Spaces:
Running
on
A100
Running
on
A100
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,18 @@
|
|
1 |
-
import os, json,
|
2 |
from typing import Any, Dict, Tuple
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
7 |
|
8 |
-
#
|
9 |
-
# Env / params
|
10 |
-
# --------------------------
|
11 |
MODEL_ID = os.environ.get("MODEL_ID", "inference-net/ClipTagger-12b")
|
12 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
13 |
TEMP = 0.1
|
14 |
-
MAX_NEW_TOKENS =
|
15 |
DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
16 |
|
17 |
-
#
|
18 |
-
# Prompts (yours)
|
19 |
-
# --------------------------
|
20 |
SYSTEM_PROMPT = (
|
21 |
"You are an image annotation API trained to analyze YouTube video keyframes. "
|
22 |
"You will be given instructions on the output format, what to caption, and how to perform your job. "
|
@@ -53,55 +49,61 @@ Rules:
|
|
53 |
- Output **only the JSON**, no extra text or explanation.
|
54 |
"""
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
"""Strict JSON parse with top-level {...} fallback."""
|
61 |
try:
|
62 |
-
return json.loads(
|
63 |
except Exception:
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
return None
|
71 |
|
72 |
-
def
|
73 |
return [
|
74 |
{"role": "system", "content": [{"type": "text", "text": SYSTEM_PROMPT}]},
|
75 |
{"role": "user", "content": [{"type": "image", "image": image},
|
76 |
{"type": "text", "text": USER_PROMPT}]}
|
77 |
]
|
78 |
|
79 |
-
def
|
80 |
-
"""Cap longest side to keep memory predictable; A100 is roomy but this avoids extreme uploads."""
|
81 |
if pil is None:
|
82 |
return pil
|
83 |
w, h = pil.size
|
84 |
m = max(w, h)
|
85 |
if m <= max_side:
|
86 |
return pil.convert("RGB")
|
87 |
-
|
88 |
-
|
89 |
-
return pil.convert("RGB").resize((new_w, new_h), Image.BICUBIC)
|
90 |
|
91 |
-
#
|
92 |
-
# Load model (dedicated GPU)
|
93 |
-
# --------------------------
|
94 |
processor = tokenizer = model = None
|
95 |
LOAD_ERROR = None
|
96 |
|
97 |
try:
|
98 |
cfg = AutoConfig.from_pretrained(MODEL_ID, token=HF_TOKEN, trust_remote_code=True)
|
99 |
if "clip" in cfg.__class__.__name__.lower():
|
100 |
-
raise RuntimeError(
|
101 |
-
f"MODEL_ID '{MODEL_ID}' resolves to a CLIP/encoder config; need a causal VLM checkpoint."
|
102 |
-
)
|
103 |
|
104 |
-
|
105 |
try:
|
106 |
processor = AutoProcessor.from_pretrained(
|
107 |
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
@@ -111,107 +113,105 @@ try:
|
|
111 |
MODEL_ID, token=HF_TOKEN, trust_remote_code=True
|
112 |
)
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
if "compressed_tensors" in str(e):
|
125 |
-
model = AutoModelForCausalLM.from_pretrained(
|
126 |
-
MODEL_ID,
|
127 |
-
token=HF_TOKEN,
|
128 |
-
device_map="auto",
|
129 |
-
torch_dtype=DTYPE,
|
130 |
-
trust_remote_code=True,
|
131 |
-
quantization_config=None,
|
132 |
-
)
|
133 |
-
else:
|
134 |
-
raise
|
135 |
|
136 |
tokenizer = getattr(processor, "tokenizer", None) or AutoTokenizer.from_pretrained(
|
137 |
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
138 |
)
|
|
|
139 |
|
140 |
except Exception as e:
|
141 |
LOAD_ERROR = f"{e}\n\n{traceback.format_exc()}"
|
142 |
|
143 |
-
#
|
144 |
-
|
145 |
-
# --------------------------
|
146 |
-
def run(image: Image.Image) -> Tuple[str, Dict[str, Any] | None, bool]:
|
147 |
if image is None:
|
148 |
return "Please upload an image.", None, False
|
149 |
if model is None or processor is None:
|
150 |
-
|
151 |
-
"❌ Model failed to load.\n\n"
|
152 |
-
f"{LOAD_ERROR or 'Unknown error.'}\n"
|
153 |
-
"Check MODEL_ID/HF_TOKEN and that the repo includes model + processor files."
