ggcristian commited on
Commit
65e4811
·
1 Parent(s): 2ca87bb

Update space

Browse files
Makefile DELETED
@@ -1,13 +0,0 @@
1
- .PHONY: style format
2
-
3
-
4
- style:
5
- python -m black --line-length 119 .
6
- python -m isort .
7
- ruff check --fix .
8
-
9
-
10
- quality:
11
- python -m black --check --line-length 119 .
12
- python -m isort --check-only .
13
- ruff check .
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: TuRTLe Leaderboard
3
  emoji: 🥇
4
  colorFrom: green
5
  colorTo: indigo
@@ -7,40 +7,6 @@ sdk: gradio
7
  app_file: app.py
8
  pinned: true
9
  license: apache-2.0
10
- short_description: 'TuRTLe: A Unified Evaluation of LLMs for RTL Generation'
11
  sdk_version: 5.19.0
12
  ---
13
-
14
- # Start the configuration
15
-
16
- Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
17
-
18
- Results files should have the following format and be stored as json files:
19
- ```json
20
- {
21
- "config": {
22
- "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
23
- "model_name": "path of the model on the hub: org/model",
24
- "model_sha": "revision on the hub",
25
- },
26
- "results": {
27
- "task_name": {
28
- "metric_name": score,
29
- },
30
- "task_name2": {
31
- "metric_name": score,
32
- }
33
- }
34
- }
35
- ```
36
-
37
- Request files are created automatically by this tool.
38
-
39
- If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
40
-
41
- # Code logic for more complex edits
42
-
43
- You'll find
44
- - the main table' columns names and properties in `src/display/utils.py`
45
- - the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
46
- - the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
 
1
  ---
2
+ title: TuRTLe Model Leaderboard
3
  emoji: 🥇
4
  colorFrom: green
5
  colorTo: indigo
 
7
  app_file: app.py
8
  pinned: true
9
  license: apache-2.0
10
+ short_description: Duplicate this leaderboard to initialize your own!
11
  sdk_version: 5.19.0
12
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
about.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
2
+ CITATION_BUTTON_TEXT = r"""
3
+ """
app.py CHANGED
@@ -1,193 +1,122 @@
 
 
1
  import gradio as gr
2
  from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
- import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
6
-
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- AutoEvalColumn,
22
- ModelType,
23
- fields,
24
- WeightType,
25
- Precision
26
- )
27
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
29
- from src.submission.submit import add_new_eval
30
-
31
-
32
- def restart_space():
33
- API.restart_space(repo_id=REPO_ID)
34
-
35
- ### Space initialisation
36
- try:
37
- print(EVAL_REQUESTS_PATH)
38
- snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  )
41
- except Exception:
42
- restart_space()
43
- try:
44
- print(EVAL_RESULTS_PATH)
45
- snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
  )
48
- except Exception:
49
- restart_space()
50
-
51
-
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
-
54
- (
55
- finished_eval_queue_df,
56
- running_eval_queue_df,
57
- pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
-
60
- def init_leaderboard(dataframe):
61
- if dataframe is None or dataframe.empty:
62
- raise ValueError("Leaderboard DataFrame is empty or None.")
63
- return Leaderboard(
64
- value=dataframe,
65
- datatype=[c.type for c in fields(AutoEvalColumn)],
66
- select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
- label="Select Columns to Display:",
70
  ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
- hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
- filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
- ],
87
- bool_checkboxgroup_label="Hide models",
88
- interactive=False,
89
  )
90
 
91
-
92
- demo = gr.Blocks(css=custom_css)
93
- with demo:
94
- gr.HTML(TITLE)
95
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
-
97
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
100
-
101
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
102
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
-
104
- with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
105
- with gr.Column():
106
- with gr.Row():
107
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
108
-
109
- with gr.Column():
110
- with gr.Accordion(
111
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
112
- open=False,
113
- ):
114
- with gr.Row():
115
- finished_eval_table = gr.components.Dataframe(
116
- value=finished_eval_queue_df,
117
- headers=EVAL_COLS,
118
- datatype=EVAL_TYPES,
119
- row_count=5,
120
- )
121
- with gr.Accordion(
122
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
123
- open=False,
124
- ):
125
- with gr.Row():
126
- running_eval_table = gr.components.Dataframe(
127
- value=running_eval_queue_df,
128
- headers=EVAL_COLS,
129
- datatype=EVAL_TYPES,
130
- row_count=5,
131
- )
132
-
133
- with gr.Accordion(
134
- f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
135
- open=False,
136
- ):
137
- with gr.Row():
138
- pending_eval_table = gr.components.Dataframe(
139
- value=pending_eval_queue_df,
140
- headers=EVAL_COLS,
141
- datatype=EVAL_TYPES,
142
- row_count=5,
143
- )
144
  with gr.Row():
145
- gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
146
-
 
147
  with gr.Row():
148
- with gr.Column():
149
- model_name_textbox = gr.Textbox(label="Model name")
150
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
151
- model_type = gr.Dropdown(
152
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
153
- label="Model type",
154
- multiselect=False,
155
- value=None,
156
- interactive=True,
157
- )
158
-
159
- with gr.Column():
160
- precision = gr.Dropdown(
161
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
- label="Precision",
163
- multiselect=False,
164
- value="float16",
165
- interactive=True,
166
- )
167
- weight_type = gr.Dropdown(
168
- choices=[i.value.name for i in WeightType],
169
- label="Weights type",
170
- multiselect=False,
171
- value="Original",
172
- interactive=True,
173
- )
174
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
175
-
176
- submit_button = gr.Button("Submit Eval")
177
- submission_result = gr.Markdown()
178
- submit_button.click(
179
- add_new_eval,
180
- [
181
- model_name_textbox,
182
- base_model_name_textbox,
183
- revision_name_textbox,
184
- precision,
185
- weight_type,
186
- model_type,
187
- ],
188
- submission_result,
189
- )
190
-
191
  with gr.Row():
192
  with gr.Accordion("📙 Citation", open=False):
193
  citation_button = gr.Textbox(
@@ -197,8 +126,35 @@ with demo:
197
  elem_id="citation-button",
198
  show_copy_button=True,
199
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
 
