File size: 7,595 Bytes
6f4c3f1
 
 
5169a87
 
6f4c3f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5169a87
6f4c3f1
258601e
6f4c3f1
 
5169a87
 
 
6f4c3f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5169a87
6f4c3f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
from transformers import pipeline
from fpdf import FPDF
import os
from groq import Groq
from deep_translator import GoogleTranslator

# βœ… Load API Keys
groq_api_key = os.getenv("groq_api_key")  
groq_client = Groq(api_key=groq_api_key)

# βœ… Load Zero-Shot Disease Classification Model
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

# βœ… Medical Conditions List
conditions = [
    "Asthma", "COPD", "Pneumonia", "Tuberculosis", "COVID-19", "Bronchitis",
    "Heart Failure", "Hypertension", "Diabetes Type 1", "Diabetes Type 2",
    "Migraine", "Gastroenteritis", "Anemia", "Depression", "Anxiety Disorder",
    "Chronic Kidney Disease", "UTI", "Osteoporosis", "Psoriasis", "Epilepsy"
]

# βœ… Specialist Mapping
specialist_mapping = {
    "Asthma": ("Pulmonologist", "Respiratory System"),
    "COPD": ("Pulmonologist", "Respiratory System"),
    "Pneumonia": ("Pulmonologist", "Respiratory System"),
    "Tuberculosis": ("Infectious Disease Specialist", "Respiratory System"),
    "COVID-19": ("Infectious Disease Specialist", "Immune System"),
    "Heart Failure": ("Cardiologist", "Cardiovascular System"),
    "Hypertension": ("Cardiologist", "Cardiovascular System"),
    "Diabetes Type 1": ("Endocrinologist", "Endocrine System"),
    "Diabetes Type 2": ("Endocrinologist", "Endocrine System"),
    "Migraine": ("Neurologist", "Nervous System"),
    "Gastroenteritis": ("Gastroenterologist", "Digestive System"),
    "Anemia": ("Hematologist", "Blood Disorders"),
    "Depression": ("Psychiatrist", "Mental Health"),
    "Anxiety Disorder": ("Psychiatrist", "Mental Health"),
    "Chronic Kidney Disease": ("Nephrologist", "Urinary System"),
    "UTI": ("Urologist", "Urinary System"),
    "Osteoporosis": ("Orthopedic Specialist", "Musculoskeletal System"),
    "Psoriasis": ("Dermatologist", "Skin Disorders"),
    "Epilepsy": ("Neurologist", "Nervous System")
}

# βœ… Translate Function
def translate_text(text, target_lang="en"):
    try:
        return GoogleTranslator(source="auto", target=target_lang).translate(text)
    except Exception as e:
        return f"Translation Error: {str(e)}"

# βœ… Expert AI Analysis
def generate_expert_analysis(condition, symptoms):
    specialist_title = specialist_mapping.get(condition, ("General Physician", "General Medicine"))[0]
    prompt = f"""As a {specialist_title.lower()}, explain {condition} to a patient experiencing these symptoms: "{symptoms}".
    Structure the response into:
    1. **Biological Process**  
    2. **Immediate Treatment**  
    3. **Long-term Care**  
    4. **Emergency Signs**  
    5. **Diet Plan**  
    Use professional yet simple language.
    """
    response = groq_client.chat.completions.create(
        messages=[{"role": "user", "content": prompt}],
        model="mixtral-8x7b-32768",
        temperature=0.5,
        max_tokens=1024
    )
    return response.choices[0].message.content