|
154 |
-
)
|
155 |
-
return msg, None, False
|
156 |
|
157 |
-
image =
|
158 |
|
159 |
-
# Build
|
160 |
if hasattr(processor, "apply_chat_template"):
|
161 |
-
prompt = processor.apply_chat_template(
|
162 |
else:
|
163 |
-
#
|
164 |
-
|
165 |
-
prompt = ""
|
166 |
-
for m in msgs:
|
167 |
-
role = m["role"].upper()
|
168 |
-
for chunk in m["content"]:
|
169 |
-
if chunk["type"] == "text":
|
170 |
-
prompt += f"{role}: {chunk['text']}\n"
|
171 |
-
elif chunk["type"] == "image":
|
172 |
-
prompt += f"{role}: [IMAGE]\n"
|
173 |
|
174 |
# Tokenize with vision
|
175 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
|
176 |
|
177 |
-
#
|
178 |
-
gen_kwargs = dict(
|
179 |
-
temperature=TEMP,
|
180 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
181 |
-
)
|
182 |
eos = getattr(model.config, "eos_token_id", None)
|
183 |
-
if eos is not None:
|
184 |
-
gen_kwargs["eos_token_id"] = eos
|
185 |
|
186 |
-
# Try to enforce JSON; if unsupported, we'll retry without
|
187 |
tried = []
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
parsed =
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
return "Generation failed.\nTried: " + "\n".join([f"{t[0]} -> {t[1]}" for t in tried]), None, False
|
210 |
|
211 |
-
#
|
212 |
-
|
213 |
-
# --------------------------
|
214 |
-
with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False, title="Keyframe Annotator (Gemma-3 VLM)") as demo:
|
215 |
gr.Markdown("# Keyframe Annotator (Gemma-3-12B FT · A100)\nUpload an image to get **strict JSON** annotations.")
|
216 |
if LOAD_ERROR:
|
217 |
with gr.Accordion("Startup Error Details", open=False):
|
@@ -224,12 +224,8 @@ with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False, title="Keyframe
|
|
224 |
with gr.Column(scale=1):
|
225 |
out_text = gr.Code(label="Output (JSON or error)")
|
226 |
out_json = gr.JSON(label="Parsed JSON")
|
227 |
-
|
228 |
-
|
229 |
-
def on_click(img):
|
230 |
-
return run(img)
|
231 |
-
|
232 |
-
btn.click(on_click, inputs=[image], outputs=[out_text, out_json, ok])
|
233 |
|
|
|
234 |
|
235 |
demo.queue(max_size=32).launch()
|
|
|
1 |
+
import os, json, traceback
|
2 |
from typing import Any, Dict, Tuple
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
7 |
|
8 |
+
# -------- Env / params --------
|
|
|
|
|
9 |
MODEL_ID = os.environ.get("MODEL_ID", "inference-net/ClipTagger-12b")
|
10 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
11 |
TEMP = 0.1
|
12 |
+
MAX_NEW_TOKENS = 768 # faster demo; raise later if needed
|
13 |
DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
14 |
|
15 |
+
# -------- Prompts (yours) --------
|
|
|
|
|
16 |
SYSTEM_PROMPT = (
|
17 |
"You are an image annotation API trained to analyze YouTube video keyframes. "
|
18 |
"You will be given instructions on the output format, what to caption, and how to perform your job. "
|
|
|
49 |
- Output **only the JSON**, no extra text or explanation.
|
50 |
"""
|
51 |
|
52 |
+
# -------- Utils --------
|
53 |
+
def extract_top_level_json(s: str):
|
54 |
+
"""Parse JSON; if extra text around it, extract the first balanced {...} block."""
