Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch BART model.""" | |
| import copy | |
| import math | |
| import warnings | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn, einsum | |
| from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
| from transformers.activations import ACT2FN | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutput, | |
| BaseModelOutputWithPastAndCrossAttentions, | |
| CausalLMOutputWithCrossAttentions, | |
| Seq2SeqLMOutput, | |
| Seq2SeqModelOutput, | |
| Seq2SeqQuestionAnsweringModelOutput, | |
| Seq2SeqSequenceClassifierOutput, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.utils import ( | |
| add_code_sample_docstrings, | |
| add_end_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.models.bart.configuration_bart import BartConfig | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "facebook/bart-base" | |
| _CONFIG_FOR_DOC = "BartConfig" | |
| # Base model docstring | |
| _EXPECTED_OUTPUT_SHAPE = [1, 8, 768] | |
| # SequenceClassification docstring | |
| _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "valhalla/bart-large-sst2" | |
| _SEQ_CLASS_EXPECTED_LOSS = 0.0 | |
| _SEQ_CLASS_EXPECTED_OUTPUT = "'POSITIVE'" | |
| # QuestionAsnwering docstring | |
| _CHECKPOINT_FOR_QA = "valhalla/bart-large-finetuned-squadv1" | |
| _QA_EXPECTED_LOSS = 0.59 | |
| _QA_EXPECTED_OUTPUT = "' nice puppet'" | |
| BART_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "facebook/bart-large", | |
| # see all BART models at https://huggingface.co/models?filter=bart | |
| ] | |
| def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): | |
| """ | |
| Shift input ids one token to the right. | |
| """ | |
| shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
| shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() | |
| shifted_input_ids[:, 0] = decoder_start_token_id | |
| if pad_token_id is None: | |
| raise ValueError("self.model.config.pad_token_id has to be defined.") | |
| # replace possible -100 values in labels by `pad_token_id` | |
| shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
| return shifted_input_ids | |
| def _make_causal_mask( | |
| input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 | |
| ): | |
| """ | |
| Make causal mask used for bi-directional self-attention. | |
| """ | |
| bsz, tgt_len = input_ids_shape | |
| mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | |
| mask_cond = torch.arange(mask.size(-1), device=device) | |
| mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
| mask = mask.to(dtype) | |
| if past_key_values_length > 0: | |
| mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
| return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
| def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
| """ | |
| Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
| """ | |
| bsz, src_len = mask.size() | |
| tgt_len = tgt_len if tgt_len is not None else src_len | |
| expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
| inverted_mask = 1.0 - expanded_mask | |
| return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
| class BartLearnedPositionalEmbedding(nn.Embedding): | |
| """ | |
| This module learns positional embeddings up to a fixed maximum size. | |
| """ | |
| def __init__(self, num_embeddings: int, embedding_dim: int): | |
| # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 | |
| # and adjust num_embeddings appropriately. Other models don't have this hack | |
| self.offset = 2 | |
| super().__init__(num_embeddings + self.offset, embedding_dim) | |
| def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): | |
| """`input_ids' shape is expected to be [bsz x seqlen].""" | |
| bsz, seq_len = input_ids.shape[:2] | |
| positions = torch.arange( | |
| past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device | |
| ).expand(bsz, -1) | |
| return super().forward(positions + self.offset) | |
| class BartAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__( | |
| self, | |
| embed_dim: int, | |
| num_heads: int, | |
| dropout: float = 0.0, | |
| is_decoder: bool = False, | |
| bias: bool = True, | |
| ): | |
| super().__init__() | |
| self.embed_dim = embed_dim | |
| self.num_heads = num_heads | |
| self.dropout = dropout | |
| self.head_dim = embed_dim // num_heads | |
| # Re-attention | |
| self.reatten_matrix = nn.Parameter(torch.randn(self.num_heads, self.num_heads)) | |
| self.var_norm = nn.BatchNorm2d(self.num_heads) | |
| if (self.head_dim * num_heads) != self.embed_dim: | |
| raise ValueError( | |
| f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
| f" and `num_heads`: {num_heads})." | |
| ) | |
| self.scaling = self.head_dim**-0.5 | |
| self.reatten_scale = self.scaling | |
| self.is_decoder = is_decoder | |
| self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.proj_drop = nn.Dropout(0.0) | |
| self.attn_drop = nn.Dropout(0.0) | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| key_value_states: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| layer_head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| """Input shape: Batch x Time x Channel""" | |
| # if key_value_states are provided this layer is used as a cross-attention layer | |
| # for the decoder | |
| re_attention = False | |
| is_cross_attention = key_value_states is not None | |
| bsz, tgt_len, _ = hidden_states.size() | |
| # get query proj | |
| query_states = self.q_proj(hidden_states) * self.scaling | |
| # get key, value proj | |
| # `past_key_value[0].shape[2] == key_value_states.shape[1]` | |
| # is checking that the `sequence_length` of the `past_key_value` is the same as | |
| # the provided `key_value_states` to support prefix tuning | |
| if ( | |
| is_cross_attention | |
| and past_key_value is not None | |
| and past_key_value[0].shape[2] == key_value_states.shape[1] | |
