improved code quality
Browse files- word2vec.py +99 -168
word2vec.py
CHANGED
|
@@ -1,16 +1,9 @@
|
|
| 1 |
from gensim.models import Word2Vec
|
| 2 |
from collections import defaultdict
|
| 3 |
import os
|
| 4 |
-
import pickle
|
| 5 |
import tempfile
|
| 6 |
import pandas as pd
|
| 7 |
-
from sklearn.preprocessing import StandardScaler
|
| 8 |
-
from sklearn.manifold import TSNE
|
| 9 |
-
import plotly.express as px
|
| 10 |
from collections import Counter
|
| 11 |
-
import streamlit as st
|
| 12 |
-
|
| 13 |
-
|
| 14 |
|
| 15 |
|
| 16 |
def load_all_models():
|
|
@@ -30,6 +23,8 @@ def load_all_models():
|
|
| 30 |
def load_selected_models(selected_models):
|
| 31 |
'''
|
| 32 |
Load the selected word2vec models
|
|
|
|
|
|
|
| 33 |
'''
|
| 34 |
models = []
|
| 35 |
for model in selected_models:
|
|
@@ -48,6 +43,8 @@ def load_selected_models(selected_models):
|
|
| 48 |
def load_word2vec_model(model_path):
|
| 49 |
'''
|
| 50 |
Load a word2vec model from a file
|
|
|
|
|
|
|
| 51 |
'''
|
| 52 |
return Word2Vec.load(model_path)
|
| 53 |
|
|
@@ -55,6 +52,9 @@ def load_word2vec_model(model_path):
|
|
| 55 |
def get_word_vector(model, word):
|
| 56 |
'''
|
| 57 |
Return the word vector of a word
|
|
|
|
|
|
|
|
|
|
| 58 |
'''
|
| 59 |
return model.wv[word]
|
| 60 |
|
|
@@ -62,6 +62,8 @@ def get_word_vector(model, word):
|
|
| 62 |
def iterate_over_words(model):
|
| 63 |
'''
|
| 64 |
Iterate over all words in the vocabulary and print their vectors
|
|
|
|
|
|
|
| 65 |
'''
|
| 66 |
index = 0
|
| 67 |
for word, index in model.wv.key_to_index.items():
|
|
@@ -74,6 +76,8 @@ def model_dictionary(model):
|
|
| 74 |
'''
|
| 75 |
Return the dictionary of the word2vec model
|
| 76 |
Key is the word and value is the vector of the word
|
|
|
|
|
|
|
| 77 |
'''
|
| 78 |
dict = defaultdict(list)
|
| 79 |
for word, index in model.wv.key_to_index.items():
|
|
@@ -86,13 +90,24 @@ def model_dictionary(model):
|
|
| 86 |
def dot_product(vector_a, vector_b):
|
| 87 |
'''
|
| 88 |
Return the dot product of two vectors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
'''
|
| 90 |
return sum(a * b for a, b in zip(vector_a, vector_b))
|
| 91 |
|
| 92 |
|
| 93 |
def magnitude(vector):
|
| 94 |
'''
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
'''
|
| 97 |
return sum(x**2 for x in vector) ** 0.5
|
| 98 |
|
|
@@ -100,6 +115,13 @@ def magnitude(vector):
|
|
| 100 |
def cosine_similarity(vector_a, vector_b):
|
| 101 |
'''
|
| 102 |
Return the cosine similarity of two vectors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
'''
|
| 104 |
dot_prod = dot_product(vector_a, vector_b)
|
| 105 |
mag_a = magnitude(vector_a)
|
|
@@ -116,10 +138,16 @@ def cosine_similarity(vector_a, vector_b):
|
|
| 116 |
def get_cosine_similarity(word1, time_slice_1, word2, time_slice_2):
|
| 117 |
'''
|
| 118 |
Return the cosine similarity of two words
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
'''
|
| 120 |
-
# TO DO: MOET NETTER
|
| 121 |
-
|
| 122 |
-
# Return if path does not exist
|
| 123 |
|
| 124 |
time_slice_1 = convert_time_name_to_model(time_slice_1)
|
| 125 |
time_slice_2 = convert_time_name_to_model(time_slice_2)
|
|
@@ -139,6 +167,14 @@ def get_cosine_similarity(word1, time_slice_1, word2, time_slice_2):
|
|
| 139 |
def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
|
| 140 |
'''
|
