Spaces:
Runtime error
Runtime error
from model import DocGeoNet | |
from seg import U2NETP | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import skimage.io as io | |
import numpy as np | |
import cv2 | |
import os | |
from PIL import Image | |
import argparse | |
import warnings | |
warnings.filterwarnings('ignore') | |
class Net(nn.Module): | |
def __init__(self, opt): | |
super(Net, self).__init__() | |
self.msk = U2NETP(3, 1) | |
self.DocTr = DocGeoNet() | |
def forward(self, x): | |
msk, _1,_2,_3,_4,_5,_6 = self.msk(x) | |
msk = (msk > 0.5).float() | |
x = msk * x | |
_, _, bm = self.DocTr(x) | |
bm = (2 * (bm / 255.) - 1) * 0.99 | |
return bm | |
def reload_seg_model(model, path=""): | |
if not bool(path): | |
return model | |
else: | |
model_dict = model.state_dict() | |
pretrained_dict = torch.load(path, map_location='cpu') | |
print(len(pretrained_dict.keys())) | |
pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict} | |
print(len(pretrained_dict.keys())) | |
model_dict.update(pretrained_dict) | |
model.load_state_dict(model_dict) | |
return model | |
def reload_rec_model(model, path=""): | |
if not bool(path): | |
return model | |
else: | |
model_dict = model.state_dict() | |
pretrained_dict = torch.load(path, map_location='cpu') | |
print(len(pretrained_dict.keys())) | |
pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict} | |
print(len(pretrained_dict.keys())) | |
model_dict.update(pretrained_dict) | |
model.load_state_dict(model_dict) | |
return model | |
def rec(seg_model_path, rec_model_path, distorrted_path, save_path, opt): | |
print(torch.__version__) | |
# distorted images list | |
img_list = sorted(os.listdir(distorrted_path)) | |
# creat save path for rectified images | |
if not os.path.exists(save_path): | |
os.makedirs(save_path) | |
net = Net(opt)#.cuda() | |
print(get_parameter_number(net)) | |
# reload rec model | |
reload_rec_model(net.DocTr, rec_model_path) | |
reload_seg_model(net.msk, opt.seg_model_path) | |
net.eval() | |
for img_path in img_list: | |
name = img_path.split('.')[-2] # image name | |
img_path = distorrted_path + img_path # image path | |
im_ori = np.array(Image.open(img_path))[:, :, :3] / 255. # read image 0-255 to 0-1 | |
h, w, _ = im_ori.shape | |
im = cv2.resize(im_ori, (256, 256)) | |
im = im.transpose(2, 0, 1) | |
im = torch.from_numpy(im).float().unsqueeze(0) | |
with torch.no_grad(): | |
bm = net(im) | |
bm = bm.cpu() | |
# save rectified image | |
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h)) # x flow | |
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h)) # y flow | |
bm0 = cv2.blur(bm0, (3, 3)) | |
bm1 = cv2.blur(bm1, (3, 3)) | |
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0) # h * w * 2 | |
out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True) | |
cv2.imwrite(save_path + name + '_rec' + '.png', ((out[0] * 255).permute(1, 2, 0).numpy())[:,:,::-1].astype(np.uint8)) | |
def get_parameter_number(net): | |
total_num = sum(p.numel() for p in net.parameters()) | |
trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad) | |
return {'Total': total_num, 'Trainable': trainable_num} | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--seg_model_path', default='./model_pretrained/preprocess.pth') | |
parser.add_argument('--rec_model_path', default='./model_pretrained/DocGeoNet.pth') | |
parser.add_argument('--distorrted_path', default='./distorted/') | |
parser.add_argument('--save_path', default='./rec/') | |
opt = parser.parse_args() | |
rec(seg_model_path=opt.seg_model_path, | |
rec_model_path=opt.rec_model_path, | |
distorrted_path=opt.distorrted_path, | |
save_path=opt.save_path, | |
opt=opt) | |
if __name__ == "__main__": | |
main() | |