201
- scheduler = BackgroundScheduler()
202
- scheduler.add_job(restart_space, "interval", seconds=1800)
203
- scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
1
+ import json
2
+ import pandas as pd
3
  import gradio as gr
4
  from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
5
+ from css_html_js import custom_css
6
+ from parse import read_json, read_data
7
+ from utils import model_hyperlink, filter_RTLRepo, filter_bench, handle_special_cases
8
+ from typing import Union
9
+ from about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
10
+ import numpy as np
11
+ import plotly.graph_objects as go
12
+ import plotly.express as px
13
+
14
+ def filter_leaderboard(benchmark, model_type, search_query, max_params):
15
+ subset = df[df['Benchmark'] == benchmark]
16
+ if model_type != 'All':
17
+ subset = subset[subset['Model Type'] == model_type]
18
+ if search_query:
19
+ subset = subset[subset['Model'].str.contains(search_query, case=False, na=False)]
20
+ max_params = float(max_params)
21
+ subset = subset[subset['Params'] <= max_params]
22
+
23
+ if benchmark == 'RTL-Repo':
24
+ return filter_RTLRepo(subset)
25
+ else:
26
+ return filter_bench(subset)
27
+
28
+ def generate_scatter_plot(benchmark, metric):
29
+ benchmark, metric = handle_special_cases(benchmark, metric)
30
+
31
+ subset = df[df['Benchmark'] == benchmark]
32
+ if benchmark == "RTL-Repo":
33
+ subset = subset[subset['Metric'].str.contains('EM', case=False, na=False)]
34
+ detailed_scores = subset.groupby('Model', as_index=False)['Score'].mean()
35
+ detailed_scores.rename(columns={'Score': 'EM'}, inplace=True)
36
+ detailed_scores['Average ⬆️'] = detailed_scores['EM']
37
+ else:
38
+ detailed_scores = subset.pivot_table(index='Model', columns='Metric', values='Score').reset_index()
39
+ detailed_scores['Average ⬆️'] = detailed_scores[['Syntax (STX)', 'Functionality (FNC)', 'Synthesis (SYN)', 'Power', 'Performance', 'Area']].mean(axis=1)
40
+
41
+ details = df[['Model', 'Params', 'Model Type']].drop_duplicates('Model')
42
+ scatter_data = pd.merge(detailed_scores, details, on='Model', how='left').dropna(subset=['Params', metric])
43
+
44
+ scatter_data['x'] = scatter_data['Params']
45
+ scatter_data['y'] = scatter_data[metric]
46
+ scatter_data['size'] = (scatter_data['x'] ** 0.3) * 40
47
+
48
+ type_colors = {"General": "green", "Coding": "yellow", "RTL-Specific": "blue"}
49
+ scatter_data['color'] = scatter_data['Model Type'].map(type_colors).fillna('gray')
50
+
51
+ y_axis_limits = {
52
+ 'Functionality (FNC)': [5, 90], 'Syntax (STX)': [20, 100], 'Synthesis (SYN)': [5, 90],
53
+ 'Power': [0, 50], 'Performance': [0, 50], 'Area': [0, 50], 'Exact Matching (EM)': [0, 50],
54
+ 'Average ⬆️': [0, 80]
55
+ }
56
+ y_range = y_axis_limits.get(metric, [0, 80])
57
+
58
+ fig = px.scatter(
59
+ scatter_data, x='x', y='y', log_x=True, size='size', color='color', text='Model',
60
+ hover_data={metric: ':.2f'}, title=f'Params vs. {metric} for {benchmark}',
61
+ labels={'x': '# Params (Log Scale)', 'y': metric}, template="plotly_white",
62
+ height=600, width=1200
63
  )
64
+
65
+ fig.update_traces(
66
+ textposition='top center', textfont_size=10,
67
+ marker=dict(opacity=0.8, line=dict(width=0.5, color='black'))
 
 
68
  )
69
+ fig.update_layout(
70
+ xaxis=dict(
71
+ showgrid=True, type='log', tickmode='array',
72
+ tickvals=[8, 14, 32, 72, 200, 700],
73
+ ticktext=['8', '14', '32', '72', '200', '700']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  ),
75
+ showlegend=False, yaxis=dict(range=y_range),
76
+ margin=dict(l=50, r=50, t=50, b=50), plot_bgcolor='white'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  )
78
 
79
+ return fig
80
+
81
+ with gr.Blocks(css=custom_css) as app:
82
+ df, benchmarks, metrics, default_metric = read_data()
83
+ gr.Markdown("""# TuRTLe 🐢 Model Leaderboard
84
+ Welcome to the TuRTLe Model Leaderboard! Use the filters below to explore different RTL benchmarks and models.
85
+ [GitHub Repository](https://github.com/https://github.com/HPAI-BSC) | [arXiv Preprint](https://arxiv.org/) | [How to submit](https://github.com/https://github.com/HPAI-BSC)<br/>
86
+ Contact us: hpai@bsc.es
87
+ """)
88
+
89
+ with gr.Tabs():
90
+ with gr.Tab("Leaderboard"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  with gr.Row():
92
+ benchmark_radio = gr.Radio(choices=benchmarks, label="Select Benchmark", value='VerilogEval S2R', scale=7)
93
+ model_type_radio = gr.Radio(choices=['All', 'General', 'Coding', 'RTL-Specific'], label="Select Model Type", value='All', scale=4)
94
+
95
  with gr.Row():
96
+ search_box = gr.Textbox(label="Search Model", placeholder="Type model name...")
97
+ params_slider = gr.Slider(
98
+ minimum=df['Params'].min(),
99
+ maximum=700,
100
+ value=700,
101
+ label="Max Params",
102
+ step=1
103
+ )
104
+
105
+ leaderboard = gr.DataFrame(
106
+ value=filter_leaderboard('VerilogEval S2R', 'All', "", 700),
107
+ headers="first row",
108
+ wrap=True,
109
+ datatype=["markdown", "markdown", "html",],
110
+ interactive=False,
111
+ column_widths=["4%", "5%", "28%", "10%", "14%"],)
112
+
113
+ with gr.Tab("Interactive Bubble Plot"):
114
+ with gr.Row():
115
+ bubble_benchmark = gr.Radio(choices=benchmarks, label="Select Benchmark", value='VerilogEval S2R')
116
+ bubble_metric = gr.Radio(choices=metrics, label="Select Metric", value=default_metric)
117
+ gr.Markdown("We show in 🟢 General Models, in 🟡 Coding Models and in 🔵 RTL-Specific Models. Detailed information is shown when hovering over each model in the plot.")
118
+ scatter_plot = gr.Plot(value=generate_scatter_plot('VerilogEval S2R', default_metric), label="Bubble Chart", elem_id="full-width-plot")
119
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  with gr.Row():
121
  with gr.Accordion("📙 Citation", open=False):
122
  citation_button = gr.Textbox(
 
