Spaces:
Build error
Build error
Delete yarngpt/generate.py
Browse files- yarngpt/generate.py +0 -151
yarngpt/generate.py
DELETED
@@ -1,151 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import logging
|
4 |
-
import torch
|
5 |
-
import torchaudio
|
6 |
-
import numpy as np
|
7 |
-
from transformers import AutoTokenizer, AutoProcessor, AutoModelForSpeechSeq2Seq, Speech2Text2Config
|
8 |
-
from huggingface_hub import hf_hub_download
|
9 |
-
import warnings
|
10 |
-
import scipy.io.wavfile as wav
|
11 |
-
from datetime import datetime
|
12 |
-
import json
|
13 |
-
|
14 |
-
# Configure logging
|
15 |
-
logging.basicConfig(level=logging.INFO,
|
16 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
17 |
-
logger = logging.getLogger(__name__)
|
18 |
-
|
19 |
-
# Constants
|
20 |
-
INIT_TIMESTAMP = "2025-05-21 02:21:23"
|
21 |
-
CURRENT_USER = "Abdulhameed556"
|
22 |
-
|
23 |
-
class TextToSpeech:
|
24 |
-
def __init__(self, model_name_or_path, processor_name_or_path=None):
|
25 |
-
"""Initialize the TextToSpeech class."""
|
26 |
-
self.model_name_or_path = model_name_or_path
|
27 |
-
self.processor_name_or_path = processor_name_or_path or model_name_or_path
|
28 |
-
self.init_time = INIT_TIMESTAMP
|
29 |
-
self.user = CURRENT_USER
|
30 |
-
self.cache_dir = "/code/cache"
|
31 |
-
|
32 |
-
logger.info(f"Initializing TextToSpeech with model: {model_name_or_path}")
|
33 |
-
|
34 |
-
try:
|
35 |
-
# Create cache directory if it doesn't exist
|
36 |
-
os.makedirs(self.cache_dir, exist_ok=True)
|
37 |
-
|
38 |
-
# Create tokenizer files locally if they don't exist
|
39 |
-
self._create_tokenizer_files()
|
40 |
-
|
41 |
-
# Initialize configuration
|
42 |
-
config = Speech2Text2Config.from_pretrained(
|
43 |
-
pretrained_model_name_or_path=self.model_name_or_path,
|
44 |
-
cache_dir=self.cache_dir,
|
45 |
-
token=os.getenv('HF_TOKEN')
|
46 |
-
)
|
47 |
-
|
48 |
-
# Initialize tokenizer
|
49 |
-
logger.info("Loading tokenizer...")
|
50 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
51 |
-
self.cache_dir, # Use local cache directory
|
52 |
-
config=config,
|
53 |
-
token=os.getenv('HF_TOKEN')
|
54 |
-
)
|
55 |
-
|
56 |
-
# Initialize model
|
57 |
-
logger.info("Loading model...")
|
58 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
59 |
-
logger.info(f"Using device: {self.device}")
|
60 |
-
|
61 |
-
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
62 |
-
self.model_name_or_path,
|
63 |
-
config=config,
|
64 |
-
cache_dir=self.cache_dir,
|
65 |
-
token=os.getenv('HF_TOKEN')
|
66 |
-
).to(self.device)
|
67 |
-
|
68 |
-
logger.info("Model initialization complete")
|
69 |
-
|
70 |
-
except Exception as e:
|
71 |
-
logger.error(f"Error initializing TextToSpeech: {e}")
|
72 |
-
raise
|
73 |
-
|
74 |
-
def _create_tokenizer_files(self):
|
75 |
-
"""Create necessary tokenizer files in cache directory."""
|
76 |
-
tokenizer_files = {
|
77 |
-
"tokenizer_config.json": {
|
78 |
-
"name_or_path": self.model_name_or_path,
|
79 |
-
"padding_side": "right",
|
80 |
-
"truncation_side": "right",
|
81 |
-
"model_max_length": 1024,
|
82 |
-
"bos_token": "<s>",
|
83 |
-
"eos_token": "</s>",
|
84 |
-
"unk_token": "<unk>",
|
85 |
-
"pad_token": "<pad>",
|
86 |
-
"mask_token": "<mask>",
|
87 |
-
"special_tokens_map_file": "special_tokens_map.json",
|
88 |
-
"tokenizer_class": "Speech2Text2Tokenizer"
|
89 |
-
},
|
90 |
-
"special_tokens_map.json": {
|
91 |
-
"bos_token": "<s>",
|
92 |
-
"eos_token": "</s>",
|
93 |
-
"pad_token": "<pad>",
|
94 |
-
"unk_token": "<unk>",
|
95 |
-
"mask_token": "<mask>"
|
96 |
-
},
|
97 |
-
"vocab.json": {
|
98 |
-
"<s>": 0,
|
99 |
-
"<pad>": 1,
|
100 |
-
"</s>": 2,
|
101 |
-
"<unk>": 3,
|
102 |
-
"<mask>": 4
|
103 |
-
}
|
104 |
-
}
|
105 |
-
|
106 |
-
logger.info("Creating tokenizer files in cache directory...")
|
107 |
-
for filename, content in tokenizer_files.items():
|
108 |
-
filepath = os.path.join(self.cache_dir, filename)
|
109 |
-
with open(filepath, 'w', encoding='utf-8') as f:
|
110 |
-
json.dump(content, f, indent=2)
|
111 |
-
logger.info(f"Created {filename}")
|
112 |
-
|
113 |
-
def tts(self, text, speed=1.0):
|
114 |
-
"""Generate speech from text."""
|
115 |
-
try:
|
116 |
-
logger.info(f"Processing text: {text[:50]}...")
|
117 |
-
|
118 |
-
# Tokenize text
|
119 |
-
inputs = self.tokenizer(
|
120 |
-
text,
|
121 |
-
return_tensors="pt",
|
122 |
-
padding=True,
|
123 |
-
truncation=True,
|
124 |
-
max_length=self.tokenizer.model_max_length
|
125 |
-
).to(self.device)
|
126 |
-
|
127 |
-
# Generate speech
|
128 |
-
with torch.no_grad():
|
129 |
-
output = self.model.generate(
|
130 |
-
**inputs,
|
131 |
-
max_length=500,
|
132 |
-
num_beams=5,
|
133 |
-
early_stopping=True
|
134 |
-
)
|
135 |
-
|
136 |
-
# Convert to audio
|
137 |
-
audio = output[0].cpu().numpy()
|
138 |
-
|
139 |
-
# Apply speed adjustment if needed
|
140 |
-
if speed != 1.0:
|
141 |
-
audio = np.interp(
|
142 |
-
np.arange(0, len(audio), speed),
|
143 |
-
np.arange(0, len(audio)),
|
144 |
-
audio
|
145 |
-
)
|
146 |
-
|
147 |
-
return audio.astype(np.float32)
|
148 |
-
|
149 |
-
except Exception as e:
|
150 |
-
logger.error(f"Error generating speech: {e}")
|
151 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|