Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from tqdm import tqdm | |
| from abc import ABC, abstractmethod | |
| from .utils.enums import MultiTokenKind, RetrievalTechniques | |
| from .processor import RetrievalProcessor | |
| from .utils.logit_lens import ReverseLogitLens | |
| from .utils.model_utils import extract_token_i_hidden_states | |
| class WordRetrieverBase(ABC): | |
| def __init__(self, model, tokenizer): | |
| self.model = model | |
| self.tokenizer = tokenizer | |
| def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3): | |
| pass | |
| class PatchscopesRetriever(WordRetrieverBase): | |
| def __init__( | |
| self, | |
| model, | |
| tokenizer, | |
| representation_prompt: str = "{word}", | |
| patchscopes_prompt: str = "Next is the same word twice: 1) {word} 2)", | |
| prompt_target_placeholder: str = "{word}", | |
| representation_token_idx_to_extract: int = -1, | |
| num_tokens_to_generate: int = 10, | |
| ): | |
| super().__init__(model, tokenizer) | |
| self.prompt_input_ids, self.prompt_target_idx = \ | |
| self._build_prompt_input_ids_template(patchscopes_prompt, prompt_target_placeholder) | |
| self._prepare_representation_prompt = \ | |
| self._build_representation_prompt_func(representation_prompt, prompt_target_placeholder) | |
| self.representation_token_idx = representation_token_idx_to_extract | |
| self.num_tokens_to_generate = num_tokens_to_generate | |
| def _build_prompt_input_ids_template(self, prompt, target_placeholder): | |
| prompt_input_ids = [self.tokenizer.bos_token_id] if self.tokenizer.bos_token_id is not None else [] | |
| target_idx = [] | |
| if prompt: | |
| assert target_placeholder is not None, \ | |
| "Trying to set a prompt for Patchscopes without defining the prompt's target placeholder string, e.g., [MASK]" | |
| prompt_parts = prompt.split(target_placeholder) | |
| for part_i, prompt_part in enumerate(prompt_parts): | |
| prompt_input_ids += self.tokenizer.encode(prompt_part, add_special_tokens=False) | |
| if part_i < len(prompt_parts)-1: | |
| target_idx += [len(prompt_input_ids)] | |
| prompt_input_ids += [0] | |
| else: | |
| prompt_input_ids += [0] | |
| target_idx = [len(prompt_input_ids)] | |
| prompt_input_ids = torch.tensor(prompt_input_ids, dtype=torch.long) | |
| target_idx = torch.tensor(target_idx, dtype=torch.long) | |
| return prompt_input_ids, target_idx | |
| def _build_representation_prompt_func(self, prompt, target_placeholder): | |
| return lambda word: prompt.replace(target_placeholder, word) | |
| def generate_states(self, tokenizer, word='Wakanda', with_prompt=True): | |
| prompt = self.generate_prompt() if with_prompt else word | |
| input_ids = tokenizer.encode(prompt, return_tensors='pt') | |
| return input_ids | |
| def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=None): | |
| self.model.eval() | |
| # insert hidden states into patchscopes prompt | |
| if hidden_states.dim() == 1: | |
| hidden_states = hidden_states.unsqueeze(0) | |
| inputs_embeds = self.model.get_input_embeddings()(self.prompt_input_ids.to(self.model.device)).unsqueeze(0) | |
| batched_patchscope_inputs = inputs_embeds.repeat(len(hidden_states), 1, 1).to(hidden_states.dtype) | |
| batched_patchscope_inputs[:, self.prompt_target_idx] = hidden_states.unsqueeze(1).to(self.model.device) | |
| attention_mask = (self.prompt_input_ids != self.tokenizer.eos_token_id).long().unsqueeze(0).repeat( | |
| len(hidden_states), 1).to(self.model.device) | |
| num_tokens_to_generate = num_tokens_to_generate if num_tokens_to_generate else self.num_tokens_to_generate | |
| with torch.no_grad(): | |
| patchscope_outputs = self.model.generate( | |
| do_sample=False, num_beams=1, top_p=1.0, temperature=None, | |
| inputs_embeds=batched_patchscope_inputs,# attention_mask=attention_mask, | |
| max_new_tokens=num_tokens_to_generate, pad_token_id=self.tokenizer.eos_token_id, ) | |
| decoded_patchscope_outputs = self.tokenizer.batch_decode(patchscope_outputs) | |
| return decoded_patchscope_outputs | |
| def extract_hidden_states(self, word): | |
| representation_input = self._prepare_representation_prompt(word) | |