126
  elem_id="citation-button",
127
  show_copy_button=True,
128
  )
129
+
130
+ # event handlers, ugly way but it works
131
+ benchmark_radio.change(fn=filter_leaderboard, inputs=[benchmark_radio, model_type_radio, search_box, params_slider], outputs=leaderboard)
132
+ model_type_radio.change(fn=filter_leaderboard, inputs=[benchmark_radio, model_type_radio, search_box, params_slider], outputs=leaderboard)
133
+ search_box.change(fn=filter_leaderboard, inputs=[benchmark_radio, model_type_radio, search_box, params_slider], outputs=leaderboard)
134
+ params_slider.change(fn=filter_leaderboard, inputs=[benchmark_radio, model_type_radio, search_box, params_slider], outputs=leaderboard)
135
+
136
+ # RTL-Repo Bubble plot handlres
137
+ def on_benchmark_change(benchmark, metric):
138
+ benchmark, metric = handle_special_cases(benchmark, metric)
139
+ fig = generate_scatter_plot(benchmark, metric)
140
+ return gr.update(value=metric), fig
141
+
142
+ def on_metric_change(benchmark, metric):
143
+ benchmark, metric = handle_special_cases(benchmark, metric)
144
+ fig = generate_scatter_plot(benchmark, metric)
145
+ return gr.update(value=benchmark), fig
146
+
147
+ bubble_benchmark.change(
148
+ fn=on_benchmark_change,
149
+ inputs=[bubble_benchmark, bubble_metric],
150
+ outputs=[bubble_metric, scatter_plot]
151
+ )
152
+
153
+ bubble_metric.change(
154
+ fn=on_metric_change,
155
+ inputs=[bubble_benchmark, bubble_metric],
156
+ outputs=[bubble_benchmark, scatter_plot]
157
+ )
158
+
159
 
160
+ app.launch()
 
 
 
src/display/css_html_js.py → css_html_js.py RENAMED
@@ -1,34 +1,43 @@
1
  custom_css = """
2
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  .markdown-text {
4
  font-size: 16px !important;
5
  }
6
-
7
  #models-to-add-text {
8
  font-size: 18px !important;
9
  }
10
-
11
  #citation-button span {
12
  font-size: 16px !important;
13
  }
14
-
15
  #citation-button textarea {
16
  font-size: 16px !important;
17
  }
18
-
19
  #citation-button > label > button {
20
  margin: 6px;
21
  transform: scale(1.3);
22
  }
23
-
24
  #leaderboard-table {
25
  margin-top: 15px
26
  }
27
-
28
  #leaderboard-table-lite {
29
  margin-top: 15px
30
  }
31
-
32
  #search-bar-table-box > div:first-child {
33
  background: none;
34
  border: none;
@@ -37,7 +46,6 @@ custom_css = """
37
  #search-bar {
38
  padding: 0px;
39
  }
40
-
41
  /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
42
  #leaderboard-table td:nth-child(2),
43
  #leaderboard-table th:nth-child(2) {
@@ -45,11 +53,9 @@ custom_css = """
45
  overflow: auto;
46
  white-space: nowrap;
47
  }
48
-
49
  .tab-buttons button {
50
  font-size: 20px;
51
  }
52
-
53
  #scale-logo {
54
  border-style: none !important;
55
  box-shadow: none;
@@ -58,7 +64,6 @@ custom_css = """
58
  margin-right: auto;
59
  max-width: 600px;
60
  }
61
-
62
  #scale-logo .download {
63
  display: none;
64
  }
 
1
  custom_css = """
2
+ #component-0 {
3
+ width: 75vw;
4
+ margin: 0 auto;
5
+ padding: 0px 40px;
6
+ }
7
+ @media (max-width: 1600px) {
8
+ #component-0 {
9
+ width: 85vw;
10
+ padding: 0px;
11
+ }
12
+ }
13
+ @media (max-width: 1100px) {
14
+ #component-0 {
15
+ width: 95vw;
16
+ padding: 0px;
17
+ }
18
+ }
19
  .markdown-text {
20
  font-size: 16px !important;
21
  }
 
22
  #models-to-add-text {
23
  font-size: 18px !important;
24
  }
 
25
  #citation-button span {
26
  font-size: 16px !important;
27
  }
 
28
  #citation-button textarea {
29
  font-size: 16px !important;
30
  }
 
31
  #citation-button > label > button {
32
  margin: 6px;
33
  transform: scale(1.3);
34
  }
 
35
  #leaderboard-table {
36
  margin-top: 15px
37
  }
 
38
  #leaderboard-table-lite {
39
  margin-top: 15px
40
  }
 
41
  #search-bar-table-box > div:first-child {
42
  background: none;
43
  border: none;
 
46
  #search-bar {
47
  padding: 0px;
48
  }
 
49
  /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
50
  #leaderboard-table td:nth-child(2),
51
  #leaderboard-table th:nth-child(2) {
 
53
  overflow: auto;
54
  white-space: nowrap;
55
  }
 
56
  .tab-buttons button {
57
  font-size: 20px;
58
  }
 
59
  #scale-logo {
60
  border-style: none !important;
61
  box-shadow: none;
 
