Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import requests | |
| import random | |
| import time | |
| import pandas as pd | |
| import gradio as gr | |
| import numpy as np | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| from transformers import pipeline | |
| import torch | |
| def read3(num_selected_former): | |
| fname = 'data3_convai2_inferred.txt' | |
| with open(fname, encoding='utf-8') as f: | |
| content = f.readlines() | |
| index_selected = random.randint(0,len(content)/2-1) | |
| while index_selected == num_selected_former: | |
| index_selected = random.randint(0,len(content)/2-1) | |
| text = eval(content[index_selected*2]) | |
| interpretation = eval(content[int(index_selected*2+1)]) | |
| min_len = 5 | |
| tokens = [i[0] for i in interpretation] | |
| tokens = tokens[1:-1] | |
| while len(tokens) <= min_len or '\\' in text['text'] or '//' in text['text']: | |
| index_selected = random.randint(0,len(content)/2-1) | |
| text = eval(content[int(index_selected*2)]) | |
| res_tmp = [(i, 0) for i in text['text'].split(' ')] | |
| res = {"original": text['text'], "interpretation": res_tmp} | |
| return res, index_selected | |
| def func3(num_selected, human_predict, num1, num2, user_important): | |
| chatbot = [] | |
| # num1: Human score; num2: AI score | |
| fname = 'data3_convai2_inferred.txt' | |
| with open(fname) as f: | |
| content = f.readlines() | |
| text = eval(content[int(num_selected*2)]) | |
| interpretation = eval(content[int(num_selected*2+1)]) | |
| if text['binary_label'] == 1: | |
| golden_label = int(5 * (1 - text['binary_score'])) | |
| else: | |
| golden_label = int(5 * (1 + text['binary_score'])) | |
| # (START) off-the-shelf version -- slow at the beginning | |
| # Load model directly | |
| # Use a pipeline as a high-level helper | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", device=device) | |
| output = classifier([text['text']]) | |
| print(output) | |
| out = output[0] | |
| # (END) off-the-shelf version | |
| if out['label'] == 'Female': | |
| ai_predict = int(10 * out['score']) | |
| else: | |
| ai_predict = 10 - int(10 * out['score']) | |
| user_select = "You focused on " | |
| flag_select = False | |
| if user_important == "": | |
| user_select += "nothing. Interesting! " | |
| else: | |
| user_select += "'" + user_important + "'. " | |
| # for i in range(len(user_marks)): | |
| # if user_marks[i][1] != None and h1[i][0] not in ["P", "N"]: | |
| # flag_select = True | |
| # user_select += "'" + h1[i][0] + "'" | |
| # if i == len(h1) - 1: | |
| # user_select += ". " | |
| # else: | |
| # user_select += ", " | |
| # if not flag_select: | |
| # user_select += "nothing. Interesting! " | |
| user_select += "Wanna see how the AI made the guess? Click here. ⬅️" | |
| if golden_label > 6: | |
| gender = ' (female)' | |
| elif golden_label < 4: | |
| gender = ' (male)' | |
| else: | |
| gender = ' (neutral)' | |
| if abs(golden_label - human_predict) <= 2 and abs(golden_label - ai_predict) <= 2: | |
| chatbot.append(("The correct answer is " + str(golden_label) + gender + ". Congratulations! 🎉 Both of you get the correct answer!", user_select)) | |
| num1 += 1 | |
| num2 += 1 | |
| elif abs(golden_label - human_predict) > 2 and abs(golden_label - ai_predict) > 2: | |
| chatbot.append(("The correct answer is " + str(golden_label) + gender + ". Sorry.. No one gets the correct answer. But nice try! 😉", user_select)) | |
| elif abs(golden_label - human_predict) <= 2 and abs(golden_label - ai_predict) > 2: | |
| chatbot.append(("The correct answer is " + str(golden_label) + gender + ". Great! 🎉 You are closer to the answer and better than AI!", user_select)) | |
| num1 += 1 | |
| else: | |
| chatbot.append(("The correct answer is " + str(golden_label) + gender + ". Sorry.. AI wins in this round.", user_select)) | |
| num2 += 1 | |
| tot_scores = ''' ### <p style="text-align: center;"> 🤖 Machine   ''' + str(int(num2)) + '''   VS   ''' + str(int(num1)) + '''   Human 👨👩 </p>''' | |
| return ai_predict, chatbot, num1, num2, tot_scores | |
| def interpre3(num_selected): | |
| fname = 'data3_convai2_inferred.txt' | |
| with open(fname) as f: | |
| content = f.readlines() | |
| text = eval(content[int(num_selected*2)]) | |
| interpretation = eval(content[int(num_selected*2+1)]) | |
| print(interpretation) | |
| res = {"original": text['text'], "interpretation": interpretation} | |
| # pos = [] | |
| # neg = [] | |
| # res = [] | |
| # for i in interpretation: | |
| # if i[1] > 0: | |
| # pos.append(i[1]) | |
| # elif i[1] < 0: | |
| # neg.append(i[1]) | |
| # else: | |
| # continue | |
| # median_pos = np.median(pos) | |
| # median_neg = np.median(neg) | |
| # res.append(("P", "+")) | |
| # res.append(("/", None)) | |
| # res.append(("N", "-")) | |
| # res.append(("Review:", None)) | |
| # for i in interpretation: | |
| # if i[1] > median_pos: | |
| # res.append((i[0], "+")) | |
| # elif i[1] < median_neg: | |
| # res.append((i[0], "-")) | |
| # else: | |
| # res.append((i[0], None)) | |
| return res | |
| def func3_written(text_written, human_predict, lang_written): | |
| chatbot = [] | |
| # num1: Human score; num2: AI score | |
| # (START) off-the-shelf version | |
| # tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") | |
| # model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", device=device) | |
| output = classifier([text_written]) | |
| print(output) | |
| out = output[0] | |
| # (END) off-the-shelf version | |
| if out['label'] == 'Female': | |
| ai_predict = int(10 * out['score']) | |
| else: | |
| ai_predict = 10 - int(10 * out['score']) | |
| if abs(ai_predict - human_predict) <= 2: | |
| chatbot.append(("AI gives it a close score! 🎉", "⬅️ Feel free to try another one! ⬅️")) | |
| else: | |
| chatbot.append(("AI thinks in a different way from human. 😉", "⬅️ Feel free to try another one! ⬅️")) | |
| import shap | |
| gender_classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", return_all_scores=True, device=device) | |
| explainer = shap.Explainer(gender_classifier) | |
| shap_values = explainer([text_written]) | |
| interpretation = list(zip(shap_values.data[0], shap_values.values[0, :, 1])) | |
| res = {"original": text_written, "interpretation": interpretation} | |
| print(res) | |
| return res, ai_predict, chatbot | |
 
			
