import os import gradio as gr from PIL import Image elements = { "Becane": ("data/data_becane_1_0_2_014_before_img6", "data/data_becane_1_0_2_014_after_img7", "models/RoadBecane_f.stl"), "BTWIN": ("data/data_btwin_1_26_3_114_before_img0", "data/data_btwin_1_26_3_114_after_img13", "models/BTWIN.stl"), "Classic Road": ("data/data_croad_4_26_4_112_before_img3", "data/data_croad_4_26_4_112_after_img7", "models/ClassicRoad.stl"), "Domane": ("data/data_domane_2_0_39_012_before_img6", "data/data_domane_2_0_39_012_after_img13", "models/domane.stl"), "Enduro": ("data/data_enduro_2_18_18_105_before_img6", "data/data_enduro_2_18_18_105_after_img10", "models/enduro.stl"), "G1": ("data/data_g1_2_36_14_010_before_img6", "data/data_g1_2_36_14_010_after_img8", "models/g1.stl"), "GBike": ("data/data_gbike_3_31_8_018_before_img2", "data/data_gbike_3_31_8_018_after_img8", "models/gbike.stl"), "Holland": ( "data/data_holland_4_24_18_00_before_img4", "data/data_holland_4_24_18_00_after_img7", "models/holland.stl"), "Huffy": ( "data/data_huffy_6_4_35_012_before_img4", "data/data_huffy_6_4_35_012_after_img12", "models/huffy.stl"), "Kuota": ( "data/data_kuota_6_5_30_112_before_img4", "data/data_kuota_6_5_30_112_after_img12", "models/kuota.stl"), "MFactory": ( "data/data_mfactory_1_17_8_00_before_img4", "data/data_mfactory_1_17_8_00_after_img12", "models/mfactory.stl"), "Mirage": ( "data/data_mirage_6_11_36_117_before_img4", "data/data_mirage_6_11_36_117_after_img12", "models/mirage.stl"), "Old Bike": ( "data/data_oldbike_3_30_15_100_before_img4", "data/data_oldbike_3_30_15_100_after_img12", "models/oldbike.stl"), "Freeride": ( "data/data_freeride_6_24_0_00_before_img4", "data/data_freeride_6_24_0_00_after_img12", "models/freeride_1Step_f.stl"), "RondoRuut": ( "data/data_rondo_2_11_39_106_before_img4", "data/data_rondo_2_11_39_106_after_img12", "models/RondoRuutClean_1Step_f.stl"), "MTB Ghost": ( "data/data_ghost_1_0_4_116_before_img4", "data/data_ghost_1_0_4_116_after_img12", "models/MTB_Ghost.stl"), "Scalpel": ( "data/data_scalpel_6_2_12_101_before_img4", "data/data_scalpel_6_2_12_101_after_img12", "models/scalpel.stl"), "Verdona": ( "data/data_verdona_1_14_10_118_before_img4", "data/data_verdona_1_14_10_118_after_img12", "models/verdona.stl"), "Vintage": ( "data/data_vintage_6_6_33_011_before_img4", "data/data_vintage_6_6_33_011_after_img12", "models/Vintage.stl"), "WBike": ( "data/data_wbike_3_19_23_00_before_img4", "data/data_wbike_3_19_23_00_after_img12", "models/wbike.stl"), } def generate_ui(key): img_b, img_a, model = elements[key] gr.Markdown("### Before damage") with gr.Row(): with gr.Row(): with gr.Column(scale=1): gr.Markdown("#### Render") img_bn = gr.Image(os.path.join(os.path.dirname(__file__),f"{img_b}.png")) with gr.Column(scale=1): gr.Markdown("#### Background") img_bb = gr.Image(os.path.join(os.path.dirname(__file__),f"{img_b}_background.png")) with gr.Column(scale=1): gr.Markdown("#### Foreground") img_bf = gr.Image(os.path.join(os.path.dirname(__file__),f"{img_b}_foreground.png")) with gr.Column(scale=1): gr.Markdown("#### Segmentation") img_bs = gr.Image(os.path.join(os.path.dirname(__file__),f"{img_b}_segmentation.png")) gr.Markdown("### After damage") with gr.Row(): with gr.Column(scale=1): gr.Markdown("#### Render") img_an = gr.Image(os.path.join(os.path.dirname(__file__),f"{img_a}.png")) with gr.Column(scale=1): gr.Markdown("#### Background") img_ab = gr.Image(os.path.join(os.path.dirname(__file__),f"{img_a}_background.png")) with gr.Column(scale=1): gr.Markdown("#### Foreground") img_af = gr.Image(os.path.join(os.path.dirname(__file__),f"{img_a}_foreground.png")) with gr.Column(scale=1): gr.Markdown("#### Segmentation") img_as = gr.Image(os.path.join(os.path.dirname(__file__),f"{img_a}_segmentation.png")) model = gr.Model3D(model, label="3D model preview") return img_bn, img_bb, img_bf, img_bs, img_an, img_ab, img_af, img_as, model def get_values(key): img_b, img_a, model = elements[key] gr.Markdown("### Before damage") img_bn = Image.open(f"{img_b}.png") img_bb = Image.open(f"{img_b}_background.png") img_bf = Image.open(f"{img_b}_foreground.png") img_bs = Image.open(f"{img_b}_segmentation.png") img_an = Image.open(f"{img_a}.png") img_ab = Image.open(f"{img_a}_background.png") img_af = Image.open(f"{img_a}_foreground.png") img_as = Image.open(f"{img_a}_segmentation.png") return img_bn, img_bb, img_bf, img_bs, img_an, img_ab, img_af, img_as, model block = gr.Blocks() with block: with open("page.md", "r") as f: gr.Markdown(f.read()) first_key = list(elements.keys())[0] dropdown = gr.Dropdown(choices=list(elements.keys()), value=first_key, label="Model", interactive=True) img_bn, img_bb, img_bf, img_bs, img_an, img_ab, img_af, img_as, model = generate_ui(first_key) dropdown.change(get_values, inputs=[dropdown], outputs=[img_bn, img_bb, img_bf, img_bs, img_an, img_ab, img_af, img_as, model]) gr.Markdown("### Citation Information \n```\n@inproceedings{bbb_2022,\n title={Bent & Broken Bicycles: Leveraging" " synthetic data for damaged object re-identification},\n author={Luca Piano, Filippo Gabriele Pratticò," " Alessandro Sebastian Russo, Lorenzo Lanari, Lia Morra, Fabrizio Lamberti},\n booktitle={2022 IEEE " "Winter Conference on Applications of Computer Vision (WACV)},\n year={2022},\n " "organization={IEEE}\n}\n```") block.queue(concurrency_count=40, max_size=20).launch(max_threads=150)