64
  margin-right: auto;
65
  max-width: 600px;
66
  }
 
67
  #scale-logo .download {
68
  display: none;
69
  }
main.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ def main():
2
+ print("Hello from tortuga!")
3
+
4
+
5
+ if __name__ == "__main__":
6
+ main()
parse.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import pandas as pd
3
+ import csv
4
+ from typing import Dict, Union
5
+ import locale
6
+
7
+ model_details = {
8
+ "DeepSeek R1": ("https://huggingface.co/deepseek-ai/DeepSeek-R1", 685, "General"),
9
+ "Llama 3.1 405B": ("https://huggingface.co/meta-llama/Llama-3.1-405B", 406, "General"),
10
+ "Llama 3.(1-3) 70B": ("https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct", 70.6, "General"),
11
+ "Qwen2.5 72B": ("https://huggingface.co/Qwen/Qwen2.5-72B-Instruct", 72.7, "General"),
12
+ "Qwen2.5 32B": ("https://huggingface.co/Qwen/Qwen2.5-32B", 32.5, "General"),
13
+ "StarChat2 15B v0.1": ("https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1", 16, "General"),
14
+ "DeepSeek R1 Distill Qwen 14B": ("https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", 14.8, "General"),
15
+
16
+ "CodeLlama 70B": ("https://huggingface.co/codellama/CodeLlama-70b-hf", 69, "Coding"),
17
+ "QwenCoder 2.5 32B": ("https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct", 32.5, "Coding"),
18
+ "DeepSeek Coder 33B": ("https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct", 33.3, "Coding"),
19
+ "QwenCoder 2.5 14B": ("https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct", 14.7, "Coding"),
20
+ "OpenCoder 8B": ("https://huggingface.co/infly/OpenCoder-8B-Instruct", 7.77, "Coding"),
21
+ "QwenCoder 2.5 7B": ("https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct", 7.61, "Coding"),
22
+ "DeepSeek Coder 6,7B": ("https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct", 6.74, "Coding"),
23
+
24
+ "HaVen-CodeQwen": ("https://huggingface.co/yangyiyao/HaVen-CodeQwen", 7.25, "RTL-Specific"),
25
+ "CodeV-CL-7B": ("https://huggingface.co/yang-z/CodeV-CL-7B", 6.74, "RTL-Specific"),
26
+ "CodeV-QW-7B": ("https://huggingface.co/yang-z/CodeV-QW-7B", 7.25, "RTL-Specific"),
27
+ "CodeV-DS-6.7B": ("https://huggingface.co/yang-z/CodeV-DS-6.7B", 6.74, "RTL-Specific"),
28
+ "RTLCoder Mistral": ("https://huggingface.co/ishorn5/RTLCoder-v1.1", 7.24, "RTL-Specific"),
29
+ "RTLCoder DeepSeek": ("https://huggingface.co/ishorn5/RTLCoder-Deepseek-v1.1", 6.74, "RTL-Specific"),
30
+ "OriGen": ("https://huggingface.co/henryen/OriGen_Fix", 6.74, "RTL-Specific")
31
+ }
32
+
33
+ def get_headers(reader) -> Union[list, list]:
34
+ metrics, benchs = [], []
35
+ for i, row in enumerate(reader):
36
+ if i == 0:
37
+ metrics = row[1:]
38
+ elif i == 1:
39
+ benchs = row[1:]
40
+ break
41
+ return metrics, benchs
42
+
43
+ def get_model_params_and_url(model) -> Union[str, str, float]:
44
+ if model not in model_details:
45
+ return "-", "-", "-"
46
+ url = model_details[model][0]
47
+ params = model_details[model][1]
48
+ type = model_details[model][2]
49
+ return url, params, type
50
+
51
+ def parse_results(csv_path: str) -> list[dict]:
52
+ """
53
+ Each row has the following format:
54
+ MODEL | BENCHMARK | TASK | METRIC | RESULT
55
+ """
56
+ dataset = []
57
+ models = []
58
+ with open(csv_path, newline='') as csvfile:
59
+ reader = csv.reader(csvfile, delimiter=',')
60
+ metrics, benchs = get_headers(reader)
61
+ for i, row in enumerate(reader):
62
+ model = row[0]
63
+ url, params, type = get_model_params_and_url(model)
64
+ models.append(model)
65
+ row = row[1:]
66
+ ctr = 0
67
+ for metric, bench in zip(metrics, benchs):
68
+ record = {}
69
+ record["Model"] = model
70
+ record["Model Type"] = type
71
+ record["Benchmark"] = bench
72
+ record["Task"] = metric
73
+ record["Result"] = float(row[ctr].replace(',','.'))
74
+ record["Model URL"] = url
75
+ record["Params"] = params
76
+ dataset.append(record)
77
+ ctr += 1
78
+ print(models)
79
+ return dataset
80
+
81
+ def writeJson(data: list):
82
+ with open('results.json', 'w') as f:
83
+ json.dump(data, f, indent=4, ensure_ascii=False)
84
+ print("Done")
85
+
86
+ def read_json():
87
+ json_path = "./results.json"
88
+ with open(json_path, "r", encoding="utf-8") as file:
89
+ data = json.load(file)
90
+ return data
91
+
92
+ def read_data() -> Union[pd.DataFrame, list, list, str]:
93
+ data = read_json()
94
+ df = pd.DataFrame(data)
95
+ df.rename(columns={'Model': 'Model', 'Benchmark': 'Benchmark', 'Task': 'Metric', 'Result': 'Score'}, inplace=True)
96
+ df['Params'] = pd.to_numeric(df['Params'], errors='coerce')
97
+ benchmarks = sorted(df['Benchmark'].unique().tolist(), reverse=True)
98
+ metrics = df['Metric'].unique().tolist()
99
+ default_metric = 'Functionality (FNC)' if 'Functionality (FNC)' in metrics else metrics[0]
100
+ return df, benchmarks, metrics, default_metric
101
+
102
+
103
+ if __name__ == "__main__":
104
+ csv_path = "./results.csv"
105
+ d = parse_results(csv_path)
106
+ writeJson(d)
pyproject.toml CHANGED
@@ -1,13 +1,11 @@
1
- [tool.ruff]
2
- # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
- select = ["E", "F"]
4
- ignore = ["E501"] # line too long (black is taking care of this)
5
- line-length = 119
6
- fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
-
8
- [tool.isort]
9
- profile = "black"
10
- line_length = 119
11
-
12
- [tool.black]
13
- line-length = 119
 
1
+ [project]
2
+ name = "tortuga"
3
+ version = "0.1.0"
4
+ description = "Add your description here"
5
+ readme = "README.md"
6
+ requires-python = ">=3.13"
7
+ dependencies = [
8
+ "gradio>=5.21.0",
9
+ "gradio-leaderboard>=0.0.13",
10
+ "pandas>=2.2.3",
11
+ ]
 
 
requirements.txt CHANGED
@@ -13,4 +13,5 @@ python-dateutil
13
  tqdm
14
  transformers
15
  tokenizers>=0.15.0
16
- sentencepiece
 
