GrahamY commited on
Commit
596ba9a
1 Parent(s): ccbdaf5

Upload folder using huggingface_hub

Browse files
Files changed (35) hide show
  1. README.md +138 -7
  2. README_en.md +140 -0
  3. THUDM/glm-4-9b-chat/.gitattributes +35 -0
  4. THUDM/glm-4-9b-chat/LICENSE +84 -0
  5. THUDM/glm-4-9b-chat/README.md +171 -0
  6. THUDM/glm-4-9b-chat/README_en.md +167 -0
  7. THUDM/glm-4-9b-chat/config.json +45 -0
  8. THUDM/glm-4-9b-chat/configuration.json +1 -0
  9. THUDM/glm-4-9b-chat/configuration_chatglm.py +58 -0
  10. THUDM/glm-4-9b-chat/generation_config.json +13 -0
  11. THUDM/glm-4-9b-chat/model-00001-of-00010.safetensors +3 -0
  12. THUDM/glm-4-9b-chat/model-00002-of-00010.safetensors +3 -0
  13. THUDM/glm-4-9b-chat/model-00003-of-00010.safetensors +3 -0
  14. THUDM/glm-4-9b-chat/model-00004-of-00010.safetensors +3 -0
  15. THUDM/glm-4-9b-chat/model-00005-of-00010.safetensors +3 -0
  16. THUDM/glm-4-9b-chat/model-00006-of-00010.safetensors +3 -0
  17. THUDM/glm-4-9b-chat/model-00007-of-00010.safetensors +3 -0
  18. THUDM/glm-4-9b-chat/model-00008-of-00010.safetensors +3 -0
  19. THUDM/glm-4-9b-chat/model-00009-of-00010.safetensors +3 -0
  20. THUDM/glm-4-9b-chat/model-00010-of-00010.safetensors +3 -0
  21. THUDM/glm-4-9b-chat/model.safetensors.index.json +291 -0
  22. THUDM/glm-4-9b-chat/modeling_chatglm.py +1215 -0
  23. THUDM/glm-4-9b-chat/tokenization_chatglm.py +323 -0
  24. THUDM/glm-4-9b-chat/tokenizer.model +3 -0
  25. THUDM/glm-4-9b-chat/tokenizer_config.json +133 -0
  26. openai_api_request.py +127 -0
  27. openai_api_server.py +635 -0
  28. requirements.txt +27 -0
  29. trans_batch_demo.py +90 -0
  30. trans_cli_demo.py +112 -0
  31. trans_cli_vision_demo.py +121 -0
  32. trans_cli_vision_gradio_demo.py +121 -0
  33. trans_stress_test.py +135 -0
  34. trans_web_demo.py +207 -0
  35. vllm_cli_demo.py +111 -0
README.md CHANGED
@@ -1,12 +1,143 @@
1
  ---
2
- title: Chatbot ChatGLM4
3
- emoji: 🏃
4
- colorFrom: red
5
- colorTo: blue
6
  sdk: gradio
7
  sdk_version: 4.36.1
8
- app_file: app.py
9
- pinned: false
10
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Chatbot_ChatGLM4
3
+ app_file: trans_cli_vision_gradio_demo.py
 
 
4
  sdk: gradio
5
  sdk_version: 4.36.1
 
 
6
  ---
7
+ # Basic Demo
8
+
9
+ Read this in [English](README_en.md).
