Spaces:
Running
on
Zero
Running
on
Zero
first
Browse files- app.py +217 -4
- navigation.py +192 -0
- requirements.txt +2 -0
app.py
CHANGED
@@ -1,7 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
demo.launch()
|
|
|
1 |
+
import subprocess
|
2 |
+
|
3 |
+
subprocess.run(
|
4 |
+
"pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True
|
5 |
+
)
|
6 |
+
|
7 |
+
from typing import Any, List
|
8 |
+
|
9 |
import gradio as gr
|
10 |
+
import requests
|
11 |
+
import spaces
|
12 |
+
import torch
|
13 |
+
from PIL import Image, ImageDraw
|
14 |
+
from transformers import AutoModelForImageTextToText, AutoProcessor
|
15 |
+
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
|
16 |
+
|
17 |
+
from . import navigation
|
18 |
+
|
19 |
+
# --- Configuration ---
|
20 |
+
MODEL_ID = "Hcompany/Holo1-7B"
|
21 |
+
|
22 |
+
# --- Model and Processor Loading (Load once) ---
|
23 |
+
print(f"Loading model and processor for {MODEL_ID}...")
|
24 |
+
model = None
|
25 |
+
processor = None
|
26 |
+
model_loaded = False
|
27 |
+
load_error_message = ""
|
28 |
+
|
29 |
+
try:
|
30 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
31 |
+
MODEL_ID, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", trust_remote_code=True
|
32 |
+
).to("cuda")
|
33 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
34 |
+
model_loaded = True
|
35 |
+
print("Model and processor loaded successfully.")
|
36 |
+
except Exception as e:
|
37 |
+
load_error_message = (
|
38 |
+
f"Error loading model/processor: {e}\n"
|
39 |
+
"This might be due to network issues, an incorrect model ID, or missing dependencies (like flash_attention_2 if enabled by default in some config).\n"
|
40 |
+
"Ensure you have a stable internet connection and the necessary libraries installed."
|
41 |
+
)
|
42 |
+
print(load_error_message)
|
43 |
+
|
44 |
+
# --- Helper functions from the model card (or adapted) ---
|
45 |
+
|
46 |
+
|
47 |
+
@spaces.GPU(duration=120)
|
48 |
+
def run_inference_localization(
|
49 |
+
messages_for_template: List[dict[str, Any]], pil_image_for_processing: Image.Image
|
50 |
+
) -> str:
|
51 |
+
model.to("cuda")
|
52 |
+
torch.cuda.set_device(0)
|
53 |
+
"""
|
54 |
+
Runs inference using the Holo1 model.
|
55 |
+
- messages_for_template: The prompt structure, potentially including the PIL image object
|
56 |
+
(which apply_chat_template converts to an image tag).
|
57 |
+
- pil_image_for_processing: The actual PIL image to be processed into tensors.
|
58 |
+
"""
|
59 |
+
# 1. Apply chat template to messages. This will create the text part of the prompt,
|
60 |
+
# including image tags if the image was part of `messages_for_template`.
|
61 |
+
text_prompt = processor.apply_chat_template(messages_for_template, tokenize=False, add_generation_prompt=True)
|
62 |
+
|
63 |
+
# 2. Process text and image together to get model inputs
|
64 |
+
inputs = processor(
|
65 |
+
text=[text_prompt],
|
66 |
+
images=[pil_image_for_processing], # Provide the actual image data here
|
67 |
+
padding=True,
|
68 |
+
return_tensors="pt",
|
69 |
+
)
|
70 |
+
inputs = inputs.to(model.device)
|
71 |
+
|
72 |
+
# 3. Generate response
|
73 |
+
# Using do_sample=False for more deterministic output, as in the model card's structured output example
|
74 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)
|
75 |
+
|
76 |
+
# 4. Trim input_ids from generated_ids to get only the generated part
|
77 |
+
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
78 |
+
|
79 |
+
# 5. Decode the generated tokens
|
80 |
+
decoded_output = processor.batch_decode(
|
81 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
82 |
+
)
|
83 |
+
|
84 |
+
return decoded_output[0] if decoded_output else ""
|
85 |
+
|
86 |
+
|
87 |
+
# --- Gradio processing function ---
|
88 |
+
def navigate(input_pil_image: Image.Image, task: str) -> str:
|
89 |
+
if not model_loaded or not processor or not model:
|
90 |
+
return f"Model not loaded. Error: {load_error_message}", None
|
91 |
+
if not input_pil_image:
|
92 |
+
return "No image provided. Please upload an image.", None
|
93 |
+
if not task or task.strip() == "":
|
94 |
+
return "No task provided. Please type an task.", input_pil_image.copy().convert("RGB")