| ): | |
| # reuse k,v, cross_attentions | |
| key_states = past_key_value[0] | |
| value_states = past_key_value[1] | |
| elif is_cross_attention: | |
| # cross_attentions | |
| key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
| elif past_key_value is not None: | |
| # reuse k, v, self_attention | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
| value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
| else: | |
| # self_attention | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| re_attention = True | |
| if self.is_decoder: | |
| # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
| # Further calls to cross_attention layer can then reuse all cross-attention | |
| # key/value_states (first "if" case) | |
| # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
| # all previous decoder key/value_states. Further calls to uni-directional self-attention | |
| # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
| # if encoder bi-directional self-attention `past_key_value` is always `None` | |
| past_key_value = (key_states, value_states) | |
| proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
| query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
| key_states = key_states.reshape(*proj_shape) | |
| value_states = value_states.reshape(*proj_shape) | |
| src_len = key_states.size(1) | |
| attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
| if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
| f" {attn_weights.size()}" | |
| ) | |
| if attention_mask is not None: | |
| if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
| ) | |
| attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
| # Re-attention | |
| if re_attention: | |
| # attn_weights = self.attn_drop(attn_weights) | |
| attn_weights = attn_weights.reshape(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = einsum('b h i j, h g -> b g i j', attn_weights, self.reatten_matrix) * self.reatten_scale | |
| # attn_weights = self.var_norm(attn_weights) * self.reatten_scale | |
| attn_weights = attn_weights.reshape(bsz * self.num_heads, tgt_len, src_len) | |
| if layer_head_mask is not None: | |
| if layer_head_mask.size() != (self.num_heads,): | |
| raise ValueError( | |
| f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
| f" {layer_head_mask.size()}" | |
| ) | |
| attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| if output_attentions: | |
| # this operation is a bit awkward, but it's required to | |
| # make sure that attn_weights keeps its gradient. | |
| # In order to do so, attn_weights have to be reshaped | |
| # twice and have to be reused in the following | |
| attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
| else: | |
| attn_weights_reshaped = None | |
| attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
| attn_output = torch.bmm(attn_probs, value_states) | |
| if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
| attn_output = attn_output.transpose(1, 2) | |
| # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
| # partitioned across GPUs when using tensor-parallelism. | |
| attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
| attn_output = self.out_proj(attn_output) | |
| return attn_output, attn_weights_reshaped, past_key_value | |
| class BartEncoderLayer(nn.Module): | |
| def __init__(self, config: BartConfig): | |
| super().__init__() | |
| self.embed_dim = config.d_model | |
| self.self_attn = BartAttention( | |
| embed_dim=self.embed_dim, | |
| num_heads=config.encoder_attention_heads, | |
| dropout=config.attention_dropout, | |
| ) | |
| self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
| self.dropout = config.dropout | |
| self.activation_fn = ACT2FN[config.activation_function] | |
| self.activation_dropout = config.activation_dropout | |
| self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) | |
| self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) | |
| self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| attention_mask: torch.FloatTensor, | |
| layer_head_mask: torch.FloatTensor, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
| `(encoder_attention_heads,)`. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| """ | |
| residual = hidden_states | |
| hidden_states, attn_weights, _ = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| layer_head_mask=layer_head_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| hidden_states = self.self_attn_layer_norm(hidden_states) | |
| residual = hidden_states | |
| hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
| hidden_states = self.fc2(hidden_states) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| hidden_states = self.final_layer_norm(hidden_states) | |
| if hidden_states.dtype == torch.float16 and ( | |
| torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() | |
| ): | |
| clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
| hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| class BartDecoderLayer(nn.Module): | |
| def __init__(self, config: BartConfig): | |
| super().__init__() | |
| self.embed_dim = config.d_model | |
| self.self_attn = BartAttention( | |
| embed_dim=self.embed_dim, | |
| num_heads=config.decoder_attention_heads, | |
| dropout=config.attention_dropout, | |
| is_decoder=True, | |
| ) | |
| self.dropout = config.dropout | |
| self.activation_fn = ACT2FN[config.activation_function] | |
| self.activation_dropout = config.activation_dropout | |
| self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
| self.encoder_attn = BartAttention( | |
| self.embed_dim, | |
| config.decoder_attention_heads, | |
| dropout=config.attention_dropout, | |
| is_decoder=True, | |
| ) | |
| self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
| self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) | |
| self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) | |