10
+
11
+ 本 demo 中,你将体验到如何使用 GLM-4-9B 开源模型进行基本的任务。
12
+
13
+ 请严格按照文档的步骤进行操作,以避免不必要的错误。
14
+
15
+ ## 设备和依赖检查
16
+
17
+ ### 相关推理测试数据
18
+
19
+ **本文档的数据均在以下硬件环境测试,实际运行环境需求和运行占用的显存略有不同,请以实际运行环境为准。**
20
+
21
+ 测试硬件信息:
22
+
23
+ + OS: Ubuntu 22.04
24
+ + Memory: 512GB
25
+ + Python: 3.10.12 (推荐) / 3.12.3 均已测试
26
+ + CUDA Version: 12.3
27
+ + GPU Driver: 535.104.05
28
+ + GPU: NVIDIA A100-SXM4-80GB * 8
29
+
30
+ 相关推理的压力测试数据如下:
31
+
32
+ **所有测试均在单张GPU上进行测试,所有显存消耗都按照峰值左右进行测算**
33
+
34
+ #### GLM-4-9B-Chat
35
+
36
+ | 精度 | 显存占用 | Prefilling | Decode Speed | Remarks |
37
+ |------|-------|------------|---------------|--------------|
38
+ | BF16 | 19 GB | 0.2s | 27.8 tokens/s | 输入长度为 1000 |
39
+ | BF16 | 21 GB | 0.8s | 31.8 tokens/s | 输入长度为 8000 |
40
+ | BF16 | 28 GB | 4.3s | 14.4 tokens/s | 输入长度为 32000 |
41
+ | BF16 | 58 GB | 38.1s | 3.4 tokens/s | 输入长度为 128000 |
42
+
43
+ | 精度 | 显存占用 | Prefilling | Decode Speed | Remarks |
44
+ |------|-------|------------|---------------|-------------|
45
+ | INT4 | 8 GB | 0.2s | 23.3 tokens/s | 输入长度为 1000 |
46
+ | INT4 | 10 GB | 0.8s | 23.4 tokens/s | 输入长度为 8000 |
47
+ | INT4 | 17 GB | 4.3s | 14.6 tokens/s | 输入长度为 32000 |
48
+
49
+ ### GLM-4-9B-Chat-1M
50
+
51
+ | 精度 | 显存占用 | Prefilling | Decode Speed | Remarks |
52
+ |------|-------|------------|--------------|--------------|
53
+ | BF16 | 75 GB | 98.4s | 2.3 tokens/s | 输入长度为 200000 |
54
+
55
+ 如果您的输入超过200K,我们建议您使用vLLM后端进行多卡推理,以获得更好的性能。
56
+
57
+ #### GLM-4V-9B
58
+
59
+ | 精度 | 显存占用 | Prefilling | Decode Speed | Remarks |
60
+ |------|-------|------------|---------------|------------|
61
+ | BF16 | 28 GB | 0.1s | 33.4 tokens/s | 输入长度为 1000 |
62
+ | BF16 | 33 GB | 0.7s | 39.2 tokens/s | 输入长度为 8000 |
63
+
64
+ | 精度 | 显存占用 | Prefilling | Decode Speed | Remarks |
65
+ |------|-------|------------|---------------|------------|
66
+ | INT4 | 10 GB | 0.1s | 28.7 tokens/s | 输入长度为 1000 |
67
+ | INT4 | 15 GB | 0.8s | 24.2 tokens/s | 输入长度为 8000 |
68
+
69
+ ### 最低硬件要求
70
+
71
+ 如果您希望运行官方提供的最基础代码 (transformers 后端) 您需要:
72
+
73
+ + Python >= 3.10
74
+ + 内存不少于 32 GB
75
+
76
+ 如果您希望运行官方提供的本文件夹的所有代码,您还需要:
77
+
78
+ + Linux 操作系统 (Debian 系列最佳)
79
+ + 大于 8GB 显存的,支持 CUDA 或者 ROCM 并且支持 `BF16` 推理的 GPU 设备。(`FP16` 精度无法训练,推理有小概率出现问题)
80
+
81
+ 安装依赖
82
+
83
+ ```shell
84
+ pip install -r requirements.txt
85
+ ```
86
+
87
+ ## 基础功能调用
88
+
89
+ **除非特殊说明,本文件夹所有 demo 并不支持 Function Call 和 All Tools 等进阶用法**
90
+
91
+ ### 使用 transformers 后端代码
92
+
93
+ + 使用命令行与 GLM-4-9B 模型进行对话。
94
+
95
+ ```shell
96
+ python trans_cli_demo.py # GLM-4-9B-Chat
97
+ python trans_cli_vision_demo.py # GLM-4V-9B
98
+ ```
99
+
100
+ + 使用 Gradio 网页端与 GLM-4-9B-Chat 模型进行对话。
101
+
102
+ ```shell
103
+ python trans_web_demo.py
104
+ ```
105
+
106
+ + 使用 Batch 推理。
107
+
108
+ ```shell
109
+ python cli_batch_request_demo.py
110
+ ```
111
+
112
+ ### 使用 vLLM 后端代码