| 141 |
Return the cosine similarity of one word in two different time slices
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
'''
|
| 143 |
|
| 144 |
# Return if path does not exist
|
|
@@ -158,6 +194,14 @@ def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
|
|
| 158 |
def validate_nearest_neighbours(word, n, models):
|
| 159 |
'''
|
| 160 |
Validate the input of the nearest neighbours function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
'''
|
| 162 |
if word == '' or n == '' or models == []:
|
| 163 |
return False
|
|
@@ -167,6 +211,11 @@ def validate_nearest_neighbours(word, n, models):
|
|
| 167 |
def convert_model_to_time_name(model_name):
|
| 168 |
'''
|
| 169 |
Convert the model name to the time slice name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
'''
|
| 171 |
if model_name == 'archaic_cbow' or model_name == 'archaic':
|
| 172 |
return 'Archaic'
|
|
@@ -183,6 +232,12 @@ def convert_model_to_time_name(model_name):
|
|
| 183 |
def convert_time_name_to_model(time_name):
|
| 184 |
'''
|
| 185 |
Convert the time slice name to the model name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
'''
|
| 187 |
if time_name == 'Archaic':
|
| 188 |
return 'archaic_cbow'
|
|
@@ -205,52 +260,6 @@ def convert_time_name_to_model(time_name):
|
|
| 205 |
elif time_name == 'archaic':
|
| 206 |
return 'Archaic'
|
| 207 |
|
| 208 |
-
def get_nearest_neighbours2(word, n=10, models=load_all_models()):
|
| 209 |
-
'''
|
| 210 |
-
Return the nearest neighbours of a word
|
| 211 |
-
|
| 212 |
-
word: the word for which the nearest neighbours are calculated
|
| 213 |
-
time_slice_model: the word2vec model of the time slice of the input word
|
| 214 |
-
models: list of tuples with the name of the time slice and the word2vec model (default: all in ./models)
|
| 215 |
-
n: the number of nearest neighbours to return (default: 10)
|
| 216 |
-
|
| 217 |
-
Return: list of tuples with the word, the time slice and
|
| 218 |
-
the cosine similarity of the nearest neighbours
|
| 219 |
-
'''
|
| 220 |
-
|
| 221 |
-
time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
|
| 222 |
-
vector_1 = get_word_vector(time_slice_model, word)
|
| 223 |
-
nearest_neighbours = []
|
| 224 |
-
|
| 225 |
-
# Iterate over all models
|
| 226 |
-
for model in models:
|
| 227 |
-
model_name = model[0]
|
| 228 |
-
time_name = convert_model_to_time_name(model_name)
|
| 229 |
-
model = model[1]
|
| 230 |
-
|
| 231 |
-
# Iterate over all words of the model
|
| 232 |
-
for word, index in model.wv.key_to_index.items():
|
| 233 |
-
|
| 234 |
-
# Vector of the current word
|
| 235 |
-
vector_2 = get_word_vector(model, word)
|
| 236 |
-
|
| 237 |
-
# Calculate the cosine similarity between current word and input word
|
| 238 |
-
cosine_similarity_vectors = cosine_similarity(vector_1, vector_2)
|
| 239 |
-
|
| 240 |
-
# If the list of nearest neighbours is not full yet, add the current word
|
| 241 |
-
if len(nearest_neighbours) < n:
|
| 242 |
-
nearest_neighbours.append((word, time_name, cosine_similarity_vectors))
|
| 243 |
-
|
| 244 |
-
# If the list of nearest neighbours is full, replace the word with the smallest cosine similarity
|
| 245 |
-
else:
|
| 246 |
-
smallest_neighbour = min(nearest_neighbours, key=lambda x: x[2])
|
| 247 |
-
if cosine_similarity_vectors > smallest_neighbour[2]:
|
| 248 |