| self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| layer_head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_layer_head_mask: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = True, | |
| ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| encoder_hidden_states (`torch.FloatTensor`): | |
| cross attention input to the layer of shape `(batch, seq_len, embed_dim)` | |
| encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
| `(encoder_attention_heads,)`. | |
| cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of | |
| size `(decoder_attention_heads,)`. | |
| past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| """ | |
| residual = hidden_states | |
| # Self Attention | |
| # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
| self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
| # add present self-attn cache to positions 1,2 of present_key_value tuple | |
| hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| past_key_value=self_attn_past_key_value, | |
| attention_mask=attention_mask, | |
| layer_head_mask=layer_head_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| hidden_states = self.self_attn_layer_norm(hidden_states) | |
| # Cross-Attention Block | |
| cross_attn_present_key_value = None | |
| cross_attn_weights = None | |
| if encoder_hidden_states is not None: | |
| residual = hidden_states | |
| # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple | |
| cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
| hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( | |
| hidden_states=hidden_states, | |
| key_value_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| layer_head_mask=cross_attn_layer_head_mask, | |
| past_key_value=cross_attn_past_key_value, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| hidden_states = self.encoder_attn_layer_norm(hidden_states) | |
| # add cross-attn to positions 3,4 of present_key_value tuple | |
| present_key_value = present_key_value + cross_attn_present_key_value | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
| hidden_states = self.fc2(hidden_states) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| hidden_states = self.final_layer_norm(hidden_states) | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights, cross_attn_weights) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |
| class BartClassificationHead(nn.Module): | |
| """Head for sentence-level classification tasks.""" | |
| def __init__( | |
| self, | |
| input_dim: int, | |
| inner_dim: int, | |
| num_classes: int, | |
| pooler_dropout: float, | |
| ): | |
| super().__init__() | |
| self.dense = nn.Linear(input_dim, inner_dim) | |
| self.dropout = nn.Dropout(p=pooler_dropout) | |
| self.out_proj = nn.Linear(inner_dim, num_classes) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = torch.tanh(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.out_proj(hidden_states) | |
| return hidden_states | |
| class BartPreTrainedModel(PreTrainedModel): | |
| config_class = BartConfig | |
| base_model_prefix = "model" | |
| supports_gradient_checkpointing = True | |
| _keys_to_ignore_on_load_unexpected = ["encoder.version", "decoder.version"] | |
| _no_split_modules = [r"BartEncoderLayer", r"BartDecoderLayer"] | |
| _skip_keys_device_placement = "past_key_values" | |
| def _init_weights(self, module): | |
| std = self.config.init_std | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (BartDecoder, BartEncoder)): | |
| module.gradient_checkpointing = value | |
| def dummy_inputs(self): | |
| pad_token = self.config.pad_token_id | |
| input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) | |
| dummy_inputs = { | |
| "attention_mask": input_ids.ne(pad_token), | |
| "input_ids": input_ids, | |
| } | |
| return dummy_inputs | |
| class PretrainedBartModel(BartPreTrainedModel): | |
| def __init_subclass__(self): | |
| warnings.warn( | |
| "The class `PretrainedBartModel` has been depreciated, please use `BartPreTrainedModel` instead.", | |
| FutureWarning, | |
| ) | |
| class BartPretrainedModel(BartPreTrainedModel): | |
| def __init_subclass__(self): | |
| warnings.warn( | |
| "The class `PretrainedBartModel` has been depreciated, please use `BartPreTrainedModel` instead.", | |
| FutureWarning, | |
| ) | |
| BART_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`BartConfig`]): | |
| Model configuration class with all the parameters of the model. Initializing with a config file does not | |
| load the weights associated with the model, only the configuration. Check out the | |
| [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| BART_GENERATION_EXAMPLE = r""" | |
| Summarization example: | |
| ```python | |
| >>> from transformers import AutoTokenizer, BartForConditionalGeneration | |
| >>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") | |
| >>> ARTICLE_TO_SUMMARIZE = ( | |
| ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds " | |
| ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were " | |
| ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow." | |
| ... ) | |
| >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt") | |
| >>> # Generate Summary | |
| >>> summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=0, max_length=20) | |
| >>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
| 'PG&E scheduled the blackouts in response to forecasts for high winds amid dry conditions' | |
| ``` | |
| Mask filling example: | |
| ```python | |
| >>> from transformers import AutoTokenizer, BartForConditionalGeneration | |
| >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base") | |
| >>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-base") | |
| >>> TXT = "My friends are <mask> but they eat too many carbs." | |
| >>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"] | |