# βœ… Medical Report Generator
def create_medical_report(symptoms):
    try:
        translated_symptoms = translate_text(symptoms, "en")
        result = classifier(translated_symptoms, conditions, multi_label=False)
        diagnosis = result['labels'][0]  
        specialist, system = specialist_mapping.get(diagnosis, ("General Physician", "General Medicine"))
        expert_analysis = generate_expert_analysis(diagnosis, translated_symptoms)

        full_report = (
            f"**Medical Report**\n\n"
            f"**Patient Symptoms:** {translated_symptoms}\n"
            f"**Primary Diagnosis:** {diagnosis}\n"
            f"**Affected System:** {system}\n"
            f"**Consult:** {specialist}\n\n"
            f"**Expert Analysis:**\n{expert_analysis}\n"
        )

        pdf = FPDF()
        pdf.add_page()
        pdf.set_font("Arial", size=12)
        pdf.multi_cell(0, 10, full_report)
        pdf.output("report.pdf")

        return full_report, "report.pdf"

    except Exception as e:
        return f"Error generating report: {str(e)}", None

# βœ… Medical Chatbot Function
def medical_chatbot(user_input, chat_history):
    system_prompt = """You are a compassionate psychiatric assistant named MedMind. Your role is to:
    - Provide emotional support and stress relief techniques
    - Offer evidence-based mental health advice
    - Help users understand medical terminology
    - Never diagnose but suggest professional help when needed
    - Maintain therapeutic conversation flow
    - Remember previous interactions for context"""
    
    messages = [
        {"role": "system", "content": system_prompt},
        *[{"role": "user" if i%2==0 else "assistant", "content": msg} 
          for i, msg in enumerate(chat_history)]
    ]
    
    if user_input.strip():
        messages.append({"role": "user", "content": user_input})
        
        response = groq_client.chat.completions.create(
            messages=messages,
            model="mixtral-8x7b-32768",
            temperature=0.7,
            max_tokens=500
        )
        
        bot_response = response.choices[0].message.content
        chat_history.append((user_input, bot_response))
        
    return "", chat_history

# βœ… Gradio UI with Sidebar
css = """
body { background-color: #f0f4f8; }
.sidebar { background-color: #2c3e50; padding: 20px; height: 100vh; color: white; }
.chat-container { height: 70vh; overflow-y: auto; }
.message { padding: 10px; margin: 5px; border-radius: 5px; }
.user-message { background-color: #e3f2fd; margin-left: 20%; }
.bot-message { background-color: #ffffff; margin-right: 20%; }
"""

with gr.Blocks(css=css) as interface:
    chat_history = gr.State([])
    
    with gr.Row():
        with gr.Column(scale=1, elem_classes="sidebar"):
            gr.Markdown("## MedExpert AI")
            with gr.Group():
                gr.Button("🏠 Home", variant="secondary")
                gr.Button("🩺 Diagnostic", variant="secondary")
                gr.Button("πŸ’¬ Mental Health Chat", variant="secondary")
        
        with gr.Column(scale=4):
            # Home Section
            with gr.Group(visible=True) as home_section:
                gr.Markdown("# Welcome to MedExpert AI")
                gr.Markdown("Your intelligent medical assistant providing:")
                gr.Markdown("- Symptom Analysis\n- Medical Reports\n- Mental Health Support")
            
            # Diagnostic Section
            with gr.Group(visible=False) as diagnostic_section:
                symptoms_input = gr.Textbox(label="Describe Your Symptoms")
                analyze_btn = gr.Button("Analyze Symptoms πŸ₯", variant="primary")
                report_output = gr.Textbox(label="Medical Report", interactive=False)
                pdf_output = gr.File(label="Download PDF Report")
            
            # Chatbot Section
            with gr.Group(visible=False) as chatbot_section:
                chatbot = gr.Chatbot(elem_classes="chat-container")
                user_input = gr.Textbox(placeholder="Type your message here...", show_label=False)
                send_btn = gr.Button("Send", variant="primary")
    
    # Diagnostic Logic
    analyze_btn.click(
        create_medical_report,
        inputs=[symptoms_input],
        outputs=[report_output, pdf_output]
    )
    
    # Chatbot Logic
    send_btn.click(
        medical_chatbot,
        inputs=[user_input, chat_history],
        outputs=[user_input, chatbot]
    )
    user_input.submit(
        medical_chatbot,
        inputs=[user_input, chat_history],
        outputs=[user_input, chatbot]
    )

interface.launch()