113
+
114
+ + 使用命令行与 GLM-4-9B-Chat 模型进行对话。
115
+
116
+ ```shell
117
+ python vllm_cli_demo.py
118
+ ```
119
+
120
+ + 自行构建服务端,并使用 `OpenAI API` 的请求格式与 GLM-4-9B-Chat 模型进行对话。本 demo 支持 Function Call 和 All Tools功能。
121
+
122
+ 启动服务端:
123
+
124
+ ```shell
125
+ python openai_api_server.py
126
+ ```
127
+
128
+ 客户端请求:
129
+
130
+ ```shell
131
+ python openai_api_request.py
132
+ ```
133
+
134
+ ## 压力测试
135
+
136
+ 用户可以在自己的设备上使用本代码测试模型在 transformers后端的生成速度:
137
+
138
+ ```shell
139
+ python trans_stress_test.py
140
+ ```
141
+
142
+
143
 
 
README_en.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Basic Demo
2
+
3
+ In this demo, you will experience how to use the GLM-4-9B open source model to perform basic tasks.
4
+
5
+ Please follow the steps in the document strictly to avoid unnecessary errors.
6
+
7
+ ## Device and dependency check
8
+
9
+ ### Related inference test data
10
+
11
+ **The data in this document are tested in the following hardware environment. The actual operating environment
12
+ requirements and the GPU memory occupied by the operation are slightly different. Please refer to the actual operating
13
+ environment.**
14
+
15
+ Test hardware information:
16
+
17
+ + OS: Ubuntu 22.04
18
+ + Memory: 512GB
19
+ + Python: 3.10.12 (recommend) / 3.12.3 have been tested
20
+ + CUDA Version: 12.3
21
+ + GPU Driver: 535.104.05
22
+ + GPU: NVIDIA A100-SXM4-80GB * 8
23
+
24
+ The stress test data of relevant inference are as follows:
25
+
26
+ **All tests are performed on a single GPU, and all GPU memory consumption is calculated based on the peak value**
27
+
28
+ #
29
+
30
+ ### GLM-4-9B-Chat
31
+
32
+ | Dtype | GPU Memory | Prefilling | Decode Speed | Remarks |
33
+ |-------|------------|------------|---------------|------------------------|
34
+ | BF16 | 19 GB | 0.2s | 27.8 tokens/s | Input length is 1000 |
35
+ | BF16 | 21 GB | 0.8s | 31.8 tokens/s | Input length is 8000 |
36
+ | BF16 | 28 GB | 4.3s | 14.4 tokens/s | Input length is 32000 |
37
+ | BF16 | 58 GB | 38.1s | 3.4 tokens/s | Input length is 128000 |
38
+
39
+ | Dtype | GPU Memory | Prefilling | Decode Speed | Remarks |
40
+ |-------|------------|------------|---------------|-----------------------|
41
+ | INT4 | 8 GB | 0.2s | 23.3 tokens/s | Input length is 1000 |
42
+ | INT4 | 10 GB | 0.8s | 23.4 tokens/s | Input length is 8000 |
43
+ | INT4 | 17 GB | 4.3s | 14.6 tokens/s | Input length is 32000 |
44
+
45
+ ### GLM-4-9B-Chat-1M
46
+
47
+ | Dtype | GPU Memory | Prefilling | Decode Speed | Remarks |
48
+ |-------|------------|------------|------------------|------------------------|
49
+ | BF16 | 74497MiB | 98.4s | 2.3653 tokens/s | Input length is 200000 |
50
+
51
+ If your input exceeds 200K, we recommend that you use the vLLM backend with multi gpus for inference to get better
52
+ performance.
