Spaces:
Runtime error
Runtime error
Commit
·
76ceb1a
1
Parent(s):
93951fe
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import BioGptTokenizer, BioGptForCausalLM, set_seed
|
| 3 |
+
|
| 4 |
+
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
|
| 5 |
+
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
|
| 6 |
+
|
| 7 |
+
sentence = "COVID-19 is"
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
set_seed(42)
|
| 11 |
+
|
| 12 |
+
def get_beam_output(sentence):
|
| 13 |
+
inputs = tokenizer(sentence, return_tensors="pt")
|
| 14 |
+
with torch.no_grad():
|
| 15 |
+
beam_output = model.generate(**inputs,
|
| 16 |
+
min_length=100,
|
| 17 |
+
max_length=1024,
|
| 18 |
+
num_beams=5,
|
| 19 |
+
early_stopping=True
|
| 20 |
+
)
|
| 21 |
+
tokenizer.decode(beam_output[0], skip_special_tokens=True)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
demo = gr.Interface(fn=get_beam_output, inputs="text", outputs="text")
|
| 25 |
+
demo.launch()
|