| >>> logits = model(input_ids).logits | |
| >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() | |
| >>> probs = logits[0, masked_index].softmax(dim=0) | |
| >>> values, predictions = probs.topk(5) | |
| >>> tokenizer.decode(predictions).split() | |
| ['not', 'good', 'healthy', 'great', 'very'] | |
| ``` | |
| """ | |
| BART_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
| Indices of decoder input sequence tokens in the vocabulary. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are decoder input IDs?](../glossary#decoder-input-ids) | |
| Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` | |
| is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). | |
| For translation and summarization training, `decoder_input_ids` should be provided. If no | |
| `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right | |
| for denoising pre-training following the paper. | |
| decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
| Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
| be used by default. | |
| If you want to change padding behavior, you should read [`modeling_bart._prepare_decoder_attention_mask`] | |
| and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
| information on the default strategy. | |
| head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, | |
| 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
| Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
| `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of | |
| hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
| past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
| Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
| `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
| `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
| blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
| don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
| `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape | |
| `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you | |
| can choose to directly pass an embedded representation. This is useful if you want more control over how to | |
| convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
| decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
| representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
| input (see `past_key_values`). This is useful if you want more control over how to convert | |
| `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
| If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value | |
| of `inputs_embeds`. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class BartEncoder(BartPreTrainedModel): | |
| """ | |
| Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
| [`BartEncoderLayer`]. | |
| Args: | |
| config: BartConfig | |
| embed_tokens (nn.Embedding): output embedding | |
| """ | |
| def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None): | |
| super().__init__(config) | |
| self.dropout = config.dropout | |
| self.layerdrop = config.encoder_layerdrop | |
| embed_dim = config.d_model | |
| self.padding_idx = config.pad_token_id | |
| self.max_source_positions = config.max_position_embeddings | |
| self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 | |
| self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) | |
| if embed_tokens is not None: | |
| self.embed_tokens.weight = embed_tokens.weight | |
| self.embed_positions = BartLearnedPositionalEmbedding( | |
| config.max_position_embeddings, | |
| embed_dim, | |
| ) | |
| self.layers = nn.ModuleList([BartEncoderLayer(config) for _ in range(config.encoder_layers)]) | |
| self.layernorm_embedding = nn.LayerNorm(embed_dim) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutput]: | |
| r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
| provide it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
| than the model's internal embedding lookup matrix. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # retrieve input_ids and inputs_embeds | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| input = input_ids | |
| input_ids = input_ids.view(-1, input_ids.shape[-1]) | |
| elif inputs_embeds is not None: | |
| input = inputs_embeds[:, :, -1] | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale | |
| embed_pos = self.embed_positions(input) | |
| embed_pos = embed_pos.to(inputs_embeds.device) | |
| hidden_states = inputs_embeds + embed_pos | |
| hidden_states = self.layernorm_embedding(hidden_states) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| # expand attention_mask | |
| if attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) | |
| encoder_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| # check if head_mask has a correct number of layers specified if desired | |
| if head_mask is not None: | |
| if head_mask.size()[0] != (len(self.layers)): | |
| raise ValueError( | |
| f"The head_mask should be specified for {len(self.layers)} layers, but it is for" | |
| f" {head_mask.size()[0]}." | |
| ) | |
| for idx, encoder_layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
| to_drop = False | |
| if self.training: | |
| dropout_probability = torch.rand([]) | |
| if dropout_probability < self.layerdrop: # skip the layer | |
| to_drop = True | |
| if to_drop: | |
| layer_outputs = (None, None) | |
| else: | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(encoder_layer), | |
| hidden_states, | |
| attention_mask, | |
| (head_mask[idx] if head_mask is not None else None), | |
| ) | |
| else: | |
| layer_outputs = encoder_layer( | |
| hidden_states, | |
| attention_mask, | |
| layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
| ) | |
| class BartDecoder(BartPreTrainedModel): | |
| """ | |
| Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BartDecoderLayer`] | |
| Args: | |
| config: BartConfig | |