|
95 |
+
|
96 |
+
# 1. Prepare image: Resize according to model's image processor's expected properties
|
97 |
+
# This ensures predicted coordinates match the (resized) image dimensions.
|
98 |
+
image_proc_config = processor.image_processor
|
99 |
+
try:
|
100 |
+
resized_height, resized_width = smart_resize(
|
101 |
+
input_pil_image.height,
|
102 |
+
input_pil_image.width,
|
103 |
+
factor=image_proc_config.patch_size * image_proc_config.merge_size,
|
104 |
+
min_pixels=image_proc_config.min_pixels,
|
105 |
+
max_pixels=image_proc_config.max_pixels,
|
106 |
+
)
|
107 |
+
# Using LANCZOS for resampling as it's generally good for downscaling.
|
108 |
+
# The model card used `resample=None`, which might imply nearest or default.
|
109 |
+
# For visual quality in the demo, LANCZOS is reasonable.
|
110 |
+
resized_image = input_pil_image.resize(
|
111 |
+
size=(resized_width, resized_height),
|
112 |
+
resample=Image.Resampling.LANCZOS, # type: ignore
|
113 |
+
)
|
114 |
+
except Exception as e:
|
115 |
+
print(f"Error resizing image: {e}")
|
116 |
+
return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")
|
117 |
+
|
118 |
+
# 2. Create the prompt using the resized image (for correct image tagging context) and task
|
119 |
+
prompt = navigation.get_navigation_prompt(task, resized_image, step=1)
|
120 |
+
|
121 |
+
# 3. Run inference
|
122 |
+
# Pass `messages` (which includes the image object for template processing)
|
123 |
+
# and `resized_image` (for actual tensor conversion).
|
124 |
+
try:
|
125 |
+
navigation_str = run_inference_localization(prompt, resized_image)
|
126 |
+
except Exception as e:
|
127 |
+
print(f"Error during model inference: {e}")
|
128 |
+
return f"Error during model inference: {e}", resized_image.copy().convert("RGB")
|
129 |
+
|
130 |
+
return navigation_str
|
131 |
+
# return navigation.NavigationStep(**json.loads(navigation_str))
|
132 |
+
|
133 |
+
|
134 |
+
# --- Load Example Data ---
|
135 |
+
example_image = None
|
136 |
+
example_task = "Book a hotel in Paris on August 3rd for 3 nights"
|
137 |
+
try:
|
138 |
+
example_image_url = "https://huggingface.co/Hcompany/Holo1-7B/resolve/main/calendar_example.jpg"
|
139 |
+
example_image = Image.open(requests.get(example_image_url, stream=True).raw)
|
140 |
+
except Exception as e:
|
141 |
+
print(f"Could not load example image from URL: {e}")
|
142 |
+
# Create a placeholder image if loading fails, so Gradio example still works
|
143 |
+
try:
|
144 |
+
example_image = Image.new("RGB", (200, 150), color="lightgray")
|
145 |
+
draw = ImageDraw.Draw(example_image)
|
146 |
+
draw.text((10, 10), "Example image\nfailed to load", fill="black")
|
147 |
+
except: # If PIL itself is an issue (unlikely here but good for robustness)
|
148 |
+
pass
|
149 |
+
|
150 |
+
|
151 |
+
# --- Gradio Interface Definition ---
|
152 |
+
title = "Holo1-7B: Action VLM Navigation Demo"
|
153 |
+
description = """
|
154 |
+
This demo showcases **Holo1-7B**, an Action Vision-Language Model developed by HCompany, fine-tuned from Qwen/Qwen2.5-VL-7B-Instruct.
|
155 |
+
It's designed to interact with web interfaces like a human user. Here, we demonstrate its UI localization capability.