53
+
54
+ #### GLM-4V-9B
55
+
56
+ | Dtype | GPU Memory | Prefilling | Decode Speed | Remarks |
57
+ |-------|------------|------------|---------------|----------------------|
58
+ | BF16 | 28 GB | 0.1s | 33.4 tokens/s | Input length is 1000 |
59
+ | BF16 | 33 GB | 0.7s | 39.2 tokens/s | Input length is 8000 |
60
+
61
+ | Dtype | GPU Memory | Prefilling | Decode Speed | Remarks |
62
+ |-------|------------|------------|---------------|----------------------|
63
+ | INT4 | 10 GB | 0.1s | 28.7 tokens/s | Input length is 1000 |
64
+ | INT4 | 15 GB | 0.8s | 24.2 tokens/s | Input length is 8000 |
65
+
66
+ ### Minimum hardware requirements
67
+
68
+ If you want to run the most basic code provided by the official (transformers backend) you need:
69
+
70
+ + Python >= 3.10
71
+ + Memory of at least 32 GB
72
+
73
+ If you want to run all the codes in this folder provided by the official, you also need:
74
+
75
+ + Linux operating system (Debian series is best)
76
+ + GPU device with more than 8GB GPU memory, supporting CUDA or ROCM and supporting `BF16` reasoning (`FP16` precision
77
+ cannot be finetuned, and there is a small probability of problems in infering)
78
+
79
+ Install dependencies
80
+
81
+ ```shell
82
+ pip install -r requirements.txt
83
+ ```
84
+
85
+ ## Basic function calls
86
+
87
+ **Unless otherwise specified, all demos in this folder do not support advanced usage such as Function Call and All Tools
88
+ **
89
+
90
+ ### Use transformers backend code
91
+
92
+ + Use the command line to communicate with the GLM-4-9B model.
93
+
94
+ ```shell
95
+ python trans_cli_demo.py # GLM-4-9B-Chat
96
+ python trans_cli_vision_demo.py # GLM-4V-9B
97
+ ```
98
+
99
+ + Use the Gradio web client to communicate with the GLM-4-9B-Chat model.
100
+
101
+ ```shell
102
+ python trans_web_demo.py
103
+ ```
104
+
105
+ + Use Batch inference.
106
+
107
+ ```shell
108
+ python cli_batch_request_demo.py
109
+ ```
110
+
111
+ ### Use vLLM backend code
112
+
113
+ + Use the command line to communicate with the GLM-4-9B-Chat model.
114
+
115
+ ```shell
116
+ python vllm_cli_demo.py
117
+ ```
118
+
119
+ + Build the server by yourself and use the request format of `OpenAI API` to communicate with the glm-4-9b model. This
120
+ demo supports Function Call and All Tools functions.