| embed_tokens (nn.Embedding): output embedding | |
| """ | |
| def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None): | |
| super().__init__(config) | |
| self.dropout = config.dropout | |
| self.layerdrop = config.decoder_layerdrop | |
| self.padding_idx = config.pad_token_id | |
| self.max_target_positions = config.max_position_embeddings | |
| self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) | |
| if embed_tokens is not None: | |
| self.embed_tokens.weight = embed_tokens.weight | |
| self.embed_positions = BartLearnedPositionalEmbedding( | |
| config.max_position_embeddings, | |
| config.d_model, | |
| ) | |
| self.layers = nn.ModuleList([BartDecoderLayer(config) for _ in range(config.decoder_layers)]) | |
| self.layernorm_embedding = nn.LayerNorm(config.d_model) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | |
| # create causal mask | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| combined_attention_mask = None | |
| if input_shape[-1] > 1: | |
| combined_attention_mask = _make_causal_mask( | |
| input_shape, | |
| inputs_embeds.dtype, | |
| device=inputs_embeds.device, | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| if attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( | |
| inputs_embeds.device | |
| ) | |
| combined_attention_mask = ( | |
| expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
| ) | |
| return combined_attention_mask | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | |
| r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
| provide it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): | |
| Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
| of the decoder. | |
| encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): | |
| Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values | |
| selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing | |
| cross-attention on hidden heads. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
| Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
| shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | |
| shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | |
| cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | |
| that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | |
| all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of | |
| shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing | |
| `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more | |
| control over how to convert `input_ids` indices into associated vectors than the model's internal | |
| embedding lookup matrix. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # retrieve input_ids and inputs_embeds | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| input = input_ids | |
| input_shape = input.shape | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| input = inputs_embeds[:, :, -1] | |
| else: | |
| raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
| # past_key_values_length | |
| past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input) * self.embed_scale | |
| attention_mask = self._prepare_decoder_attention_mask( | |
| attention_mask, input_shape, inputs_embeds, past_key_values_length | |
| ) | |
| # expand encoder attention mask | |
| if encoder_hidden_states is not None and encoder_attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) | |
| # embed positions | |
| positions = self.embed_positions(input, past_key_values_length) | |
| positions = positions.to(inputs_embeds.device) | |
| hidden_states = inputs_embeds + positions | |
| hidden_states = self.layernorm_embedding(hidden_states) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | |
| next_decoder_cache = () if use_cache else None | |
| # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired | |
| for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): | |
| if attn_mask is not None: | |
| if attn_mask.size()[0] != (len(self.layers)): | |
| raise ValueError( | |
| f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | |
| f" {head_mask.size()[0]}." | |
| ) | |
| for idx, decoder_layer in enumerate(self.layers): | |
| # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| if self.training: | |
| dropout_probability = torch.rand([]) | |
| if dropout_probability < self.layerdrop: | |
| continue | |
| past_key_value = past_key_values[idx] if past_key_values is not None else None | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| # None for past_key_value | |
| return module(*inputs, output_attentions, use_cache) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(decoder_layer), | |
| hidden_states, | |
| attention_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| head_mask[idx] if head_mask is not None else None, | |
| cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, | |
| None, | |
| ) | |
| else: | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
| cross_attn_layer_head_mask=( | |
| cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | |
| ), | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| if encoder_hidden_states is not None: | |
| all_cross_attentions += (layer_outputs[2],) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| next_cache = next_decoder_cache if use_cache else None | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| cross_attentions=all_cross_attentions, | |
| ) | |
| class BartModel(BartPreTrainedModel): | |
| _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | |
| def __init__(self, config: BartConfig): | |
| super().__init__(config) | |
| padding_idx, vocab_size = config.pad_token_id, config.vocab_size | |
| self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) | |
| self.encoder = BartEncoder(config, self.shared) | |
| self.decoder = BartDecoder(config, self.shared) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.shared | |