 
13
  tqdm
14
  transformers
15
  tokenizers>=0.15.0
16
+ sentencepiece
17
+ plotly
results.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Syntax (STX),Syntax (STX),Functionality (FNC),Functionality (FNC),Synthesis (SYN),Synthesis (SYN),Power,Power,Performance,Performance,Area,Area,EM,Syntax (STX),Syntax (STX),Functionality (FNC),Functionality (FNC),Synthesis (SYN),Synthesis (SYN),Power,Power,Performance,Performance,Area,Area
2
+ ,VerilogEval S2R,RTLLM,VerilogEval S2R,RTLLM,VerilogEval S2R,RTLLM,VerilogEval S2R,RTLLM,VerilogEval S2R,RTLLM,VerilogEval S2R,RTLLM,RTL-Repo,VerilogEval MC,VeriGen,VerilogEval MC,VeriGen,VerilogEval MC,VeriGen,VerilogEval MC,VeriGen,VerilogEval MC,VeriGen,VerilogEval MC,VeriGen
3
+ DeepSeek R1,"96,54","91,43","79,74","67,76","78,97","63,27","38,94","35,64","37,82","31,95","38,76","34,5","33,02","97,95","94,12","80,26",60,"79,62","54,12","39,35","26,62","38,16","26,97","39,21","28,01"
4
+ Llama 3.1 405B,"89,1","65,71","57,05","37,55","56,67","35,92","27,18","19,7",27,"16,04","26,79","18,91","33,29","91,41","72,94","44,74","45,88","44,1","44,71","21,98","19,24","20,74","22,19","21,66","21,08"
5
+ Llama 3.(1-3) 70B,"67,69","73,88",40,"43,27","39,87","39,18","19,76","20,58","18,69","19,32","19,51","20,28","28,62","70,51","78,82","38,59","48,24","37,95","48,24","18,97","23,22","18,35","24,15","18,86","24,71"
6
+ Qwen2.5 72B,"81,15","82,04","51,15","47,35","50,38","46,53","25,4","24,83","23,83","23,88","24,52","25,46","37,19","81,67","70,59","53,08","27,06","52,56","27,06","26,08","12,74","24,92","13,5","25,83","13,89"
7
+ Qwen2.5 32B,"89,36","86,94","52,95","50,61","51,67","46,94","26,02","25,9","24,46","23,87","25,32","26,29","28,67","93,46","67,06","43,08","32,94","42,31","30,59","21,14",15,"20,48","15,38","21,15","15,31"
8
+ StarChat2 15B v0.1,"86,54","85,71","38,72","42,45","38,59","42,45","19,18","22,44","17,99","21,03",19,"22,53","13,24","81,54","92,94","39,36","50,59","38,59","50,59","19,21","24,02","18,28","25,23","19,05","25,73"
9
+ DeepSeek R1 Distill Qwen 14B,"41,28","40,82","23,85","20,82","23,72","20,41","11,81","12,46","11,25","10,24","11,76","10,7","20,65","42,18","62,35","24,36","25,88","24,1","25,88","11,96","11,54","11,38","12,93","11,86","12,9"
10
+ CodeLlama 70B,"72,05","41,63","35,51","23,27","35,38","22,86","17,32","11,92","16,74","10,85","17,2","11,71","24,58","89,36","89,41","30,9","45,88","30,9","45,88","15,3","21,74","14,19","22,88","15,21","22,82"
11
+ QwenCoder 2.5 32B,"87,69","79,59","45,64","43,27","43,33","42,04","21,51","22,02","20,72","20,95","21,17","22,03","30,44","84,87","72,94","45,51","41,18","44,87","41,18","22,26","20,56","21,48","20,67","22,2","20,87"
12
+ DeepSeek Coder 33B,"57,82","83,67","19,87","43,67","19,87","42,86","9,94","23,28","9,83","21,19","9,47","23,2","30,58","78,72","83,53","39,49","29,41","38,33","29,41","18,92","14,52","18,2","14,74","18,76","14,67"
13
+ QwenCoder 2.5 14B,"79,74","78,37","37,82","41,63","37,05","40,41","18,03","20,14","17,6","20,1","17,78","20,25","37,16","79,36","67,06","40,26","34,12","39,49","34,12","19,74","16,5","19,07","17,07","19,73","16,75"
14
+ OpenCoder 8B,"75,77","75,1","28,59","46,53","28,21","42,86","13,81","22,24","13,16","21,47","13,71","21,73","16,63","79,87","92,94","36,03","43,53","35,51","37,65","17,57","17,19","16,74","18,76","17,52","19,06"
15
+ QwenCoder 2.5 7B,"19,62","77,96","6,41","37,96","6,41","35,51","3,12","19,26","3,18","17,98","3,16","18,87","28,45","75,9","71,76","32,44","37,65","32,44","37,65","16,2","18,38","15,26","18,91","16,16","18,92"
16
+ "DeepSeek Coder 6,7B","80,12","78,37","29,87","40,41","29,36","37,96","14,71","20,72","13,69","19,25","14,64","21,03","24,57","68,85","81,18","32,82","27,06","31,15","27,06","15,53","12,94","14,62","13,39","15,46","13,58"
17
+ RTLCoder Mistral,"52,05","38,78","23,59","19,18","23,59","19,18","11,67","10,08","10,87","8,7","11,56","9,95","14,97","63,59","85,88","26,92","35,29","26,92","35,29","13,43","18,49","12,53","17,61","13,36","18,35"
18
+ RTLCoder DeepSeek,"75,26","68,57","33,33","37,14","32,95","33,06","16,02","17,29","15,71","16,35","15,9","16,82","19,76","84,1","84,71","39,23","38,82","38,59","38,82","19,08","19,1","18,31","19,35","18,82","19,76"
19
+ OriGen,"91,02","23,67","46,54","12,65","46,92","10,61","23,38","5,33","22,18","4,61","23,44","4,79","19,45","79,35","87,06","43,07","35,29","42,95","35,29","21,5","16,55","20,13","17,7","21,33","18,35"
20
+ HaVen-CodeQwen,"90,26","82,45","45,9","40,41","44,36","38,37","21,77","19,1","21,23","18,31","21,46","18,92","25,38","93,33","97,65",50,"48,24","48,72","42,35","23,37","20,21","23,39","21,15","23,09","21,25"
21
+ CodeV-CL-7B,"55,38","69,8","27,05","37,14","26,79","35,1","13,2","18,92","12,39","16,88","13,03","17,89","12,39","91,92","98,82","36,79","44,71","36,41","38,82","18,15","19,06","16,88","19,38","18,05","19,35"
22
+ CodeV-QW-7B,"41,79","71,02","19,1","35,51","18,72","27,76","9,36","14,85","9,36","12,21","9,38","13,78","20,56","93,85","57,65","52,56","25,88","51,15",20,"25,64","9,39","24,22","9,99","25,56","9,94"
23
+ CodeV-DS-6.7B,"30,77","62,45","14,87","33,88","14,62","30,61","7,3","15,49","6,9","14,75","7,22","15,35","21,06","95,13","58,82","48,85","23,53","48,33","17,65","24,02","8,26","22,82","8,81","23,73","8,47"
results.json ADDED
The diff for this file is too large to render. See raw diff
 