121
+
122
+ Start the server:
123
+
124
+ ```shell
125
+ python openai_api_server.py
126
+ ```
127
+
128
+ Client request:
129
+
130
+ ```shell
131
+ python openai_api_request.py
132
+ ```
133
+
134
+ ## Stress test
135
+
136
+ Users can use this code to test the generation speed of the model on the transformers backend on their own devices:
137
+
138
+ ```shell
139
+ python trans_stress_test.py
140
+ ```
THUDM/glm-4-9b-chat/.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
THUDM/glm-4-9b-chat/LICENSE ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The glm-4-9b License
2
+
3
+ 1. 定义
4
+
5
+ “许可方”是指分发其软件的 glm-4-9b 模型团队。
6
+ “软件”是指根据本许可提供的 glm-4-9b 模型参数。
7
+
8
+ 2. 许可授予
9
+
10
+ 根据本许可的条款和条件,许可方特此授予您非排他性、全球性、不可转让、不可再许可、可撤销、免版税的版权许可。
11
+ 本许可允许您免费使用本仓库中的所有开源模型进行学术研究,对于希望将模型用于商业目的的用户,需在[这里](https://open.bigmodel.cn/mla/form)完成登记。经过登记的用户可以免费使用本模型进行商业活动,但必须遵守本许可的所有条款和条件。
12
+ 上述版权声明和本许可声明应包含在本软件的所有副本或重要部分中。
13
+ 如果您分发或提供 THUDM / 智谱AI 关于 glm-4 开源模型的材料(或其任何衍生作品),或使用其中任何材料(包括 glm-4 系列的所有开源模型)的产品或服务,您应:
14
+
15
+ (A) 随任何此类 THUDM / 智谱AI 材料提供本协议的副本;
16
+ (B) 在相关网站、用户界面、博客文章、关于页面或产品文档上突出显示 “Built with glm-4”。
17
+ 如果您使用 THUDM / 智谱AI的 glm-4 开源模型的材料来创建、训练、微调或以其他方式改进已分发或可用的 AI 模型,您还应在任何此类 AI 模型名称的开头添加 “glm-4”。
18
+
19
+ 3. 限制
20
+
21
+ 您不得出于任何军事或非法目的使用、复制、修改、合并、发布、分发、复制或创建本软件的全部或部分衍生作品。
22
+ 您不得利用本软件从事任何危害国家安全和国家统一,危害社会公共利益及公序良俗,侵犯他人商业秘密、知识产权、名誉权、肖像权、财产权等权益的行为。
23
+ 您在使用中应遵循使用地所适用的法律法规政策、道德规范等要求。
24
+
25
+ 4. 免责声明
26
+
27
+ 本软件“按原样”提供,不提供任何明示或暗示的保证,包括但不限于对适销性、特定用途的适用性和非侵权性的保证。
28
+ 在任何情况下,作者或版权持有人均不对任何索赔、损害或其他责任负责,无论是在合同诉讼、侵权行为还是其他方面,由软件或软件的使用或其他交易引起、由软件引起或与之相关
29
+ 软件。
30
+
31
+ 5. 责任限制
32
+
33
+ 除适用法律禁止的范围外,在任何情况下且根据任何法律理论,无论是基于侵权行为、疏忽、合同、责任或其他原因,任何许可方均不对您承担任何直接、间接、特殊、偶然、示范性、
34
+ 或间接损害,或任何其他商业损失,即使许可人已被告知此类损害的可能性。
35
+
36
+ 6. 争议解决
37
+
38
+ 本许可受中华人民共和国法律管辖并按其解释。 因本许可引起的或与本许可有关的任何争议应提交北京市海淀区人民法院。
39
+ 请注意,许可证可能会更新到更全面的版本。 有关许可和版权的任何问题,请通过 [email protected] 与我们联系。
40
+
41
+ 1. Definitions
42
+
43
+ “Licensor” means the glm-4-9b Model Team that distributes its Software.
44
+ “Software” means the glm-4-9b model parameters made available under this license.
45
+
46
+ 2. License
47
+
48
+ Under the terms and conditions of this license, the Licensor hereby grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty-free copyright license.
49
+ This license allows you to use all open source models in this repository for free for academic research. For users who wish to use the models for commercial purposes, please do so [here](https://open.bigmodel.cn/mla/form)
50
+ Complete registration. Registered users are free to use this model for commercial activities, but must comply with all terms and conditions of this license.
51
+ The copyright notice and this license notice shall be included in all copies or substantial portions of the Software.