-
nearest_neighbours.remove(smallest_neighbour)
|
| 249 |
-
nearest_neighbours.append((word, time_name, cosine_similarity_vectors))
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
return sorted(nearest_neighbours, key=lambda x: x[2], reverse=True)
|
| 253 |
-
|
| 254 |
|
| 255 |
def get_nearest_neighbours(target_word, n=10, models=load_all_models()):
|
| 256 |
"""
|
|
@@ -298,9 +307,16 @@ def get_nearest_neighbours(target_word, n=10, models=load_all_models()):
|
|
| 298 |
|
| 299 |
|
| 300 |
def get_nearest_neighbours_vectors(word, time_slice_model, n=15):
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
model_name = convert_model_to_time_name(time_slice_model)
|
| 305 |
time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
|
| 306 |
vector_1 = get_word_vector(time_slice_model, word)
|
|
@@ -327,6 +343,10 @@ def get_nearest_neighbours_vectors(word, time_slice_model, n=15):
|
|
| 327 |
def write_to_file(data):
|
| 328 |
'''
|
| 329 |
Write the data to a file
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
'''
|
| 331 |
# Create random tmp file name
|
| 332 |
temp_file_descriptor, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".txt", dir="/tmp")
|
|
@@ -342,7 +362,11 @@ def write_to_file(data):
|
|
| 342 |
|
| 343 |
def store_df_in_temp_file(all_dfs):
|
| 344 |
'''
|
| 345 |
-
Store the
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
'''
|
| 347 |
# Define directory for temporary files
|
| 348 |
temp_dir = "./downloads/nn"
|
|
@@ -350,37 +374,34 @@ def store_df_in_temp_file(all_dfs):
|
|
| 350 |
# Create the directory if it doesn't exist
|
| 351 |
os.makedirs(temp_dir, exist_ok=True)
|
| 352 |
|
| 353 |
-
# Create random
|
| 354 |
_, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".xlsx", dir=temp_dir)
|
| 355 |
|
| 356 |
-
|
| 357 |
# Concatenate all dataframes
|
| 358 |
df = pd.concat([df for _, df in all_dfs], axis=1, keys=[model for model, _ in all_dfs])
|
| 359 |
|
| 360 |
-
|
| 361 |
# Create an ExcelWriter object
|
| 362 |
with pd.ExcelWriter(temp_file_path, engine='xlsxwriter') as writer:
|
| 363 |
# Create a new sheet
|
| 364 |
worksheet = writer.book.add_worksheet('Results')
|
| 365 |
|
| 366 |
-
# Write text before DataFrames
|
| 367 |
start_row = 0
|
| 368 |
for model, df in all_dfs:
|
| 369 |
-
# Write model name as text
|
| 370 |
worksheet.write(start_row, 0, f"Model: {model}")
|
| 371 |
-
# Write DataFrame
|
| 372 |
df.to_excel(writer, sheet_name='Results', index=False, startrow=start_row + 1, startcol=0)
|
| 373 |
-
# Update start_row for the next model
|
| 374 |
start_row += df.shape[0] + 3 # Add some space between models
|
| 375 |
|
| 376 |
return temp_file_path
|
| 377 |
|
| 378 |
|
| 379 |
-
|
| 380 |
def check_word_in_models(word):
|
| 381 |
-
|
| 382 |
-
Check in which models a word occurs
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
all_models = load_all_models()
|
| 385 |
eligible_models = []
|
| 386 |
|
|
@@ -393,75 +414,16 @@ def check_word_in_models(word):
|
|
| 393 |
|
| 394 |
return eligible_models
|
| 395 |
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
def reduce_dimensions_tSNE():
|
| 399 |
-
'''
|
| 400 |
-
Reduce the dimensions of the data using t-SNE
|
| 401 |
-
'''
|
| 402 |
-
all_models = load_all_models()
|
| 403 |
-
|
| 404 |
-
for model in all_models:
|
| 405 |
-
model_name = model[0]