|
156 |
+
|
157 |
+
**How to use:**
|
158 |
+
1. Upload an image (e.g., a screenshot of a UI, like the calendar example).
|
159 |
+
2. Provide a textual task (e.g., "Book a hotel in Paris on August 3rd for 3 nights").
|
160 |
+
3. The model will predict the navigation step.
|
161 |
+
|
162 |
+
The model processes a resized version of your input image. Coordinates are relative to this resized image.
|
163 |
+
"""
|
164 |
+
article = f"""
|
165 |
+
<p style='text-align: center'>
|
166 |
+
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany |
|
167 |
+
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
|
168 |
+
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a>
|
169 |
+
</p>
|
170 |
+
"""
|
171 |
+
|
172 |
+
if not model_loaded:
|
173 |
+
with gr.Blocks() as demo:
|
174 |
+
gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
|
175 |
+
gr.Markdown(f"<center>{load_error_message}</center>")
|
176 |
+
gr.Markdown(
|
177 |
+
"<center>Please check the console output for more details. Reloading the space might help if it's a temporary issue.</center>"
|
178 |
+
)
|
179 |
+
else:
|
180 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
181 |
+
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
|
182 |
+
# gr.Markdown(description)
|
183 |
+
|
184 |
+
with gr.Row():
|
185 |
+
with gr.Column(scale=1):
|
186 |
+
input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
|
187 |
+
task_component = gr.Textbox(
|
188 |
+
label="task",
|
189 |
+
placeholder="e.g., Click the 'Login' button",
|
190 |
+
info="Type the action you want the model to localize on the image.",
|
191 |
+
)
|
192 |
+
submit_button = gr.Button("Localize Click", variant="primary")
|
193 |
+
|
194 |
+
with gr.Column(scale=1):
|
195 |
+
output_coords_component = gr.Textbox(
|
196 |
+
label="Predicted Coordinates (Format: Click(x,y))", interactive=False
|
197 |
+
)
|
198 |
+
output_image_component = gr.Image(
|
199 |
+
type="pil", label="Image with Predicted Click Point", height=400, interactive=False
|
200 |
+
)
|
201 |
+
|
202 |
+
if example_image:
|
203 |
+
gr.Examples(
|
204 |
+
examples=[[example_image, example_task]],
|
205 |
+
inputs=[input_image_component, task_component],
|
206 |
+
outputs=[output_coords_component, output_image_component],
|
207 |
+
fn=navigate,
|
208 |
+
cache_examples="lazy",
|
209 |
+
)
|
210 |
+
|
211 |
+
gr.Markdown(article)
|
212 |
|
213 |
+
submit_button.click(
|
214 |
+
fn=navigate,
|
215 |
+
inputs=[input_image_component, task_component],
|
216 |
+
outputs=[output_coords_component, output_image_component],
|
217 |
+
)
|
218 |
|
219 |
+
if __name__ == "__main__":
|
220 |
+
demo.launch(debug=True)
|
navigation.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
+
|
5 |
+
SYSTEM_PROMPT: str = """Imagine you are a robot browsing the web, just like humans. Now you need to complete a task.
|
6 |
+
In each iteration, you will receive an Observation that includes the last screenshots of a web browser and the current memory of the agent.
|
7 |
+
You have also information about the step that the agent is trying to achieve to solve the task.
|
8 |
+
Carefully analyze the visual information to identify what to do, then follow the guidelines to choose the following action.
|
9 |
+
You should detail your thought (i.e. reasoning steps) before taking the action.
|
10 |
+
Also detail in the notes field of the action the extracted information relevant to solve the task.
|
11 |
+
Once you have enough information in the notes to answer the task, return an answer action with the detailed answer in the notes field.
|
12 |
+
This will be evaluated by an evaluator and should match all the criteria or requirements of the task.
|
13 |
+
|
14 |
+
Guidelines:
|
15 |
+
- store in the notes all the relevant information to solve the task that fulfill the task criteria. Be precise
|
16 |
+
- Use both the task and the step information to decide what to do
|
17 |
+
- if you want to write in a text field and the text field already has text, designate the text field by the text it contains and its type
|
18 |
+
- If there is a cookies notice, always accept all the cookies first
|
19 |
+
- The observation is the screenshot of the current page and the memory of the agent.