|
55 |
+
# Fast path
|
|
|
56 |
try:
|
57 |
+
return json.loads(s)
|
58 |
except Exception:
|
59 |
+
pass
|
60 |
+
# Brace-stack extraction
|
61 |
+
start = None
|
62 |
+
depth = 0
|
63 |
+
for i, ch in enumerate(s):
|
64 |
+
if ch == '{':
|
65 |
+
if depth == 0:
|
66 |
+
start = i
|
67 |
+
depth += 1
|
68 |
+
elif ch == '}':
|
69 |
+
if depth > 0:
|
70 |
+
depth -= 1
|
71 |
+
if depth == 0 and start is not None:
|
72 |
+
chunk = s[start:i+1]
|
73 |
+
try:
|
74 |
+
return json.loads(chunk)
|
75 |
+
except Exception:
|
76 |
+
# continue scanning for the next candidate
|
77 |
+
start = None
|
78 |
return None
|
79 |
|
80 |
+
def build_messages(image: Image.Image):
|
81 |
return [
|
82 |
{"role": "system", "content": [{"type": "text", "text": SYSTEM_PROMPT}]},
|
83 |
{"role": "user", "content": [{"type": "image", "image": image},
|
84 |
{"type": "text", "text": USER_PROMPT}]}
|
85 |
]
|
86 |
|
87 |
+
def downscale_if_huge(pil: Image.Image, max_side: int = 1792) -> Image.Image:
|
|
|
88 |
if pil is None:
|
89 |
return pil
|
90 |
w, h = pil.size
|
91 |
m = max(w, h)
|
92 |
if m <= max_side:
|
93 |
return pil.convert("RGB")
|
94 |
+
s = max_side / m
|
95 |
+
return pil.convert("RGB").resize((int(w*s), int(h*s)), Image.BICUBIC)
|
|
|
96 |
|
97 |
+
# -------- Load model (A100) --------
|
|
|
|
|
98 |
processor = tokenizer = model = None
|
99 |
LOAD_ERROR = None
|
100 |
|
101 |
try:
|
102 |
cfg = AutoConfig.from_pretrained(MODEL_ID, token=HF_TOKEN, trust_remote_code=True)
|
103 |
if "clip" in cfg.__class__.__name__.lower():
|
104 |
+
raise RuntimeError(f"MODEL_ID '{MODEL_ID}' is a CLIP/encoder repo; need a causal VLM.")
|
|
|
|
|
105 |
|
106 |
+
print("[boot] loading processor…", flush=True)
|
107 |
try:
|
108 |
processor = AutoProcessor.from_pretrained(
|
109 |
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
|
|
113 |
MODEL_ID, token=HF_TOKEN, trust_remote_code=True
|
114 |
)
|
115 |
|
116 |
+
print("[boot] loading model…", flush=True)
|
117 |
+
# Force full-precision path on A100 first; add quantized path later if desired
|
118 |
+
model = AutoModelForCausalLM.from_pretrained(
|
119 |
+
MODEL_ID,
|
120 |
+
token=HF_TOKEN,
|
121 |
+
device_map="auto",
|
122 |
+
torch_dtype=DTYPE,
|
123 |
+
trust_remote_code=True,
|
124 |
+
# quantization_config=None, # keep commented if you want to honor repo quant; uncomment to force dequant
|
125 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
tokenizer = getattr(processor, "tokenizer", None) or AutoTokenizer.from_pretrained(
|
128 |
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
129 |
)
|
130 |
+
print("[boot] ready.", flush=True)
|
131 |
|
132 |
except Exception as e:
|
133 |
LOAD_ERROR = f"{e}\n\n{traceback.format_exc()}"
|
134 |
|
135 |
+
# -------- Inference --------
|
136 |
+
def generate(image: Image.Image) -> Tuple[str, Dict[str, Any] | None, bool]:
|
|
|
|
|
137 |
if image is None:
|
138 |
return "Please upload an image.", None, False
|
139 |
if model is None or processor is None:
|
140 |
+
return f"❌ Load error:\n{LOAD_ERROR}", None, False
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
image = downscale_if_huge(image)
|
143 |
|
144 |
+
# Build prompt
|
145 |
if hasattr(processor, "apply_chat_template"):
|
146 |
+
prompt = processor.apply_chat_template(build_messages(image), add_generation_prompt=True, tokenize=False)
|
147 |
else:
|
148 |
+
# fallback join (rare)
|
149 |
+
prompt = USER_PROMPT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