|
| 406 |
-
model = model[1]
|
| 407 |
-
model_dict = model_dictionary(model)
|
| 408 |
-
|
| 409 |
-
# Extract vectors and names from model_dict
|
| 410 |
-
all_vector_names = list(model_dict.keys())
|
| 411 |
-
all_vectors = list(model_dict.values())
|
| 412 |
-
|
| 413 |
-
print('Scaling', model_name)
|
| 414 |
|
| 415 |
-
# Scale vectors
|
| 416 |
-
scaler = StandardScaler()
|
| 417 |
-
vectors_scaled = scaler.fit_transform(all_vectors)
|
| 418 |
-
|
| 419 |
-
print('Fitting', model_name)
|
| 420 |
-
|
| 421 |
-
# Make t-SNE model and fit it to the scaled vectors
|
| 422 |
-
tsne_model = TSNE(n_components=3, random_state=42)
|
| 423 |
-
tsne_result = tsne_model.fit_transform(vectors_scaled)
|
| 424 |
-
|
| 425 |
-
print('Done fitting')
|
| 426 |
-
|
| 427 |
-
# Associate the names with the 3D representations
|
| 428 |
-
result_with_names = [(all_vector_names[i], tsne_result[i]) for i in range(len(all_vector_names))]
|
| 429 |
-
|
| 430 |
-
# Store all vectors in /3d_models/{model_name}.model
|
| 431 |
-
store_3d_model(result_with_names, model_name)
|
| 432 |
-
|
| 433 |
|
| 434 |
-
def
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
"""
|
| 438 |
-
output_dir = './3d_models'
|
| 439 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 440 |
-
file_path = os.path.join(output_dir, f'{model_name}.model')
|
| 441 |
-
|
| 442 |
-
with open(file_path, 'wb') as f:
|
| 443 |
-
pickle.dump(result_with_names, f)
|
| 444 |
-
print(f"3D model for {model_name} stored at {file_path}")
|
| 445 |
-
|
| 446 |
|
|
|
|
| 447 |
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
Print the 3D model data.
|
| 451 |
-
"""
|
| 452 |
-
file_path = f'./3d_models/{model_name}.model'
|
| 453 |
-
|
| 454 |
-
with open(file_path, 'rb') as f:
|
| 455 |
-
result_with_names = pickle.load(f)
|
| 456 |
-
|
| 457 |
-
for word, vector in result_with_names:
|
| 458 |
-
print(f'{word}: {vector}')
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
def count_lemmas(directory):
|
| 462 |
-
"""
|
| 463 |
-
Create a Counter with all words and their occurences for all models
|
| 464 |
-
"""
|
| 465 |
lemma_count_dict = {}
|
| 466 |
for file in os.listdir(directory):
|
| 467 |
model_name = file.split('.')[0].replace('_', ' ').capitalize()
|
|
@@ -475,34 +437,3 @@ def count_lemmas(directory):
|
|
| 475 |
lemma_count_dict[model_name] = Counter(words)
|
| 476 |
|
| 477 |
return lemma_count_dict
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
def main():
|
| 482 |
-
# model = load_word2vec_model('models/archaic_cbow.model')
|
| 483 |
-
# archaic_cbow_dict = model_dictionary(model)
|
| 484 |
-
|
| 485 |
-
# score = cosine_similarity(archaic_cbow_dict['Πελοπόννησος'], archaic_cbow_dict['σπάργανον'])
|
| 486 |
-
# print(score)
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
# archaic = ('archaic', load_word2vec_model('models/archaic_cbow.model'))
|
| 490 |
-
# classical = ('classical', load_word2vec_model('models/classical_cbow.model'))
|
| 491 |
-
# early_roman = ('early_roman', load_word2vec_model('models/early_roman_cbow.model'))
|
| 492 |
-
# hellen = ('hellen', load_word2vec_model('models/hellen_cbow.model'))
|
| 493 |
-
# late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
|
| 494 |
-
|
| 495 |
-
# models = [archaic, classical, early_roman, hellen, late_roman]
|
| 496 |
-