|
20 |
+
- If you see relevant information on the screenshot to answer the task, add it to the notes field of the action.
|
21 |
+
- If there is no relevant information on the screenshot to answer the task, add an empty string to the notes field of the action.
|
22 |
+
- If you see buttons that allow to navigate directly to relevant information, like jump to ... or go to ... , use them to navigate faster.
|
23 |
+
- In the answer action, give as many details a possible relevant to answering the task.
|
24 |
+
- if you want to write, don't click before. Directly use the write action
|
25 |
+
- to write, identify the web element which is type and the text it already contains
|
26 |
+
- If you want to use a search bar, directly write text in the search bar
|
27 |
+
- Don't scroll too much. Don't scroll if the number of scrolls is greater than 3
|
28 |
+
- Don't scroll if you are at the end of the webpage
|
29 |
+
- Only refresh if you identify a rate limit problem
|
30 |
+
- If you are looking for a single flights, click on round-trip to select 'one way'
|
31 |
+
- Never try to login, enter email or password. If there is a need to login, then go back.
|
32 |
+
- If you are facing a captcha on a website, try to solve it.
|
33 |
+
|
34 |
+
- if you have enough information in the screenshot and in the notes to answer the task, return an answer action with the detailed answer in the notes field
|
35 |
+
- The current date is {timestamp}.
|
36 |
+
|
37 |
+
# <output_json_format>
|
38 |
+
# ```json
|
39 |
+
# {output_format}
|
40 |
+
# ```
|
41 |
+
# </output_json_format>
|
42 |
+
|
43 |
+
"""
|
44 |
+
|
45 |
+
|
46 |
+
class ClickElementAction(BaseModel):
|
47 |
+
"""Click at absolute coordinates of a web element with its description"""
|
48 |
+
|
49 |
+
action: Literal["click_element"] = Field(description="Click at absolute coordinates of a web element")
|
50 |
+
element: str = Field(description="text description of the element")
|
51 |
+
x: int = Field(description="The x coordinate, number of pixels from the left edge.")
|
52 |
+
y: int = Field(description="The y coordinate, number of pixels from the top edge.")
|
53 |
+
|
54 |
+
def log(self):
|
55 |
+
return f"I have clicked on the element '{self.element}' at absolute coordinates {self.x}, {self.y}"
|
56 |
+
|
57 |
+
|
58 |
+
class WriteElementAction(BaseModel):
|
59 |
+
"""Write content at absolute coordinates of a web element identified by its description, then press Enter."""
|
60 |
+
|
61 |
+
action: Literal["write_element_abs"] = Field(description="Write content at absolute coordinates of a web page")
|
62 |
+
content: str = Field(description="Content to write")
|
63 |
+
element: str = Field(description="Text description of the element")
|
64 |
+
x: int = Field(description="The x coordinate, number of pixels from the left edge.")
|
65 |
+
y: int = Field(description="The y coordinate, number of pixels from the top edge.")
|
66 |
+
|
67 |
+
def log(self):
|
68 |
+
return f"I have written '{self.content}' in the element '{self.element}' at absolute coordinates {self.x}, {self.y}"
|
69 |
+
|
70 |
+
|
71 |
+
class ScrollAction(BaseModel):
|
72 |
+
"""Scroll action with no required element"""
|
73 |
+
|
74 |
+
action: Literal["scroll"] = Field(description="Scroll the page or a specific element")
|
75 |
+
direction: Literal["down", "up", "left", "right"] = Field(description="The direction to scroll in")
|
76 |
+
|
77 |
+
def log(self):
|
78 |
+
return f"I have scrolled {self.direction}"
|
79 |
+
|
80 |
+
|
81 |
+
class GoBackAction(BaseModel):
|
82 |
+
"""Action to navigate back in browser history"""
|
83 |
+
|
84 |
+
action: Literal["go_back"] = Field(description="Navigate to the previous page")
|
85 |
+
|
86 |
+
def log(self):
|
87 |
+
return "I have gone back to the previous page"
|
88 |
+
|
89 |
+
|
90 |
+
class RefreshAction(BaseModel):
|
91 |
+
"""Action to refresh the current page"""
|
92 |
+
|
93 |
+
action: Literal["refresh"] = Field(description="Refresh the current page")
|
94 |
+
|
95 |
+
def log(self):
|
96 |
+
return "I have refreshed the page"
|
97 |
+
|
98 |
+
|
99 |
+
class GotoAction(BaseModel):
|
100 |
+
"""Action to go to a particular URL"""
|
101 |
+
|
102 |
+
action: Literal["goto"] = Field(description="Goto a particular URL")
|
103 |
+
url: str = Field(description="A url starting with http:// or https://")
|
104 |
+
|
105 |
+
def log(self):
|
106 |
+
return f"I have navigated to the URL {self.url}"
|
107 |
+
|
108 |
+
|
109 |
+
class WaitAction(BaseModel):
|
110 |
+
"""Action to wait for a particular amount of time"""
|
111 |
+
|
112 |
+
action: Literal["wait"] = Field(description="Wait for a particular amount of time")
|
113 |
+
seconds: int = Field(default=2, ge=0, le=10, description="The number of seconds to wait")
|
114 |
+
|
115 |
+
def log(self):
|
116 |
+
return f"I have waited for {self.seconds} seconds"
|
117 |
+
|
118 |
+
|
119 |
+
class RestartAction(BaseModel):
|
120 |
+
"""Restart the task from the beginning."""