| def set_input_embeddings(self, value): | |
| self.shared = value | |
| self.encoder.embed_tokens = self.shared | |
| self.decoder.embed_tokens = self.shared | |
| def get_encoder(self): | |
| return self.encoder | |
| def get_decoder(self): | |
| return self.decoder | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| decoder_head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[List[torch.FloatTensor]] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, Seq2SeqModelOutput]: | |
| # different to other models, Bart automatically creates decoder_input_ids from | |
| # input_ids if no decoder_input_ids are provided | |
| if decoder_input_ids is None and decoder_inputs_embeds is None: | |
| if input_ids is None: | |
| raise ValueError( | |
| "If no `decoder_input_ids` or `decoder_inputs_embeds` are " | |
| "passed, `input_ids` cannot be `None`. Please pass either " | |
| "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." | |
| ) | |
| decoder_input_ids = shift_tokens_right( | |
| input_ids, self.config.pad_token_id, self.config.decoder_start_token_id | |
| ) | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if encoder_outputs is None: | |
| encoder_outputs = self.encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True | |
| elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
| encoder_outputs = BaseModelOutput( | |
| last_hidden_state=encoder_outputs[0], | |
| hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
| attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
| ) | |
| # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
| decoder_outputs = self.decoder( | |
| input_ids=decoder_input_ids, | |
| attention_mask=decoder_attention_mask, | |
| encoder_hidden_states=encoder_outputs[0], | |
| encoder_attention_mask=attention_mask, | |
| head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=decoder_inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| if not return_dict: | |
| return decoder_outputs + encoder_outputs | |
| return Seq2SeqModelOutput( | |
| last_hidden_state=decoder_outputs.last_hidden_state, | |
| past_key_values=decoder_outputs.past_key_values, | |
| decoder_hidden_states=decoder_outputs.hidden_states, | |
| decoder_attentions=decoder_outputs.attentions, | |
| cross_attentions=decoder_outputs.cross_attentions, | |
| encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
| encoder_hidden_states=encoder_outputs.hidden_states, | |
| encoder_attentions=encoder_outputs.attentions, | |
| ) | |
| class BartForConditionalGeneration(BartPreTrainedModel): | |
| base_model_prefix = "model" | |
| _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] | |
| _keys_to_ignore_on_load_missing = ["final_logits_bias"] | |
| def __init__(self, config: BartConfig): | |
| super().__init__(config) | |
| self.model = BartModel(config) | |
| self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) | |
| self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_encoder(self): | |
| return self.model.get_encoder() | |
| def get_decoder(self): | |
| return self.model.get_decoder() | |
| def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: | |
| new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) | |
| self._resize_final_logits_bias(new_embeddings.weight.shape[0]) | |
| return new_embeddings | |
| def _resize_final_logits_bias(self, new_num_tokens: int) -> None: | |
| old_num_tokens = self.final_logits_bias.shape[-1] | |
| if new_num_tokens <= old_num_tokens: | |
| new_bias = self.final_logits_bias[:, :new_num_tokens] | |
| else: | |
| extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) | |
| new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) | |
| self.register_buffer("final_logits_bias", new_bias) | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| decoder_head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[List[torch.FloatTensor]] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, Seq2SeqLMOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
| config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
| (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
| Returns: | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if labels is not None: | |
| if use_cache: | |
| logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") | |
| use_cache = False | |
| if decoder_input_ids is None and decoder_inputs_embeds is None: | |
| decoder_input_ids = shift_tokens_right( | |
| labels, self.config.pad_token_id, self.config.decoder_start_token_id | |
| ) | |
| outputs = self.model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| decoder_input_ids=decoder_input_ids, | |
| encoder_outputs=encoder_outputs, | |
| decoder_attention_mask=decoder_attention_mask, | |
| head_mask=head_mask, | |
| decoder_head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| decoder_inputs_embeds=decoder_inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| lm_logits = self.lm_head(outputs[0]) | |
| lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device) | |
| masked_lm_loss = None | |
| if labels is not None: | |
| labels = labels.to(lm_logits.device) | |
| loss_fct = CrossEntropyLoss() | |
| masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
| if not return_dict: | |
| output = (lm_logits,) + outputs[1:] | |
| return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
| return Seq2SeqLMOutput( | |
| loss=masked_lm_loss, | |
| logits=lm_logits, | |
| past_key_values=outputs.past_key_values, | |
| decoder_hidden_states=outputs.decoder_hidden_states, | |
| decoder_attentions=outputs.decoder_attentions, | |
| cross_attentions=outputs.cross_attentions, | |
| encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
| encoder_hidden_states=outputs.encoder_hidden_states, | |
| encoder_attentions=outputs.encoder_attentions, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, | |