52
+ If you distribute or provide THUDM / Zhipu AI materials on the glm-4 open source model (or any derivative works thereof), or products or services that use any materials therein (including all open source models of the glm-4 series), you should:
53
+
54
+ (A) Provide a copy of this Agreement with any such THUDM/Zhipu AI Materials;
55
+ (B) Prominently display "Built with glm-4" on the relevant website, user interface, blog post, related page or product documentation.
56
+ If you use materials from THUDM/Zhipu AI's glm-4 model to create, train, operate, or otherwise improve assigned or available AI models, you should also add "glm-4" to the beginning of any such AI model name.
57
+
58
+ 3. Restrictions
59
+
60
+ You are not allowed to use, copy, modify, merge, publish, distribute, copy or create all or part of the derivative works of this software for any military or illegal purposes.
61
+ You are not allowed to use this software to engage in any behavior that endangers national security and unity, endangers social public interests and public order, infringes on the rights and interests of others such as trade secrets, intellectual property rights, reputation rights, portrait rights, and property rights.
62
+ You should comply with the applicable laws, regulations, policies, ethical standards, and other requirements in the place of use during use.
63
+
64
+ 4. Disclaimer
65
+
66
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
67
+ WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
68
+ COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
69
+ OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
70
+
71
+ 5. Limitation of Liability
72
+
73
+ EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER BASED IN TORT,
74
+ NEGLIGENCE, CONTRACT, LIABILITY, OR OTHERWISE WILL ANY LICENSOR BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL,
75
+ INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER COMMERCIAL LOSSES, EVEN IF THE LICENSOR HAS BEEN ADVISED
76
+ OF THE POSSIBILITY OF SUCH DAMAGES.
77
+
78
+ 6. Dispute Resolution
79
+
80
+ This license shall be governed and construed in accordance with the laws of People’s Republic of China. Any dispute
81
+ arising from or in connection with this License shall be submitted to Haidian District People's Court in Beijing.
82
+
83
+ Note that the license is subject to update to a more comprehensive version. For any questions related to the license and
84
+ copyright, please contact us at [email protected].
THUDM/glm-4-9b-chat/README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: glm-4
4
+ license_link: https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/LICENSE
5
+ language:
6
+ - zh
7
+ - en
8
+ tags:
9
+ - glm
10
+ - chatglm
11
+ - thudm
12
+ inference: false
13
+ pipeline_tag: text-generation
14
+ ---
15
+
16
+ # GLM-4-9B-Chat
17
+
18
+ Read this in [English](README_en.md)
19
+
20
+ GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 在语义、数学、推理、代码和知识等多方面的数据集测评中,
21
+ **GLM-4-9B** 及其人类偏好对齐的版本 **GLM-4-9B-Chat** 均表现出超越 Llama-3-8B 的卓越性能。除了能进行多轮对话,GLM-4-9B-Chat
22
+ 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。本代模型增加了多语言支持,支持包括日语,韩语,德语在内的
23
+ 26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的 **GLM-4-9B-Chat-1M** 模型和基于 GLM-4-9B 的多模态模型
24
+ GLM-4V-9B。**GLM-4V-9B** 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B
25
+ 表现出超越 GPT-4-turbo-2024-04-09、Gemini
26
+ 1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。
27
+
28
+ ## 评测结果
29
+
30
+ 我们在一些经典任务上对 GLM-4-9B-Chat 模型进行了评测,并得到了如下的结果:
31
+
32
+ | Model | AlignBench-v2 | MT-Bench | IFEval | MMLU | C-Eval | GSM8K | MATH | HumanEval | NCB |
33