# Tokenize with vision
|
152 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
|
153 |
|
154 |
+
# Common gen kwargs
|
|
|
|
|
|
|
|
|
155 |
eos = getattr(model.config, "eos_token_id", None)
|
|
|
|
|
156 |
|
|
|
157 |
tried = []
|
158 |
+
|
159 |
+
# (1) Greedy, no sampling (most stable, no temperature arg)
|
160 |
+
try:
|
161 |
+
g = dict(do_sample=False, max_new_tokens=MAX_NEW_TOKENS)
|
162 |
+
if eos is not None:
|
163 |
+
g["eos_token_id"] = eos
|
164 |
+
with torch.inference_mode():
|
165 |
+
out = model.generate(**inputs, **g)
|
166 |
+
text = (processor.decode(out[0], skip_special_tokens=True)
|
167 |
+
if hasattr(processor, "decode")
|
168 |
+
else tokenizer.decode(out[0], skip_special_tokens=True))
|
169 |
+
parsed = extract_top_level_json(text)
|
170 |
+
if isinstance(parsed, dict):
|
171 |
+
return json.dumps(parsed, indent=2), parsed, True
|
172 |
+
tried.append(("greedy", "parsed-failed"))
|
173 |
+
except Exception as e:
|
174 |
+
tried.append(("greedy", f"err={e}"))
|
175 |
+
|
176 |
+
# (2) Sampling with temperature=0.1
|
177 |
+
try:
|
178 |
+
g = dict(do_sample=True, temperature=TEMP, max_new_tokens=MAX_NEW_TOKENS)
|
179 |
+
if eos is not None:
|
180 |
+
g["eos_token_id"] = eos
|
181 |
+
with torch.inference_mode():
|
182 |
+
out = model.generate(**inputs, **g)
|
183 |
+
text = (processor.decode(out[0], skip_special_tokens=True)
|
184 |
+
if hasattr(processor, "decode")
|
185 |
+
else tokenizer.decode(out[0], skip_special_tokens=True))
|
186 |
+
parsed = extract_top_level_json(text)
|
187 |
+
if isinstance(parsed, dict):
|
188 |
+
return json.dumps(parsed, indent=2), parsed, True
|
189 |
+
tried.append(("sample_t0.1", "parsed-failed"))
|
190 |
+
except Exception as e:
|
191 |
+
tried.append(("sample_t0.1", f"err={e}"))
|
192 |
+
|
193 |
+
# (3) Shorter greedy
|
194 |
+
try:
|
195 |
+
g = dict(do_sample=False, max_new_tokens=min(512, MAX_NEW_TOKENS))
|
196 |
+
if eos is not None:
|
197 |
+
g["eos_token_id"] = eos
|
198 |
+
with torch.inference_mode():
|
199 |
+
out = model.generate(**inputs, **g)
|
200 |
+
text = (processor.decode(out[0], skip_special_tokens=True)
|
201 |
+
if hasattr(processor, "decode")
|
202 |
+
else tokenizer.decode(out[0], skip_special_tokens=True))
|
203 |
+
parsed = extract_top_level_json(text)
|
204 |
+
if isinstance(parsed, dict):
|
205 |
+
return json.dumps(parsed, indent=2), parsed, True
|
206 |
+
tried.append(("greedy_short", "parsed-failed"))
|
207 |
+
except Exception as e:
|
208 |
+
tried.append(("greedy_short", f"err={e}"))
|
209 |
+
|
210 |
+
# Debug info if all fail
|
211 |
return "Generation failed.\nTried: " + "\n".join([f"{t[0]} -> {t[1]}" for t in tried]), None, False
|
212 |
|
213 |
+
# -------- UI --------
|
214 |
+
with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False, title="Keyframe Annotator (Gemma-3 VLM · A100)") as demo:
|
|
|
|
|
215 |
gr.Markdown("# Keyframe Annotator (Gemma-3-12B FT · A100)\nUpload an image to get **strict JSON** annotations.")
|
216 |
if LOAD_ERROR:
|
217 |
with gr.Accordion("Startup Error Details", open=False):
|
|
|
224 |
with gr.Column(scale=1):
|
225 |
out_text = gr.Code(label="Output (JSON or error)")
|
226 |
out_json = gr.JSON(label="Parsed JSON")
|
227 |
+
ok_flag = gr.Checkbox(label="Valid JSON", value=False, interactive=False)
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
+
btn.click(generate, inputs=[image], outputs=[out_text, out_json, ok_flag])
|
230 |
|
231 |
demo.queue(max_size=32).launch()
|