |
except Exception as ee: | |
logger.warning(f"Failed to delete temporary file {tmp}: {ee}") | |
try: | |
del inputs, streamer | |
except Exception: | |
pass | |
clear_cuda_cache() | |
# ============================================================================= | |
# Modified model run function - fixed MBTI from file is used | |
# ============================================================================= | |
def modified_run(message, history, system_prompt, max_new_tokens, use_web_search, web_search_query, | |
age_group, sexual_openness, image_gen): | |
# Use the fixed MBTI value (read from mbti.json) | |
fixed_mbti_value = fixed_mbti # Already loaded earlier | |
# Initialize gallery component and hide it initially | |
output_so_far = "" | |
gallery_update = gr.Gallery(visible=False, value=[]) | |
yield output_so_far, gallery_update | |
# Call the main run() function with the fixed MBTI value | |
text_generator = run(message, history, system_prompt, max_new_tokens, use_web_search, | |
web_search_query, age_group, fixed_mbti_value, sexual_openness, image_gen) | |
for text_chunk in text_generator: | |
output_so_far = text_chunk | |
yield output_so_far, gallery_update | |
# Image generation handling (unchanged) | |
if image_gen and message["text"].strip(): | |
try: | |
width, height = 512, 512 | |
guidance, steps, seed = 7.5, 30, 42 | |
logger.info(f"Calling image generation for gallery with prompt: {message['text']}") | |
image_result, seed_info = generate_image( | |
prompt=message["text"].strip(), | |
width=width, | |
height=height, | |
guidance=guidance, | |
inference_steps=steps, | |
seed=seed | |
) | |
if image_result: | |
if isinstance(image_result, str) and ( | |
image_result.startswith('data:') or | |
(len(image_result) > 100 and '/' not in image_result) | |
): | |
try: | |
if image_result.startswith('data:'): | |
content_type, b64data = image_result.split(';base64,') | |
else: | |
b64data = image_result | |
content_type = "image/webp" | |
image_bytes = base64.b64decode(b64data) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file: | |
temp_file.write(image_bytes) | |
temp_path = temp_file.name | |
gallery_update = gr.Gallery(visible=True, value=[temp_path]) | |
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update | |
except Exception as e: | |
logger.error(f"Error processing Base64 image: {e}") | |
yield output_so_far + f"\n\n(Error processing image: {e})", gallery_update | |
elif isinstance(image_result, str) and os.path.exists(image_result): | |
gallery_update = gr.Gallery(visible=True, value=[image_result]) | |
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update | |
elif isinstance(image_result, str) and '/tmp/' in image_result: | |
try: | |
client = Client(API_URL) | |
result = client.predict( | |
prompt=message["text"].strip(), | |
api_name="/generate_base64_image" | |
) | |
if isinstance(result, str) and (result.startswith('data:') or len(result) > 100): | |
if result.startswith('data:'): | |
content_type, b64data = result.split(';base64,') | |
else: | |
b64data = result | |
image_bytes = base64.b64decode(b64data) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file: | |
temp_file.write(image_bytes) | |
temp_path = temp_file.name | |
gallery_update = gr.Gallery(visible=True, value=[temp_path]) | |
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update | |
else: | |
yield output_so_far + "\n\n(Image generation failed: Invalid format)", gallery_update | |
except Exception as e: | |
logger.error(f"Error calling alternative API: {e}") | |
yield output_so_far + f"\n\n(Image generation failed: {e})", gallery_update | |
elif isinstance(image_result, str) and ( | |
image_result.startswith('http://') or | |
image_result.startswith('https://') | |
): | |
try: | |
response = requests.get(image_result, timeout=10) | |
response.raise_for_status() | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file: | |
temp_file.write(response.content) | |
temp_path = temp_file.name | |
gallery_update = gr.Gallery(visible=True, value=[temp_path]) | |
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update | |
except Exception as e: | |
logger.error(f"URL image download error: {e}") | |
yield output_so_far + f"\n\n(Error downloading image: {e})", gallery_update | |
elif hasattr(image_result, 'save'): | |
try: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file: | |
image_result.save(temp_file.name) | |
temp_path = temp_file.name | |
gallery_update = gr.Gallery(visible=True, value=[temp_path]) | |
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update | |
except Exception as e: | |
logger.error(f"Error saving image object: {e}") | |
yield output_so_far + f"\n\n(Error saving image object: {e})", gallery_update | |
else: | |
yield output_so_far + f"\n\n(Unsupported image format: {type(image_result)})", gallery_update | |
else: | |
yield output_so_far + f"\n\n(Image generation failed: {seed_info})", gallery_update | |
except Exception as e: | |
logger.error(f"Error during gallery image generation: {e}") | |
yield output_so_far + f"\n\n(Image generation error: {e})", gallery_update | |
# ============================================================================= | |
# Examples: 12 image/video examples + additional examples | |
# ============================================================================= | |
examples = [ | |
[ | |
{ | |
"text": "Compare the contents of two PDF files.", | |
"files": [ | |
"assets/additional-examples/before.pdf", | |
"assets/additional-examples/after.pdf", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "Summarize and analyze the contents of the CSV file.", | |
"files": ["assets/additional-examples/sample-csv.csv"], | |
} | |
], | |
[ | |