src/about.py DELETED
@@ -1,72 +0,0 @@
1
- from dataclasses import dataclass
2
- from enum import Enum
3
-
4
- @dataclass
5
- class Task:
6
- benchmark: str
7
- metric: str
8
- col_name: str
9
-
10
-
11
- # Select your tasks here
12
- # ---------------------------------------------------
13
- class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
17
-
18
- NUM_FEWSHOT = 0 # Change with your few shot
19
- # ---------------------------------------------------
20
-
21
-
22
-
23
- # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
25
-
26
- # What does your leaderboard evaluate?
27
- INTRODUCTION_TEXT = """
28
- Intro text
29
- """
30
-
31
- # Which evaluations are you running? how can people reproduce what you have?
32
- LLM_BENCHMARKS_TEXT = f"""
33
- ## How it works
34
-
35
- ## Reproducibility
36
- To reproduce our results, here is the commands you can run:
37
-
38
- """
39
-
40
- EVALUATION_QUEUE_TEXT = """
41
- ## Some good practices before submitting a model
42
-
43
- ### 1) Make sure you can load your model and tokenizer using AutoClasses:
44
- ```python
45
- from transformers import AutoConfig, AutoModel, AutoTokenizer
46
- config = AutoConfig.from_pretrained("your model name", revision=revision)
47
- model = AutoModel.from_pretrained("your model name", revision=revision)
48
- tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
49
- ```
50
- If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
51
-
52
- Note: make sure your model is public!
53
- Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
54
-
55
- ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
56
- It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
57
-
58
- ### 3) Make sure your model has an open license!
59
- This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
60
-
61
- ### 4) Fill up your model card
62
- When we add extra information about models to the leaderboard, it will be automatically taken from the model card
63
-
64
- ## In case of model failure
65
- If your model is displayed in the `FAILED` category, its execution stopped.
66
- Make sure you have followed the above steps first.
67
- If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
68
- """
69
-
70
- CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
71
- CITATION_BUTTON_TEXT = r"""
72
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/formatting.py DELETED
@@ -1,27 +0,0 @@
1
- def model_hyperlink(link, model_name):
2
- return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
3
-
4
-
5
- def make_clickable_model(model_name):
6
- link = f"https://huggingface.co/{model_name}"
7
- return model_hyperlink(link, model_name)
8
-
9
-
10
- def styled_error(error):
11
- return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
12
-
13
-
14
- def styled_warning(warn):
15
- return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
16
-
17
-
18
- def styled_message(message):
19
- return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
20
-
21
-
22
- def has_no_nan_values(df, columns):
23
- return df[columns].notna().all(axis=1)
24
-
25
-
26
- def has_nan_values(df, columns):
27
- return df[columns].isna().any(axis=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/utils.py DELETED
@@ -1,110 +0,0 @@
1
- from dataclasses import dataclass, make_dataclass
2
- from enum import Enum
3
-
4
- import pandas as pd
5
-
6
- from src.about import Tasks
7
-
8
- def fields(raw_class):
9
- return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
-
11
-
12
- # These classes are for user facing column names,
13
- # to avoid having to change them all around the code
14
- # when a modif is needed
15
- @dataclass
16
- class ColumnContent:
17
- name: str
18
- type: str
19
- displayed_by_default: bool
20
- hidden: bool = False
21
- never_hidden: bool = False
22
-
23
- ## Leaderboard columns
24
- auto_eval_column_dict = []
25
- # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
- auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
- #Scores
29
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
- for task in Tasks:
31
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
- # Model information
33
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
-
43
- # We use make dataclass to dynamically fill the scores from Tasks
44
- AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
45
-
46
- ## For the queue columns in the submission tab
47
- @dataclass(frozen=True)
48
- class EvalQueueColumn: # Queue column
49
- model = ColumnContent("model", "markdown", True)
50
- revision = ColumnContent("revision", "str", True)
51
- private = ColumnContent("private", "bool", True)
52
- precision = ColumnContent("precision", "str", True)
53
- weight_type = ColumnContent("weight_type", "str", "Original")
54
- status = ColumnContent("status", "str", True)
55
-
56
- ## All the model information that we might need
57
- @dataclass
58
- class ModelDetails:
59
- name: str
60
- display_name: str = ""
61
- symbol: str = "" # emoji
62
-
63
-
64
- class ModelType(Enum):
65
- PT = ModelDetails(name="pretrained", symbol="🟢")
66
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
- Unknown = ModelDetails(name="", symbol="?")
70
-
71
- def to_str(self, separator=" "):
72
- return f"{self.value.symbol}{separator}{self.value.name}"
73
-
74
- @staticmethod
75
- def from_str(type):
76
- if "fine-tuned" in type or "🔶" in type:
77
- return ModelType.FT
78
- if "pretrained" in type or "🟢" in type:
79
- return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "⭕" in type:
83
- return ModelType.IFT
84
- return ModelType.Unknown
85
-
86
- class WeightType(Enum):
87
- Adapter = ModelDetails("Adapter")
88
- Original = ModelDetails("Original")
89
- Delta = ModelDetails("Delta")
90
-
91
- class Precision(Enum):
92
- float16 = ModelDetails("float16")
93
- bfloat16 = ModelDetails("bfloat16")
94
- Unknown = ModelDetails("?")
95
-
96
- def from_str(precision):
97
- if precision in ["torch.float16", "float16"]:
98
- return Precision.float16
99
- if precision in ["torch.bfloat16", "bfloat16"]:
100
- return Precision.bfloat16
101
- return Precision.Unknown
102
-
103
- # Column selection
104
- COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
105
-
106
- EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
107
- EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
108
-
109
- BENCHMARK_COLS = [t.value.col_name for t in Tasks]
110
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/envs.py DELETED
@@ -1,25 +0,0 @@
1
- import os
2
-
3
- from huggingface_hub import HfApi
4
-
5
- # Info to change for your repository
6
- # ----------------------------------
7
- TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
-
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
- # ----------------------------------
11
-
12
- REPO_ID = f"{OWNER}/leaderboard"
13
- QUEUE_REPO = f"{OWNER}/requests"
14
- RESULTS_REPO = f"{OWNER}/results"
15
-
16
- # If you setup a cache later, just change HF_HOME
17
- CACHE_PATH=os.getenv("HF_HOME", ".")
18
-
19
- # Local caches
20
- EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
- EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
- EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
- EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
-
25
- API = HfApi(token=TOKEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/read_evals.py DELETED
@@ -1,196 +0,0 @@
1
- import glob
2
- import json
3
- import math
4
- import os
5
- from dataclasses import dataclass
6
-
7
- import dateutil
8
- import numpy as np
9
-
10
- from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
- from src.submission.check_validity import is_model_on_hub
13
-
14
-
15
- @dataclass
16
- class EvalResult:
17
- """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
- """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
- model: str
23
- revision: str # commit hash, "" if main
24
- results: dict
25
- precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
- license: str = "?"
30
- likes: int = 0
31
- num_params: int = 0
32
- date: str = "" # submission date of request file
33
- still_on_hub: bool = False
34
-
35
- @classmethod
36
- def init_from_json_file(self, json_filepath):
37
- """Inits the result from the specific model result file"""
38
- with open(json_filepath) as fp:
39
- data = json.load(fp)
40
-
41
- config = data.get("config")
42
-
43
- # Precision
