data: image_size: 64 channels: 3 num_workers: 2 train_data_dir: '/data/JGW/hsguan/JGWNET/train/' # path to directory of train data test_data_dir: '/data/JGW/hsguan/JGWNET/selected/' # path to directory of test data #test_data_dir: '/home/dachuang/hsguan/JGWNET/data2/test2/' #test_save_dir: '/home/dachuang/hsguan/JGWNET/selected' # path to directory of saving restored data test_save_dir: '/home/dachuang/hsguan/JGWNET/result90' val_save_dir: '/data/JGW/hsguan/validation/' grid_r: 16 conditional: True tensorboard: '/home/dachuang/hsguan/JGWNET/90logs' model: in_channels: 3 out_ch: 3 ch: 128 ch_mult: [1, 2, 3, 4] num_res_blocks: 2 attn_resolutions: [16, ] dropout: 0.0 ema_rate: 0.999 ema: True resamp_with_conv: True diffusion: beta_schedule: linear beta_start: 0.0001 beta_end: 0.02 num_diffusion_timesteps: 1000 training: patch_n: 8 batch_size: 8 n_epochs: 1000 n_iters: 2000000 snapshot_freq: 20 # model save frequency validation_freq: 10000 resume: './diffusion_model_new' # path to pretrained model seed: 61 # random seed sampling: batch_size: 1 last_only: True sampling_timesteps: 50 optim: weight_decay: 0.01 optimizer: "Adam" lr: 0.0001 amsgrad: False eps: 0.00000001