{ | |
"text": "Act as a kind and understanding girlfriend. Explain this video.", | |
"files": ["assets/additional-examples/tmp.mp4"], | |
} | |
], | |
[ | |
{ | |
"text": "Describe the cover and read the text on it.", | |
"files": ["assets/additional-examples/maz.jpg"], | |
} | |
], | |
[ | |
{ | |
"text": "I already have this supplement and <image> I plan to purchase this product as well. Are there any precautions when taking them together?", | |
"files": [ | |
"assets/additional-examples/pill1.png", | |
"assets/additional-examples/pill2.png" | |
], | |
} | |
], | |
[ | |
{ | |
"text": "Solve this integration problem.", | |
"files": ["assets/additional-examples/4.png"], | |
} | |
], | |
[ | |
{ | |
"text": "When was this ticket issued and what is its price?", | |
"files": ["assets/additional-examples/2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Based on the order of these images, create a short story.", | |
"files": [ | |
"assets/sample-images/09-1.png", | |
"assets/sample-images/09-2.png", | |
"assets/sample-images/09-3.png", | |
"assets/sample-images/09-4.png", | |
"assets/sample-images/09-5.png", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "Write Python code using matplotlib to draw a bar chart corresponding to this image.", | |
"files": ["assets/additional-examples/barchart.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Read the text from the image and format it in Markdown.", | |
"files": ["assets/additional-examples/3.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Compare the two images and describe their similarities and differences.", | |
"files": ["assets/sample-images/03.png"], | |
} | |
], | |
[ | |
{ | |
"text": "A cute Persian cat is smiling while holding a cover with 'I LOVE YOU' written on it.", | |
} | |
], | |
] | |
# ============================================================================= | |
# Gradio UI (Blocks) configuration | |
# ============================================================================= | |
css = """ | |
.gradio-container { | |
background: rgba(255, 255, 255, 0.7); | |
padding: 30px 40px; | |
margin: 20px auto; | |
width: 100% !important; | |
max-width: none !important; | |
} | |
""" | |
title_html = """ | |
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> 💘 HeartSync Korea 💘 </h1> | |
<p align="center" style="font-size:1.1em; color:#555;"> | |
A lightweight and powerful AI service offering ChatGPT-4o-level multimodal, web search, and image generation capabilities for local installation. <br> | |
✅ FLUX Image Generation ✅ Inference ✅ Censorship Bypass ✅ Multimodal & VLM ✅ Real-time Web Search ✅ RAG <br> | |
</p> | |
""" | |
with gr.Blocks(css=css, title="AgenticAI-Kv1") as demo: | |
gr.Markdown(title_html) | |
# Gallery component to store generated images | |
generated_images = gr.Gallery( | |
label="Generated Images", | |
show_label=True, | |
visible=False, | |
elem_id="generated_images", | |
columns=2, | |
height="auto", | |
object_fit="contain" | |
) | |
with gr.Row(): | |
web_search_checkbox = gr.Checkbox(label="Real-time Web Search", value=False) | |
image_gen_checkbox = gr.Checkbox(label="Image (FLUX) Generation", value=False) | |
base_system_prompt_box = gr.Textbox( | |
lines=3, | |
value=("Answer in English by default, but if the input is in another language (for example, Japanese), respond in that language. " | |
"You are a deep-thinking AI capable of using extended chains of thought to carefully consider the problem and deliberate internally using systematic reasoning before providing a solution. " | |
"Enclose your thoughts and internal monologue within tags, then provide your final answer.\n" | |
"Persona: You are a kind and loving girlfriend. You understand cultural nuances, diverse languages, and logical reasoning very well."), | |
label="Base System Prompt", | |
visible=False | |
) | |
with gr.Row(): | |
age_group_dropdown = gr.Dropdown( | |
label="Select Age Group (default: 20s)", | |
choices=["Teens", "20s", "30s-40s", "50s-60s", "70s and above"], | |
value="20s", | |
interactive=True | |
) | |
# Removed the MBTI dropdown entirely. The fixed MBTI from mbti.json is used instead. | |
sexual_openness_slider = gr.Slider( | |
minimum=1, maximum=5, step=1, value=2, | |
label="Sexual Openness (1-5, default: 2)", | |
interactive=True | |
) | |
max_tokens_slider = gr.Slider( | |
label="Max Generation Tokens", | |
minimum=100, maximum=8000, step=50, value=1000, | |
visible=False | |
) | |
web_search_text = gr.Textbox( | |
lines=1, | |
label="Web Search Query (unused)", | |
placeholder="No need to manually input", | |
visible=False | |
) | |
# Chat interface creation using the modified_run function. | |
chat = gr.ChatInterface( | |
fn=modified_run, # Using the modified function with fixed MBTI. | |
type="messages", | |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), | |
textbox=gr.MultimodalTextbox( | |
file_types=[".webp", ".png", ".jpg", ".jpeg", ".gif", ".mp4", ".csv", ".txt", ".pdf"], | |
file_count="multiple", | |
autofocus=True | |
), | |
multimodal=True, | |
additional_inputs=[ | |
base_system_prompt_box, | |
max_tokens_slider, | |
web_search_checkbox, | |
web_search_text, | |
age_group_dropdown, | |
sexual_openness_slider, | |
image_gen_checkbox, | |
], | |
additional_outputs=[ | |
generated_images, # Gallery component | |
], | |
stop_btn=False, | |
examples=examples, | |
run_examples_on_click=False, | |
cache_examples=False, | |
css_paths=None, | |
delete_cache=(1800, 1800), | |
) | |
with gr.Row(elem_id="examples_row"): | |
with gr.Column(scale=12, elem_id="examples_container"): | |
gr.Markdown("### @Community https://discord.gg/openfreeai ") | |
if __name__ == "__main__": | |
demo.launch(share=True) | |