| decoder_input_ids, | |
| past_key_values=None, | |
| attention_mask=None, | |
| decoder_attention_mask=None, | |
| head_mask=None, | |
| decoder_head_mask=None, | |
| cross_attn_head_mask=None, | |
| use_cache=None, | |
| encoder_outputs=None, | |
| **kwargs, | |
| ): | |
| # cut decoder_input_ids if past_key_values is used | |
| if past_key_values is not None: | |
| decoder_input_ids = decoder_input_ids[:, -1:] | |
| return { | |
| "input_ids": None, # encoder_outputs is defined. input_ids not needed | |
| "encoder_outputs": encoder_outputs, | |
| "past_key_values": past_key_values, | |
| "decoder_input_ids": decoder_input_ids, | |
| "attention_mask": attention_mask, | |
| "decoder_attention_mask": decoder_attention_mask, | |
| "head_mask": head_mask, | |
| "decoder_head_mask": decoder_head_mask, | |
| "cross_attn_head_mask": cross_attn_head_mask, | |
| "use_cache": use_cache, # change this to avoid caching (presumably for debugging) | |
| } | |
| def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
| return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) | |
| def _reorder_cache(past_key_values, beam_idx): | |
| reordered_past = () | |
| for layer_past in past_key_values: | |
| # cached cross_attention states don't have to be reordered -> they are always the same | |
| reordered_past += ( | |
| tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) | |
| + layer_past[2:], | |
| ) | |
| return reordered_past | |
| class BartForSequenceClassification(BartPreTrainedModel): | |
| _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | |
| def __init__(self, config: BartConfig, **kwargs): | |
| super().__init__(config, **kwargs) | |
| self.model = BartModel(config) | |
| self.classification_head = BartClassificationHead( | |
| config.d_model, | |
| config.d_model, | |
| config.num_labels, | |
| config.classifier_dropout, | |
| ) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| decoder_head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if labels is not None: | |
| use_cache = False | |
| if input_ids is None and inputs_embeds is not None: | |
| raise NotImplementedError( | |
| f"Passing input embeddings is currently not supported for {self.__class__.__name__}" | |
| ) | |
| outputs = self.model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| decoder_input_ids=decoder_input_ids, | |
| decoder_attention_mask=decoder_attention_mask, | |
| head_mask=head_mask, | |
| decoder_head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| encoder_outputs=encoder_outputs, | |
| inputs_embeds=inputs_embeds, | |
| decoder_inputs_embeds=decoder_inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = outputs[0] # last hidden state | |
| eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device) | |
| if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: | |
| raise ValueError("All examples must have the same number of <eos> tokens.") | |
| sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[ | |
| :, -1, : | |
| ] | |
| logits = self.classification_head(sentence_representation) | |
| loss = None | |
| if labels is not None: | |
| labels = labels.to(logits.device) | |
| if self.config.problem_type is None: | |
| if self.config.num_labels == 1: | |
| self.config.problem_type = "regression" | |
| elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
| self.config.problem_type = "single_label_classification" | |
| else: | |
| self.config.problem_type = "multi_label_classification" | |
| if self.config.problem_type == "regression": | |
| loss_fct = MSELoss() | |
| if self.config.num_labels == 1: | |
| loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
| else: | |
| loss = loss_fct(logits, labels) | |
| elif self.config.problem_type == "single_label_classification": | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) | |
| elif self.config.problem_type == "multi_label_classification": | |
| loss_fct = BCEWithLogitsLoss() | |
| loss = loss_fct(logits, labels) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return Seq2SeqSequenceClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| decoder_hidden_states=outputs.decoder_hidden_states, | |
| decoder_attentions=outputs.decoder_attentions, | |
| cross_attentions=outputs.cross_attentions, | |
| encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
| encoder_hidden_states=outputs.encoder_hidden_states, | |
| encoder_attentions=outputs.encoder_attentions, | |
| ) | |
| class BartForQuestionAnswering(BartPreTrainedModel): | |
| _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| config.num_labels = 2 | |
| self.num_labels = config.num_labels | |
| self.model = BartModel(config) | |
| self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: torch.Tensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| decoder_head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[List[torch.FloatTensor]] = None, | |
| start_positions: Optional[torch.LongTensor] = None, | |
| end_positions: Optional[torch.LongTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]: | |
| r""" | |
| start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence | |
| are not taken into account for computing the loss. | |
| end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence | |
| are not taken into account for computing the loss. | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if start_positions is not None and end_positions is not None: | |
| use_cache = False | |
| outputs = self.model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| decoder_input_ids=decoder_input_ids, | |
| decoder_attention_mask=decoder_attention_mask, | |
| head_mask=head_mask, | |
| decoder_head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| encoder_outputs=encoder_outputs, | |
| inputs_embeds=inputs_embeds, | |