# nearest_neighbours = get_nearest_neighbours('πατήρ', 'archaic_cbow', n=5)
|
| 497 |
-
# print(nearest_neighbours)
|
| 498 |
-
# vector = get_word_vector(model, 'ἀνήρ')
|
| 499 |
-
# print(vector)
|
| 500 |
-
|
| 501 |
-
# Iterate over all words and print their vectors
|
| 502 |
-
# iterate_over_words(model)
|
| 503 |
-
|
| 504 |
-
print(count_lemmas('lemma_list_raw'))
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
if __name__ == "__main__":
|
| 508 |
-
main()
|
|
|
|
| 1 |
from gensim.models import Word2Vec
|
| 2 |
from collections import defaultdict
|
| 3 |
import os
|
|
|
|
| 4 |
import tempfile
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
| 6 |
from collections import Counter
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def load_all_models():
|
|
|
|
| 23 |
def load_selected_models(selected_models):
|
| 24 |
'''
|
| 25 |
Load the selected word2vec models
|
| 26 |
+
|
| 27 |
+
selected_models: a list of models that should be loaded
|
| 28 |
'''
|
| 29 |
models = []
|
| 30 |
for model in selected_models:
|
|
|
|
| 43 |
def load_word2vec_model(model_path):
|
| 44 |
'''
|
| 45 |
Load a word2vec model from a file
|
| 46 |
+
|
| 47 |
+
model_path: relative path to model files
|
| 48 |
'''
|
| 49 |
return Word2Vec.load(model_path)
|
| 50 |
|
|
|
|
| 52 |
def get_word_vector(model, word):
|
| 53 |
'''
|
| 54 |
Return the word vector of a word
|
| 55 |
+
|
| 56 |
+
model: word2vec model object
|
| 57 |
+
word: word to extract vector from
|
| 58 |
'''
|
| 59 |
return model.wv[word]
|
| 60 |
|
|
|
|
| 62 |
def iterate_over_words(model):
|
| 63 |
'''
|
| 64 |
Iterate over all words in the vocabulary and print their vectors
|
| 65 |
+
|
| 66 |
+
model: word2vec model object
|
| 67 |
'''
|
| 68 |
index = 0
|
| 69 |
for word, index in model.wv.key_to_index.items():
|
|
|
|
| 76 |
'''
|
| 77 |
Return the dictionary of the word2vec model
|
| 78 |
Key is the word and value is the vector of the word
|
| 79 |
+
|
| 80 |
+
model: word2vec model object
|
| 81 |
'''
|
| 82 |
dict = defaultdict(list)
|
| 83 |
for word, index in model.wv.key_to_index.items():
|
|
|
|
| 90 |
def dot_product(vector_a, vector_b):
|
| 91 |
'''
|
| 92 |
Return the dot product of two vectors
|
| 93 |
+
|
| 94 |
+
vector_a: A list of numbers representing the first vector
|
| 95 |
+
vector_b: A list of numbers representing the second vector
|
| 96 |
+
|
| 97 |
+
Returns:
|
| 98 |
+
A single number representing the dot product of the two vectors
|
| 99 |
'''
|
| 100 |
return sum(a * b for a, b in zip(vector_a, vector_b))
|
| 101 |
|
| 102 |
|
| 103 |
def magnitude(vector):
|
| 104 |
'''
|
| 105 |
+
Returns the magnitude of a vector
|
| 106 |
+
|
| 107 |
+
vector: A list of numbers representing the vetor
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
A single number representing the magnitude of the vector.
|
| 111 |
'''
|
| 112 |
return sum(x**2 for x in vector) ** 0.5
|
| 113 |
|
|
|
|
| 115 |
def cosine_similarity(vector_a, vector_b):
|
| 116 |
'''
|
| 117 |
Return the cosine similarity of two vectors
|
| 118 |
+
|
| 119 |
+
vector_a: A list of numbers representing the first vector
|
| 120 |
+
vector_b: A list of numbers representing the second vector
|
| 121 |
+
|
| 122 |
+
Returns:
|
| 123 |
+
A String representing the cosine similarity of the two vectors \
|
| 124 |
+
formatted to two decimals.