44
- precision = Precision.from_str(config.get("model_dtype"))
45
-
46
- # Get model and org
47
- org_and_model = config.get("model_name", config.get("model_args", None))
48
- org_and_model = org_and_model.split("/", 1)
49
-
50
- if len(org_and_model) == 1:
51
- org = None
52
- model = org_and_model[0]
53
- result_key = f"{model}_{precision.value.name}"
54
- else:
55
- org = org_and_model[0]
56
- model = org_and_model[1]
57
- result_key = f"{org}_{model}_{precision.value.name}"
58
- full_model = "/".join(org_and_model)
59
-
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
- architecture = "?"
64
- if model_config is not None:
65
- architectures = getattr(model_config, "architectures", None)
66
- if architectures:
67
- architecture = ";".join(architectures)
68
-
69
- # Extract results available in this file (some results are split in several files)
70
- results = {}
71
- for task in Tasks:
72
- task = task.value
73
-
74
- # We average all scores of a given metric (not all metrics are present in all files)
75
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
- if accs.size == 0 or any([acc is None for acc in accs]):
77
- continue
78
-
79
- mean_acc = np.mean(accs) * 100.0
80
- results[task.benchmark] = mean_acc
81
-
82
- return self(
83
- eval_name=result_key,
84
- full_model=full_model,
85
- org=org,
86
- model=model,
87
- results=results,
88
- precision=precision,
89
- revision= config.get("model_sha", ""),
90
- still_on_hub=still_on_hub,
91
- architecture=architecture
92
- )
93
-
94
- def update_with_request_file(self, requests_path):
95
- """Finds the relevant request file for the current model and updates info with it"""
96
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
-
98
- try:
99
- with open(request_file, "r") as f:
100
- request = json.load(f)
101
- self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- self.weight_type = WeightType[request.get("weight_type", "Original")]
103
- self.license = request.get("license", "?")
104
- self.likes = request.get("likes", 0)
105
- self.num_params = request.get("params", 0)
106
- self.date = request.get("submitted_time", "")
107
- except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
-
110
- def to_dict(self):
111
- """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
- data_dict = {
114
- "eval_name": self.eval_name, # not a column, just a save name,
115
- AutoEvalColumn.precision.name: self.precision.value.name,
116
- AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
- AutoEvalColumn.architecture.name: self.architecture,
120
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
- AutoEvalColumn.revision.name: self.revision,
122
- AutoEvalColumn.average.name: average,
123
- AutoEvalColumn.license.name: self.license,
124
- AutoEvalColumn.likes.name: self.likes,
125
- AutoEvalColumn.params.name: self.num_params,
126
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
- }
128
-
129
- for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
-
132
- return data_dict
133
-
134
-
135
- def get_request_file_for_model(requests_path, model_name, precision):
136
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
- request_files = os.path.join(
138
- requests_path,
139
- f"{model_name}_eval_request_*.json",
140
- )
141
- request_files = glob.glob(request_files)
142
-
143
- # Select correct request file (precision)
144
- request_file = ""
145
- request_files = sorted(request_files, reverse=True)
146
- for tmp_request_file in request_files:
147
- with open(tmp_request_file, "r") as f:
148
- req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
- request_file = tmp_request_file
154
- return request_file
155
-
156
-
157
- def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
158
- """From the path of the results folder root, extract all needed info for results"""
159
- model_result_filepaths = []
160
-
161
- for root, _, files in os.walk(results_path):
162
- # We should only have json files in model results
163
- if len(files) == 0 or any([not f.endswith(".json") for f in files]):
164
- continue
165
-
166
- # Sort the files by date
167
- try:
168
- files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
169
- except dateutil.parser._parser.ParserError:
170
- files = [files[-1]]
171
-
172
- for file in files:
173
- model_result_filepaths.append(os.path.join(root, file))
174
-
175
- eval_results = {}
176
- for model_result_filepath in model_result_filepaths:
177
- # Creation of result
178
- eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
- eval_result.update_with_request_file(requests_path)
180
-
181
- # Store results of same eval together
182
- eval_name = eval_result.eval_name
183
- if eval_name in eval_results.keys():
184
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
185
- else:
186
- eval_results[eval_name] = eval_result
187
-
188
- results = []
189
- for v in eval_results.values():
190
- try:
191
- v.to_dict() # we test if the dict version is complete
192
- results.append(v)
193
- except KeyError: # not all eval values present
194
- continue
195
-
196
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/populate.py DELETED
@@ -1,58 +0,0 @@
1
- import json
2
- import os
3
-
4
- import pandas as pd
5
-
6
- from src.display.formatting import has_no_nan_values, make_clickable_model
7
- from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
- from src.leaderboard.read_evals import get_raw_eval_results
9
-
10
-
11
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
- """Creates a dataframe from all the individual experiment results"""
13
- raw_data = get_raw_eval_results(results_path, requests_path)
14
- all_data_json = [v.to_dict() for v in raw_data]
15
-
16
- df = pd.DataFrame.from_records(all_data_json)
17
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
- df = df[cols].round(decimals=2)
19
-
20
- # filter out if any of the benchmarks have not been produced
21
- df = df[has_no_nan_values(df, benchmark_cols)]
22
- return df
23
-
24
-
25
- def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
26
- """Creates the different dataframes for the evaluation queues requestes"""
27
- entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
28
- all_evals = []
29
-
30
- for entry in entries:
31
- if ".json" in entry:
32
- file_path = os.path.join(save_path, entry)
33
- with open(file_path) as fp:
34
- data = json.load(fp)
35
-
36
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
37
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
38
-
39
- all_evals.append(data)
40
- elif ".md" not in entry:
41
- # this is a folder
42
- sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
43
- for sub_entry in sub_entries:
44
- file_path = os.path.join(save_path, entry, sub_entry)
45
- with open(file_path) as fp:
46
- data = json.load(fp)
47
-
48
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
49
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
50
- all_evals.append(data)
51
-
52
- pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
53
- running_list = [e for e in all_evals if e["status"] == "RUNNING"]
54
- finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
55
- df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
56
- df_running = pd.DataFrame.from_records(running_list, columns=cols)
57
- df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
58
- return df_finished[cols], df_running[cols], df_pending[cols]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/check_validity.py DELETED
@@ -1,99 +0,0 @@
1
- import json
2
- import os
3
- import re
4
- from collections import defaultdict
5
- from datetime import datetime, timedelta, timezone
6
-
7
- import huggingface_hub
8
- from huggingface_hub import ModelCard
9
- from huggingface_hub.hf_api import ModelInfo
10
- from transformers import AutoConfig
11
- from transformers.models.auto.tokenization_auto import AutoTokenizer
12
-
13
- def check_model_card(repo_id: str) -> tuple[bool, str]:
14
- """Checks if the model card and license exist and have been filled"""
15
- try:
16
- card = ModelCard.load(repo_id)
17
- except huggingface_hub.utils.EntryNotFoundError:
18
- return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
-
20
- # Enforce license metadata
21
- if card.data.license is None:
22
- if not ("license_name" in card.data and "license_link" in card.data):
23
- return False, (
24
