Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,60 @@
|
|
1 |
-
import insightface
|
2 |
import os
|
3 |
-
import
|
4 |
-
import cv2
|
5 |
-
import gfpgan
|
6 |
-
import tempfile
|
7 |
-
import time
|
8 |
import gradio as gr
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
self.face_enhancer = gfpgan.GFPGANer(model_path='models/GFPGANv1.4.pth', upscale=1)
|
33 |
-
self.face_analyser = insightface.app.FaceAnalysis(name='buffalo_l')
|
34 |
-
self.face_analyser.prepare(ctx_id=0, det_size=(640, 640))
|
35 |
-
|
36 |
-
def get_face(self, img_data):
|
37 |
-
analysed = self.face_analyser.get(img_data)
|
38 |
-
try:
|
39 |
-
largest = max(analysed, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
|
40 |
-
return largest
|
41 |
-
except:
|
42 |
-
print("Nuk u gjet fytyra")
|
43 |
-
return None
|
44 |
-
|
45 |
-
def predict(self, input_image, swap_image):
|
46 |
-
try:
|
47 |
-
frame = cv2.imread(input_image.name)
|
48 |
-
face = self.get_face(frame)
|
49 |
-
source_face = self.get_face(cv2.imread(swap_image.name))
|
50 |
-
if not face or not source_face:
|
51 |
-
return None
|
52 |
-
result = self.face_swapper.get(frame, face, source_face, paste_back=True)
|
53 |
-
|
54 |
-
_, _, result = self.face_enhancer.enhance(result, paste_back=True)
|
55 |
-
|
56 |
-
out_path = tempfile.mkdtemp() + f"/{str(int(time.time()))}.jpg"
|
57 |
-
cv2.imwrite(out_path, result)
|
58 |
-
return out_path
|
59 |
-
except Exception as e:
|
60 |
-
print(f"{e}")
|
61 |
-
return None
|
62 |
-
|
63 |
-
|
64 |
-
predictor = Predictor()
|
65 |
-
|
66 |
-
with gr.Blocks(title="Face Swap & Enhance") as demo:
|
67 |
-
gr.Markdown("## Face Swap & Enhancement Tool")
|
68 |
-
with gr.Row():
|
69 |
-
input_img = gr.Image(type="file", label="Foto tjeter")
|
70 |
-
swap_img = gr.Image(type="file", label="Foto e juaj")
|
71 |
-
|
72 |
-
with gr.Row():
|
73 |
-
output_img = gr.Image(type="filepath", label="Rezultati", visible=False)
|
74 |
-
download_btn = gr.File(label="Shkarko", visible=False)
|
75 |
-
|
76 |
-
submit_btn = gr.Button("Përpunoni")
|
77 |
-
|
78 |
-
def predict_and_update_ui(img1, img2):
|
79 |
-
result = predictor.predict(img1, img2)
|
80 |
-
if result:
|
81 |
-
return result, result, gr.update(visible=True), gr.update(visible=True)
|
82 |
-
else:
|
83 |
-
return None, None, gr.update(visible=False), gr.update(visible=False)
|
84 |
-
|
85 |
-
submit_btn.click(
|
86 |
-
fn=predict_and_update_ui,
|
87 |
-
inputs=[input_img, swap_img],
|
88 |
-
outputs=[output_img, download_btn, output_img, download_btn]
|
89 |
)
|
|
|
90 |
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from gradio_client import Client, handle_file
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
6 |
+
|
7 |
+
client = Client(
|
8 |
+
"franciszzj/Leffa",
|
9 |
+
hf_token=HF_TOKEN,
|
10 |
+
)
|
11 |
+
|
12 |
+
def virtual_tryon(person_path, garment_path, garment_type):
|
13 |
+
person_file = handle_file(person_path)
|
14 |
+
garment_file = handle_file(garment_path)
|
15 |
+
|
16 |
+
result = client.predict(
|
17 |
+
person_file,
|
18 |
+
garment_file,
|
19 |
+
ref_acceleration=False,
|
20 |
+
step=30,
|
21 |
+
scale=2.5,
|
22 |
+
seed=42,
|
23 |
+
vt_model_type="viton_hd",
|
24 |
+
vt_garment_type=garment_type,
|
25 |
+
vt_repaint=False,
|
26 |
+
api_name="/leffa_predict_vt",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
+
return result[0], result[0] # show image and prepare file for download
|
29 |
|
30 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
31 |
+
gr.Markdown("")
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column():
|
34 |
+
gr.Markdown("")
|
35 |
+
src = gr.Image(sources="upload", type="filepath", label="Foto e personit")
|
36 |
+
with gr.Column():
|
37 |
+
gr.Markdown("")
|
38 |
+
ref = gr.Image(sources="upload", type="filepath", label="Foto e veshjes")
|
39 |
+
with gr.Column():
|
40 |
+
gr.Markdown("")
|
41 |
+
garment_type = gr.Radio(
|
42 |
+
choices=[("Siper", "upper_body"),
|
43 |
+
("Posht", "lower_body"),
|
44 |
+
("Komplet", "dresses")],
|
45 |
+
value="upper_body",
|
46 |
+
label="Lloji i veshjes",
|
47 |
+
)
|
48 |
+
with gr.Column():
|
49 |
+
gr.Markdown("")
|
50 |
+
out = gr.Image(type="filepath", label="Rezultati")
|
51 |
+
download_btn = gr.File(label="Shkarko", interactive=True)
|
52 |
+
btn = gr.Button("VISHU")
|
53 |
+
|
54 |
+
btn.click(virtual_tryon, [src, ref, garment_type], [out, download_btn])
|
55 |
+
|
56 |
+
demo.launch(
|
57 |
+
share=True,
|
58 |
+
show_error=True,
|
59 |
+
pwa=True,
|
60 |
+
)
|