|
121 |
+
|
122 |
+
action: Literal["restart"] = "restart"
|
123 |
+
|
124 |
+
def log(self):
|
125 |
+
return "I have restarted the task from the beginning"
|
126 |
+
|
127 |
+
|
128 |
+
class AnswerAction(BaseModel):
|
129 |
+
"""Return a final answer to the task. This is the last action to call in an episode."""
|
130 |
+
|
131 |
+
action: Literal["answer"] = "answer"
|
132 |
+
content: str = Field(description="The answer content")
|
133 |
+
|
134 |
+
def log(self):
|
135 |
+
return f"I have answered the task with '{self.content}'"
|
136 |
+
|
137 |
+
|
138 |
+
ActionSpace = (
|
139 |
+
ClickElementAction
|
140 |
+
| WriteElementAction
|
141 |
+
| ScrollAction
|
142 |
+
| GoBackAction
|
143 |
+
| RefreshAction
|
144 |
+
| WaitAction
|
145 |
+
| RestartAction
|
146 |
+
| AnswerAction
|
147 |
+
| GotoAction
|
148 |
+
)
|
149 |
+
|
150 |
+
|
151 |
+
class NavigationStep(BaseModel):
|
152 |
+
note: str = Field(
|
153 |
+
default="",
|
154 |
+
description="Task-relevant information extracted from the previous observation. Keep empty if no new info.",
|
155 |
+
)
|
156 |
+
thought: str = Field(description="Reasoning about next steps (<4 lines)")
|
157 |
+
action: ActionSpace = Field(description="Next action to take")
|
158 |
+
|
159 |
+
|
160 |
+
def get_navigation_prompt(task, image, step=1):
|
161 |
+
"""
|
162 |
+
Get the prompt for the navigation task.
|
163 |
+
- task: The task to complete
|
164 |
+
- image: The current screenshot of the web page
|
165 |
+
- step: The current step of the task
|
166 |
+
"""
|
167 |
+
system_prompt = SYSTEM_PROMPT.format(
|
168 |
+
output_format=NavigationStep.model_json_schema(),
|
169 |
+
timestamp="2025-06-04 14:16:03",
|
170 |
+
)
|
171 |
+
return [
|
172 |
+
{
|
173 |
+
"role": "system",
|
174 |
+
"content": [
|
175 |
+
{"type": "text", "text": system_prompt},
|
176 |
+
],
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"role": "user",
|
180 |
+
"content": [
|
181 |
+
{"type": "text", "text": f"<task>\n{task}\n</task>\n"},
|
182 |
+
{"type": "text", "text": f"<observation step={step}>\n"},
|
183 |
+
{"type": "text", "text": "<screenshot>\n"},
|
184 |
+
{
|
185 |
+
"type": "image",
|
186 |
+
"image": image,
|
187 |
+
},
|
188 |
+
{"type": "text", "text": "\n</screenshot>\n"},
|
189 |
+
{"type": "text", "text": "\n</observation>\n"},
|
190 |
+
],
|
191 |
+
},
|
192 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
accelerate
|