+ |:--------------------|:-------------:|:--------:|:------:|:----:|:------:|:-----:|:----:|:---------:|:----:|
34
+ | Llama-3-8B-Instruct | 5.12 | 8.00 | 68.58 | 68.4 | 51.3 | 79.6 | 30.0 | 62.2 | 24.7 |
35
+ | ChatGLM3-6B | 3.97 | 5.50 | 28.1 | 66.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 |
36
+ | GLM-4-9B-Chat | 6.61 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 |
37
+
38
+ ### 长文本
39
+
40
+ 在 1M 的上下文长度下进行[大海捞针实验](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py),结果如下:
41
+
42
+ ![needle](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/eval_needle.jpeg)
43
+
44
+ 在 LongBench-Chat 上对长文本能力进行了进一步评测,结果如下:
45
+
46
+ ![leaderboard](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/longbench.png)
47
+
48
+ ### 多语言能力
49
+
50
+ 在六个多语言数据集上对 GLM-4-9B-Chat 和 Llama-3-8B-Instruct 进行了测试,测试结果及数据集对应选取语言如下表
51
+
52
+ | Dataset | Llama-3-8B-Instruct | GLM-4-9B-Chat | Languages |
53
+ |:------------|:-------------------:|:-------------:|:----------------------------------------------------------------------------------------------:|
54
+ | M-MMLU | 49.6 | 56.6 | all |
55
+ | FLORES | 25.0 | 28.8 | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no |
56
+ | MGSM | 54.0 | 65.3 | zh, en, bn, de, es, fr, ja, ru, sw, te, th |
57
+ | XWinograd | 61.7 | 73.1 | zh, en, fr, jp, ru, pt |
58
+ | XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te |
59
+ | XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi |
60
+
61
+ ### 工具调用能力
62
+
63
+ 我们在 [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard)
64
+ 上进行了测试并得到了以下结果:
65
+
66
+ | Model | Overall Acc. | AST Summary | Exec Summary | Relevance |
67
+ |:-----------------------|:------------:|:-----------:|:------------:|:---------:|
68
+ | Llama-3-8B-Instruct | 58.88 | 59.25 | 70.01 | 45.83 |
69
+ | gpt-4-turbo-2024-04-09 | 81.24 | 82.14 | 78.61 | 88.75 |
70
+ | ChatGLM3-6B | 57.88 | 62.18 | 69.78 | 5.42 |
71
+ | GLM-4-9B-Chat | 81.00 | 80.26 | 84.40 | 87.92 |
72
+
73
+ **本仓库是 GLM-4-9B-Chat 的模型仓库,支持`128K`上下文长度。**
74
+
75
+ ## 运行模型
76
+
77
+ 使用 transformers 后端进行推理:
78
+
79
+ ```python
80
+ import torch
81
+ from transformers import AutoModelForCausalLM, AutoTokenizer
82
+
83
+ device = "cuda"
84
+
85
+ tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
86
+
87
+ query = "你好"
88
+
89
+ inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
90
+ add_generation_prompt=True,
91
+ tokenize=True,
92
+ return_tensors="pt",
93
+ return_dict=True
94
+ )
95
+
96
+ inputs = inputs.to(device)
97
+ model = AutoModelForCausalLM.from_pretrained(
98
+ "THUDM/glm-4-9b-chat",
99
+ torch_dtype=torch.bfloat16,
100
+ low_cpu_mem_usage=True,
101
+ trust_remote_code=True
102
+ ).to(device).eval()
103
+
104
+ gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
105
+ with torch.no_grad():
106
+ outputs = model.generate(**inputs, **gen_kwargs)
107
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
108
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
109
+ ```
110
+
111
+ 使用 vLLM后端进行推理:
112
+
113
+ ```python
114
+ from transformers import AutoTokenizer
115
+ from vllm import LLM, SamplingParams
116
+
117
+ # GLM-4-9B-Chat-1M
118
+ # max_model_len, tp_size = 1048576, 4
119
+
120
+ # GLM-4-9B-Chat
121
+ # 如果遇见 OOM 现象,建议减少max_model_len,或者增加tp_size
122
+ max_model_len, tp_size = 131072, 1
123
+ model_name = "THUDM/glm-4-9b-chat"
124
+ prompt = [{"role": "user", "content": "你好"}]
125
+
126
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
127
+ llm = LLM(
128
+ model=model_name,
129
+ tensor_parallel_size=tp_size,
130
+ max_model_len=max_model_len,
131
+ trust_remote_code=True,
132
+ enforce_eager=True,
133
+ # GLM-4-9B-Chat-1M 如果遇见 OOM 现象,建议开启下述参数
134
+ # enable_chunked_prefill=True,
135