|
| 125 |
'''
|
| 126 |
dot_prod = dot_product(vector_a, vector_b)
|
| 127 |
mag_a = magnitude(vector_a)
|
|
|
|
| 138 |
def get_cosine_similarity(word1, time_slice_1, word2, time_slice_2):
|
| 139 |
'''
|
| 140 |
Return the cosine similarity of two words
|
| 141 |
+
|
| 142 |
+
word1: The first word as a string.
|
| 143 |
+
time_slice_1: The time slice for the first word as a string.
|
| 144 |
+
word2: The second word as a string.
|
| 145 |
+
time_slice_2: The time slice for the second word as a string.
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
A string representing the cosine similarity of the two words formatted to two decimal places.
|
| 149 |
+
|
| 150 |
'''
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
time_slice_1 = convert_time_name_to_model(time_slice_1)
|
| 153 |
time_slice_2 = convert_time_name_to_model(time_slice_2)
|
|
|
|
| 167 |
def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
|
| 168 |
'''
|
| 169 |
Return the cosine similarity of one word in two different time slices
|
| 170 |
+
|
| 171 |
+
word: The word as a string.
|
| 172 |
+
time_slice1: The first time slice as a string.
|
| 173 |
+
time_slice2: The second time slice as a string.
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
A string representing the cosine similarity of the word in two different time slices formatted to two decimal places.
|
| 177 |
+
|
| 178 |
'''
|
| 179 |
|
| 180 |
# Return if path does not exist
|
|
|
|
| 194 |
def validate_nearest_neighbours(word, n, models):
|
| 195 |
'''
|
| 196 |
Validate the input of the nearest neighbours function
|
| 197 |
+
|
| 198 |
+
word: The word as a string.
|
| 199 |
+
n: The number of nearest neighbours to find as an integer.
|
| 200 |
+
models: A list of model names as strings.
|
| 201 |
+
|
| 202 |
+
Returns:
|
| 203 |
+
A boolean value. True if inputs are valid, False otherwise.
|
| 204 |
+
|
| 205 |
'''
|
| 206 |
if word == '' or n == '' or models == []:
|
| 207 |
return False
|
|
|
|
| 211 |
def convert_model_to_time_name(model_name):
|
| 212 |
'''
|
| 213 |
Convert the model name to the time slice name
|
| 214 |
+
|
| 215 |
+
model_name: The model name as a string.
|
| 216 |
+
|
| 217 |
+
Returns:
|
| 218 |
+
A string representing the corresponding time slice name.
|
| 219 |
'''
|
| 220 |
if model_name == 'archaic_cbow' or model_name == 'archaic':
|
| 221 |
return 'Archaic'
|
|
|
|
| 232 |
def convert_time_name_to_model(time_name):
|
| 233 |
'''
|
| 234 |
Convert the time slice name to the model name
|
| 235 |
+
|
| 236 |
+
time_name -- The time slice name as a string.
|
| 237 |
+
|
| 238 |
+
Returns:
|
| 239 |
+
A string representing the corresponding model name.