- "License not found. Please add a license to your model card using the `license` metadata or a"
25
- " `license_name`/`license_link` pair."
26
- )
27
-
28
- # Enforce card content
29
- if len(card.text) < 200:
30
- return False, "Please add a description to your model card, it is too short."
31
-
32
- return True, ""
33
-
34
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
- """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
- try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
- if test_tokenizer:
39
- try:
40
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
- except ValueError as e:
42
- return (
43
- False,
44
- f"uses a tokenizer which is not in a transformers release: {e}",
45
- None
46
- )
47
- except Exception as e:
48
- return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
- return True, None, config
50
-
51
- except ValueError:
52
- return (
53
- False,
54
- "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
- None
56
- )
57
-
58
- except Exception as e:
59
- return False, "was not found on hub!", None
60
-
61
-
62
- def get_model_size(model_info: ModelInfo, precision: str):
63
- """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
- try:
65
- model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
- except (AttributeError, TypeError):
67
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
-
69
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
- model_size = size_factor * model_size
71
- return model_size
72
-
73
- def get_model_arch(model_info: ModelInfo):
74
- """Gets the model architecture from the configuration"""
75
- return model_info.config.get("architectures", "Unknown")
76
-
77
- def already_submitted_models(requested_models_dir: str) -> set[str]:
78
- """Gather a list of already submitted models to avoid duplicates"""
79
- depth = 1
80
- file_names = []
81
- users_to_submission_dates = defaultdict(list)
82
-
83
- for root, _, files in os.walk(requested_models_dir):
84
- current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
- if current_depth == depth:
86
- for file in files:
87
- if not file.endswith(".json"):
88
- continue
89
- with open(os.path.join(root, file), "r") as f:
90
- info = json.load(f)
91
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
-
93
- # Select organisation
94
- if info["model"].count("/") == 0 or "submitted_time" not in info:
95
- continue
96
- organisation, _ = info["model"].split("/")
97
- users_to_submission_dates[organisation].append(info["submitted_time"])
98
-
99
- return set(file_names), users_to_submission_dates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/submit.py DELETED
@@ -1,119 +0,0 @@
1
- import json
2
- import os
3
- from datetime import datetime, timezone
4
-
5
- from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
- from src.submission.check_validity import (
8
- already_submitted_models,
9
- check_model_card,
10
- get_model_size,
11
- is_model_on_hub,
12
- )
13
-
14
- REQUESTED_MODELS = None
15
- USERS_TO_SUBMISSION_DATES = None
16
-
17
- def add_new_eval(
18
- model: str,
19
- base_model: str,
20
- revision: str,
21
- precision: str,
22
- weight_type: str,
23
- model_type: str,
24
- ):
25
- global REQUESTED_MODELS
26
- global USERS_TO_SUBMISSION_DATES
27
- if not REQUESTED_MODELS:
28
- REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
-
30
- user_name = ""
31
- model_path = model
32
- if "/" in model:
33
- user_name = model.split("/")[0]
34
- model_path = model.split("/")[1]
35
-
36
- precision = precision.split(" ")[0]
37
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
-
39
- if model_type is None or model_type == "":
40
- return styled_error("Please select a model type.")
41
-
42
- # Does the model actually exist?
43
- if revision == "":
44
- revision = "main"
45
-
46
- # Is the model on the hub?
47
- if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
- if not base_model_on_hub:
50
- return styled_error(f'Base model "{base_model}" {error}')
51
-
52
- if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
- if not model_on_hub:
55
- return styled_error(f'Model "{model}" {error}')
56
-
57
- # Is the model info correctly filled?
58
- try:
59
- model_info = API.model_info(repo_id=model, revision=revision)
60
- except Exception:
61
- return styled_error("Could not get your model information. Please fill it up properly.")
62
-
63
- model_size = get_model_size(model_info=model_info, precision=precision)
64
-
65
- # Were the model card and license filled?
66
- try:
67
- license = model_info.cardData["license"]
68
- except Exception:
69
- return styled_error("Please select a license for your model")
70
-
71
- modelcard_OK, error_msg = check_model_card(model)
72
- if not modelcard_OK:
73
- return styled_error(error_msg)
74
-
75
- # Seems good, creating the eval
76
- print("Adding new eval")
77
-
78
- eval_entry = {
79
- "model": model,
80
- "base_model": base_model,
81
- "revision": revision,
82
- "precision": precision,
83
- "weight_type": weight_type,
84
- "status": "PENDING",
85
- "submitted_time": current_time,
86
- "model_type": model_type,
87
- "likes": model_info.likes,
88
- "params": model_size,
89
- "license": license,
90
- "private": False,
91
- }
92
-
93
- # Check for duplicate submission
94
- if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
- return styled_warning("This model has been already submitted.")
96
-
97
- print("Creating eval file")
98
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
- os.makedirs(OUT_DIR, exist_ok=True)
100
- out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
-
102
- with open(out_path, "w") as f:
103
- f.write(json.dumps(eval_entry))
104
-
105
- print("Uploading eval file")
106
- API.upload_file(
107
- path_or_fileobj=out_path,
108
- path_in_repo=out_path.split("eval-queue/")[1],
109
- repo_id=QUEUE_REPO,
110
- repo_type="dataset",
111
- commit_message=f"Add {model} to eval queue",
112
- )
113
-
114
- # Remove the local file
115
- os.remove(out_path)
116
-
117
- return styled_message(
118
- "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import gradio as gr
3
+ import plotly.graph_objects as go
4
+ import plotly.express as px
5
+ import numpy as np
6
+
7
+ type_emoji = {
8
+ "RTL-Specific": "🔵",
9
+ "General": "🟢",
10
+ "Coding": "🟡"
11
+ }
12
+
13
+ def model_hyperlink(link, model_name):
14
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
15
+
16
+ def handle_special_cases(benchmark, metric):
17
+ if metric == 'EM':
18
+ benchmark = 'RTL-Repo'
19
+ elif benchmark == 'RTL-Repo':
20
+ metric = 'EM'
21
+ return benchmark, metric
22
+
23
+ def filter_RTLRepo(subset: pd.DataFrame) -> pd.DataFrame:
24
+ details = subset[['Model', 'Model URL', 'Model Type', 'Params']].drop_duplicates('Model')
25
+ filtered_df = subset[['Model', 'Score']].rename(columns={'Score': 'Exact Matching (EM)'})
26
+ filtered_df = pd.merge(filtered_df, details, on='Model', how='left')
27
+ filtered_df['Model'] = filtered_df.apply(lambda row: model_hyperlink(row["Model URL"], row["Model"]), axis=1)
28
+ filtered_df['Type'] = filtered_df['Model Type'].map(lambda x: type_emoji.get(x, ""))
29
+ filtered_df = filtered_df[['Type', 'Model', 'Params', 'Exact Matching (EM)']]
30
+ filtered_df.insert(0, '', range(1, len(filtered_df) + 1))
31
+ return filtered_df
32
+
33
+ def filter_bench(subset: pd.DataFrame) -> pd.DataFrame:
34
+ details = subset[['Model', 'Model URL', 'Model Type', 'Params']].drop_duplicates('Model')
35
+ pivot_df = subset.pivot_table(index='Model', columns='Metric', values='Score', aggfunc='mean').reset_index()
36
+ pivot_df['Average ⬆️'] = pivot_df.mean(axis=1, numeric_only=True).round(2)
37
+ pivot_df = pd.merge(pivot_df, details, on='Model', how='left')
38
+ pivot_df['Model'] = pivot_df.apply(lambda row: model_hyperlink(row["Model URL"], row["Model"]), axis=1)
39
+ pivot_df['Type'] = pivot_df['Model Type'].map(lambda x: type_emoji.get(x, ""))
40
+ pivot_df.rename(columns={'Syntax (STX)': 'STX', 'Functionality (FNC)': 'FNC', 'Synthesis (SYN)': 'SYN', 'Performance': 'Perf'}, inplace=True)
41
+ columns_order = ['Type', 'Model', 'Params', 'Average ⬆️', 'STX', 'FNC', 'SYN', 'Power', 'Perf', 'Area']
42
+ pivot_df = pivot_df[[col for col in columns_order if col in pivot_df.columns]]
43
+ pivot_df = pivot_df.sort_values(by='Average ⬆️', ascending=False).reset_index(drop=True)
44
+ pivot_df.insert(0, '', range(1, len(pivot_df) + 1))
45
+ return pivot_df
46
+