| last_token_hidden_states = extract_token_i_hidden_states( | |
| self.model, self.tokenizer, representation_input, token_idx_to_extract=self.representation_token_idx, return_dict=False, verbose=False) | |
| return last_token_hidden_states | |
| def get_hidden_states_and_retrieve_word(self, word, num_tokens_to_generate=None): | |
| last_token_hidden_states = self.extract_hidden_states(word) | |
| patchscopes_description_by_layers = self.retrieve_word( | |
| last_token_hidden_states, num_tokens_to_generate=num_tokens_to_generate) | |
| return patchscopes_description_by_layers, last_token_hidden_states | |
| class ReverseLogitLensRetriever(WordRetrieverBase): | |
| def __init__(self, model, tokenizer, device='cuda', dtype=torch.float16): | |
| super().__init__(model, tokenizer) | |
| self.reverse_logit_lens = ReverseLogitLens.from_model(model).to(device).to(dtype) | |
| def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3): | |
| result = self.reverse_logit_lens(hidden_states, layer_idx) | |
| token = self.tokenizer.decode(torch.argmax(result, dim=-1).item()) | |
| return token | |
| class AnalysisWordRetriever: | |
| def __init__(self, model, tokenizer, multi_token_kind, num_tokens_to_generate=1, add_context=True, | |
| model_name='LLaMa-2B', device='cuda', dataset=None): | |
| self.model = model.to(device) | |
| self.tokenizer = tokenizer | |
| self.multi_token_kind = multi_token_kind | |
| self.num_tokens_to_generate = num_tokens_to_generate | |
| self.add_context = add_context | |
| self.model_name = model_name | |
| self.device = device | |
| self.dataset = dataset | |
| self.retriever = self._initialize_retriever() | |
| self.RetrievalTechniques = (RetrievalTechniques.Patchscopes if self.multi_token_kind == MultiTokenKind.Natural | |
| else RetrievalTechniques.ReverseLogitLens) | |
| self.whitespace_token = 'Ġ' if model_name in ['gemma-2-9b', 'pythia-6.9b', 'LLaMA3-8B', 'Yi-6B'] else '▁' | |
| self.processor = RetrievalProcessor(self.model, self.tokenizer, self.multi_token_kind, | |
| self.num_tokens_to_generate, self.add_context, self.model_name, | |
| self.whitespace_token) | |
| def _initialize_retriever(self): | |
| if self.multi_token_kind == MultiTokenKind.Natural: | |
| return PatchscopesRetriever(self.model, self.tokenizer) | |
| else: | |
| return ReverseLogitLensRetriever(self.model, self.tokenizer) | |
| def retrieve_words_in_dataset(self, number_of_examples_to_retrieve=2, max_length=1000): | |
| self.model.eval() | |
| results = [] | |
| for text in tqdm(self.dataset['train']['text'][:number_of_examples_to_retrieve], self.model_name): | |
| tokenized_input = self.tokenizer(text, return_tensors='pt', truncation=True, max_length=max_length).to( | |
| self.device) | |
| tokens = tokenized_input.input_ids[0] | |
| print(f'Processing text: {text}') | |
| i = 5 | |
| while i < len(tokens): | |
| if self.multi_token_kind == MultiTokenKind.Natural: | |
| j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_word( | |
| tokens, i, device=self.device) | |
| elif self.multi_token_kind == MultiTokenKind.Typo: | |
| j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_typo( | |
| tokens, i, device=self.device) | |
| else: | |
| j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_separated( | |
| tokens, i, device=self.device) | |
| if len(word_tokens) > 1: | |
| with torch.no_grad(): | |
| outputs = self.model(**tokenized_combined_text, output_hidden_states=True) | |
| hidden_states = outputs.hidden_states | |
| for layer_idx, hidden_state in enumerate(hidden_states): | |
| postfix_hidden_state = hidden_states[layer_idx][0, -1, :].unsqueeze(0) | |
| retrieved_word_str = self.retriever.retrieve_word(postfix_hidden_state, layer_idx=layer_idx, | |
| num_tokens_to_generate=len(word_tokens)) | |
| results.append({ | |
| 'text': combined_text, | |
| 'original_word': original_word, | |
| 'word': word, | |
| 'word_tokens': self.tokenizer.convert_ids_to_tokens(word_tokens), | |
| 'num_tokens': len(word_tokens), | |
| 'layer': layer_idx, | |
| 'retrieved_word_str': retrieved_word_str, | |
| 'context': "With Context" if self.add_context else "Without Context" | |
| }) | |
| else: | |
| i = j | |
| return results | |