|
| 240 |
+
|
| 241 |
'''
|
| 242 |
if time_name == 'Archaic':
|
| 243 |
return 'archaic_cbow'
|
|
|
|
| 260 |
elif time_name == 'archaic':
|
| 261 |
return 'Archaic'
|
| 262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
def get_nearest_neighbours(target_word, n=10, models=load_all_models()):
|
| 265 |
"""
|
|
|
|
| 307 |
|
| 308 |
|
| 309 |
def get_nearest_neighbours_vectors(word, time_slice_model, n=15):
|
| 310 |
+
'''
|
| 311 |
+
Return the vectors of the nearest neighbours of a word
|
| 312 |
+
|
| 313 |
+
word: the word for which the nearest neighbours are calculated
|
| 314 |
+
time_slice_model: the word2vec model of the time slice of the input word
|
| 315 |
+
n: the number of nearest neighbours to return (default: 15)
|
| 316 |
+
|
| 317 |
+
Return: list of tuples with the word, the time slice, the vector, and the cosine similarity
|
| 318 |
+
of the nearest neighbours
|
| 319 |
+
'''
|
| 320 |
model_name = convert_model_to_time_name(time_slice_model)
|
| 321 |
time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
|
| 322 |
vector_1 = get_word_vector(time_slice_model, word)
|
|
|
|
| 343 |
def write_to_file(data):
|
| 344 |
'''
|
| 345 |
Write the data to a file
|
| 346 |
+
|
| 347 |
+
data: the data to be written to the file
|
| 348 |
+
|
| 349 |
+
Return: the path to the temporary file
|
| 350 |
'''
|
| 351 |
# Create random tmp file name
|
| 352 |
temp_file_descriptor, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".txt", dir="/tmp")
|
|
|
|
| 362 |
|
| 363 |
def store_df_in_temp_file(all_dfs):
|
| 364 |
'''
|
| 365 |
+
Store the dataframes in a temporary file
|
| 366 |
+
|
| 367 |
+
all_dfs: list of tuples with the name of the time slice and the dataframe
|
| 368 |
+
|
| 369 |
+
Return: the path to the temporary Excel file
|
| 370 |
'''
|
| 371 |
# Define directory for temporary files
|
| 372 |
temp_dir = "./downloads/nn"
|
|
|
|
| 374 |
# Create the directory if it doesn't exist
|
| 375 |
os.makedirs(temp_dir, exist_ok=True)
|
| 376 |
|
| 377 |
+
# Create random temporary file name
|
| 378 |
_, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".xlsx", dir=temp_dir)
|
| 379 |
|
|
|
|
| 380 |
# Concatenate all dataframes
|
| 381 |
df = pd.concat([df for _, df in all_dfs], axis=1, keys=[model for model, _ in all_dfs])
|
| 382 |
|
|
|
|
| 383 |
# Create an ExcelWriter object
|
| 384 |
with pd.ExcelWriter(temp_file_path, engine='xlsxwriter') as writer:
|
| 385 |
# Create a new sheet
|
| 386 |
worksheet = writer.book.add_worksheet('Results')
|
| 387 |
|
|
|
|
| 388 |
start_row = 0
|
| 389 |
for model, df in all_dfs:
|
|
|
|
| 390 |
worksheet.write(start_row, 0, f"Model: {model}")
|
|
|
|
| 391 |
df.to_excel(writer, sheet_name='Results', index=False, startrow=start_row + 1, startcol=0)
|
|
|
|
| 392 |
start_row += df.shape[0] + 3 # Add some space between models
|
| 393 |
|
| 394 |
return temp_file_path
|
| 395 |
|
| 396 |
|
|
|
|
| 397 |
def check_word_in_models(word):
|
| 398 |
+
'''
|
| 399 |
+
Check in which models a word occurs
|
| 400 |
+
|
| 401 |
+
word: the word to check
|
| 402 |
+
|
| 403 |
+
Return: list of model names where the word occurs
|
| 404 |
+
'''
|
| 405 |
all_models = load_all_models()
|
| 406 |
eligible_models = []
|
| 407 |
|
|
|
|
| 414 |
|
| 415 |
return eligible_models
|
| 416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
|
| 419 |
+
def count_lemmas(directory):
|
| 420 |
+
'''
|
| 421 |
+
Create a Counter with all words and their occurrences for all models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 422 |
|
| 423 |
+
directory: the directory containing the text files for the models
|
| 424 |
|
| 425 |
+
Return: a dictionary where keys are model names and values are Counters of word occurrences
|
| 426 |
+
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
lemma_count_dict = {}
|
| 428 |
for file in os.listdir(directory):
|
| 429 |
model_name = file.split('.')[0].replace('_', ' ').capitalize()
|
|
|
|
| 437 |
lemma_count_dict[model_name] = Counter(words)
|
| 438 |
|
| 439 |
return lemma_count_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|