| decoder_inputs_embeds=decoder_inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| logits = self.qa_outputs(sequence_output) | |
| start_logits, end_logits = logits.split(1, dim=-1) | |
| start_logits = start_logits.squeeze(-1).contiguous() | |
| end_logits = end_logits.squeeze(-1).contiguous() | |
| total_loss = None | |
| if start_positions is not None and end_positions is not None: | |
| # If we are on multi-GPU, split add a dimension | |
| if len(start_positions.size()) > 1: | |
| start_positions = start_positions.squeeze(-1) | |
| if len(end_positions.size()) > 1: | |
| end_positions = end_positions.squeeze(-1) | |
| # sometimes the start/end positions are outside our model inputs, we ignore these terms | |
| ignored_index = start_logits.size(1) | |
| start_positions = start_positions.clamp(0, ignored_index) | |
| end_positions = end_positions.clamp(0, ignored_index) | |
| loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
| start_loss = loss_fct(start_logits, start_positions) | |
| end_loss = loss_fct(end_logits, end_positions) | |
| total_loss = (start_loss + end_loss) / 2 | |
| if not return_dict: | |
| output = ( | |
| start_logits, | |
| end_logits, | |
| ) + outputs[1:] | |
| return ((total_loss,) + output) if total_loss is not None else output | |
| return Seq2SeqQuestionAnsweringModelOutput( | |
| loss=total_loss, | |
| start_logits=start_logits, | |
| end_logits=end_logits, | |
| past_key_values=outputs.past_key_values, | |
| decoder_hidden_states=outputs.decoder_hidden_states, | |
| decoder_attentions=outputs.decoder_attentions, | |
| cross_attentions=outputs.cross_attentions, | |
| encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
| encoder_hidden_states=outputs.encoder_hidden_states, | |
| encoder_attentions=outputs.encoder_attentions, | |
| ) | |
| class BartDecoderWrapper(BartPreTrainedModel): | |
| """ | |
| This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is | |
| used in combination with the [`EncoderDecoderModel`] framework. | |
| """ | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.decoder = BartDecoder(config) | |
| def forward(self, *args, **kwargs): | |
| return self.decoder(*args, **kwargs) | |
| class BartForCausalLM(BartPreTrainedModel): | |
| _tied_weights_keys = ["lm_head.weight"] | |
| def __init__(self, config): | |
| config = copy.deepcopy(config) | |
| config.is_decoder = True | |
| config.is_encoder_decoder = False | |
| super().__init__(config) | |
| self.model = BartDecoderWrapper(config) | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.model.decoder.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.model.decoder.embed_tokens = value | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def set_decoder(self, decoder): | |
| self.model.decoder = decoder | |
| def get_decoder(self): | |
| return self.model.decoder | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: | |
| r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
| provide it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
| if the model is configured as a decoder. | |
| encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used | |
| in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
| head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
| Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
| Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
| shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | |
| shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional | |
| tensors are only required when the model is used as a decoder in a Sequence to Sequence model. | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | |
| cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | |
| that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | |
| all `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
| config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
| (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
| (see `past_key_values`). | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| Returns: | |
| Example: | |
| ```python | |
| >>> from transformers import AutoTokenizer, BartForCausalLM | |
| >>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base") | |
| >>> model = BartForCausalLM.from_pretrained("facebook/bart-base", add_cross_attention=False) | |
| >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." | |
| >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> logits = outputs.logits | |
| >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] | |
| >>> list(logits.shape) == expected_shape | |
| True | |
| ```""" | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
| outputs = self.model.decoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| head_mask=head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| logits = self.lm_head(outputs[0]) | |
| loss = None | |
| if labels is not None: | |
| labels = labels.to(logits.device) | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithCrossAttentions( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| cross_attentions=outputs.cross_attentions, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs | |
| ): | |
| # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly | |
| if attention_mask is None: | |
| attention_mask = input_ids.new_ones(input_ids.shape) | |
| if past_key_values: | |
| input_ids = input_ids[:, -1:] | |
| # first step, decoder_cached_states are empty | |
| return { | |
| "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed | |
| "attention_mask": attention_mask, | |
| "past_key_values": past_key_values, | |
| "use_cache": use_cache, | |
| } | |
| def _reorder_cache(past_key_values, beam_idx): | |
| reordered_past = () | |
| for layer_past in past_key_values: | |
| reordered_past += ( | |
| tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
| ) | |
| return reordered_past |