Spaces:
Sleeping
Sleeping
File size: 6,039 Bytes
b6fb84d 34c2a3b b6fb84d 34c2a3b b6fb84d 34c2a3b b6fb84d bb247b8 b6fb84d bb247b8 34c2a3b b6fb84d bb247b8 34c2a3b b6fb84d bb247b8 34c2a3b bb247b8 b6fb84d 34c2a3b b6fb84d 34c2a3b b6fb84d bb247b8 34c2a3b bb247b8 34c2a3b bb247b8 b6fb84d bb247b8 34c2a3b b6fb84d 34c2a3b b6fb84d 34c2a3b b6fb84d 34c2a3b b6fb84d 34c2a3b b6fb84d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
from transformers import pipeline
from fpdf import FPDF
import os
from groq import Groq
from deep_translator import GoogleTranslator
# β
Load Groq API key
groq_api_key = os.getenv("groq_api_key")
groq_client = Groq(api_key=groq_api_key)
# β
Use Google Translate for auto-detection & translation
def translate_text(text, target_lang="en"):
try:
return GoogleTranslator(source="auto", target=target_lang).translate(text)
except Exception as e:
return f"Translation Error: {str(e)}"
# β
Load Models
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# β
Medical Conditions List
conditions = [
"Asthma", "COPD", "Pneumonia", "Tuberculosis", "COVID-19", "Bronchitis",
"Heart Failure", "Hypertension", "Diabetes Type 1", "Diabetes Type 2",
"Migraine", "Gastroenteritis", "Anemia", "Depression", "Anxiety Disorder",
"Chronic Kidney Disease", "UTI", "Osteoporosis", "Psoriasis", "Epilepsy"
]
# β
Specialist Mapping
specialist_mapping = {
"Asthma": ("Pulmonologist", "Respiratory System"),
"COPD": ("Pulmonologist", "Respiratory System"),
"Pneumonia": ("Pulmonologist", "Respiratory System"),
"Tuberculosis": ("Infectious Disease Specialist", "Respiratory System"),
"COVID-19": ("Infectious Disease Specialist", "Immune System"),
"Heart Failure": ("Cardiologist", "Cardiovascular System"),
"Hypertension": ("Cardiologist", "Cardiovascular System"),
"Diabetes Type 1": ("Endocrinologist", "Endocrine System"),
"Diabetes Type 2": ("Endocrinologist", "Endocrine System"),
"Migraine": ("Neurologist", "Nervous System"),
"Gastroenteritis": ("Gastroenterologist", "Digestive System"),
"Anemia": ("Hematologist", "Blood Disorders"),
"Depression": ("Psychiatrist", "Mental Health"),
"Anxiety Disorder": ("Psychiatrist", "Mental Health"),
"Chronic Kidney Disease": ("Nephrologist", "Urinary System"),
"UTI": ("Urologist", "Urinary System"),
"Osteoporosis": ("Orthopedic Specialist", "Musculoskeletal System"),
"Psoriasis": ("Dermatologist", "Skin Disorders"),
"Epilepsy": ("Neurologist", "Nervous System")
}
def generate_expert_analysis(condition, symptoms):
"""Generates expert medical analysis using Groq API"""
specialist_title = specialist_mapping.get(condition, ("General Physician", "General Medicine"))[0]
prompt = f"""As a {specialist_title.lower()}, explain {condition} to a patient experiencing these symptoms: "{symptoms}".
Structure the response into:
1. **Biological Process**
2. **Immediate Treatment**
3. **Long-term Care**
4. **Emergency Signs**
5. **Diet Plan**
Use professional yet simple language. **No AI disclaimers or generic advice**.
"""
response = groq_client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="mixtral-8x7b-32768",
temperature=0.5,
max_tokens=1024
)
return response.choices[0].message.content
def create_medical_report(symptoms):
"""Generates a complete medical report"""
try:
translated_symptoms = translate_text(symptoms, "en")
result = classifier(translated_symptoms, conditions, multi_label=False)
diagnosis = result['labels'][0]
specialist, system = specialist_mapping.get(diagnosis, ("General Physician", "General Medicine"))
expert_analysis = generate_expert_analysis(diagnosis, translated_symptoms)
full_report = (
f"**Medical Report**\n\n"
f"**Patient Symptoms:** {translated_symptoms}\n"
f"**Primary Diagnosis:** {diagnosis}\n"
f"**Affected System:** {system}\n"
f"**Consult:** {specialist}\n\n"
f"**Expert Analysis:**\n{expert_analysis}\n\n"
"**Key Questions for Your Doctor:**\n"
"1. Is this condition acute or chronic?\n"
"2. What medication options are suitable?\n"
"3. What lifestyle changes help manage this condition?\n"
"4. What warning signs require immediate attention?\n"
)
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, full_report)
pdf.output("report.pdf")
return full_report, "report.pdf"
except Exception as e:
return f"Error generating report: {str(e)}", None
# β
Create Sidebar with Navigation
with gr.Blocks(css="body { background-color: #f5f7fa; }") as app:
with gr.Row():
gr.Markdown("<h1 style='text-align: center; color: #4A90E2;'>MedExpert AI</h1>")
with gr.Tabs():
with gr.TabItem("π Home"):
gr.Markdown("""
<h2 style="color: #4A90E2;">Welcome to MedExpert</h2>
<p style="font-size:18px;">An AI-powered medical assistant that provides expert analysis based on your symptoms.</p>
<p style="font-size:18px;">Simply describe your symptoms, and let AI generate a detailed report!</p>
""")
with gr.TabItem("π Medical Diagnosis"):
with gr.Row():
symptoms_input = gr.Textbox(label="Describe Your Symptoms", placeholder="e.g., Mujhay sar main dard hai", interactive=True)
report_btn = gr.Button("π Generate Report", elem_id="generate-btn")
with gr.Row():
report_output = gr.Textbox(label="Complete Medical Report", interactive=False)
pdf_output = gr.File(label="Download PDF Report")
report_btn.click(create_medical_report, inputs=[symptoms_input], outputs=[report_output, pdf_output])
with gr.TabItem("βΉοΈ About"):
gr.Markdown("""
<h2 style="color: #4A90E2;">About This App</h2>
<p style="font-size:18px;">MedExpert AI is an intelligent health assistant designed to provide expert insights into medical conditions.</p>
""")
# β
Launch App
app.launch()
|