+ # max_num_batched_tokens=8192
136
+ )
137
+ stop_token_ids = [151329, 151336, 151338]
138
+ sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)
139
+
140
+ inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
141
+ outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)
142
+
143
+ print(outputs[0].outputs[0].text)
144
+ ```
145
+
146
+ ## 协议
147
+
148
+ GLM-4 模型的权重的使用则需要遵循 [LICENSE](LICENSE)。
149
+
150
+ ## 引用
151
+
152
+ 如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
153
+
154
+ ```
155
+ @article{zeng2022glm,
156
+ title={Glm-130b: An open bilingual pre-trained model},
157
+ author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
158
+ journal={arXiv preprint arXiv:2210.02414},
159
+ year={2022}
160
+ }
161
+ ```
162
+
163
+ ```
164
+ @inproceedings{du2022glm,
165
+ title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
166
+ author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
167
+ booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
168
+ pages={320--335},
169
+ year={2022}
170
+ }
171
+ ```
THUDM/glm-4-9b-chat/README_en.md ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GLM-4-9B-Chat
2
+
3
+ ## Model Introduction
4
+
5
+ GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu
6
+ AI. In the evaluation of data sets in semantics, mathematics, reasoning, code, and knowledge, **GLM-4-9B**
7
+ and its human preference-aligned version **GLM-4-9B-Chat** have shown superior performance beyond Llama-3-8B. In
8
+ addition to multi-round conversations, GLM-4-9B-Chat also has advanced features such as web browsing, code execution,
9
+ custom tool calls (Function Call), and long text
10
+ reasoning (supporting up to 128K context). This generation of models has added multi-language support, supporting 26
11
+ languages including Japanese, Korean, and German. We have also launched the **GLM-4-9B-Chat-1M** model that supports 1M
12
+ context length (about 2 million Chinese characters) and the multimodal model GLM-4V-9B based on GLM-4-9B.
13
+ **GLM-4V-9B** possesses dialogue capabilities in both Chinese and English at a high resolution of 1120*1120.
14
+ In various multimodal evaluations, including comprehensive abilities in Chinese and English, perception & reasoning,
15
+ text recognition, and chart understanding, GLM-4V-9B demonstrates superior performance compared to
16
+ GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.
17
+
18
+ ## Benchmark
19
+
20
+ We evaluated the GLM-4-9B-Chat model on some classic tasks and obtained the following results:
21
+
22
+ | Model | AlignBench-v2 | MT-Bench | IFEval | MMLU | C-Eval | GSM8K | MATH | HumanEval | NCB |
23
+ |:--------------------|:-------------:|:--------:|:------:|:----:|:------:|:-----:|:----:|:---------:|:----:|
24
+ | Llama-3-8B-Instruct | 5.12 | 8.00 | 68.58 | 68.4 | 51.3 | 79.6 | 30.0 | 62.2 | 24.7 |
25
+ | ChatGLM3-6B | 3.97 | 5.50 | 28.1 | 66.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 |
26
+ | GLM-4-9B-Chat | 6.61 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 |
27
+
28
+ ### Long Context
29
+
30
+ The [eval_needle experiment](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py) was conducted with
31
+ a context length of 1M, and the results are as follows:
32
+
33
+ ![needle](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/eval_needle.jpeg)
34
+
35
+ The long text capability was further evaluated on LongBench, and the results are as follows:
36
+
37
+ ![leaderboard](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/longbench.png)
38
+
39
+ ### Multi Language
40
+
41
+ The tests for GLM-4-9B-Chat and Llama-3-8B-Instruct are conducted on six multilingual datasets. The test results and the
42
+ corresponding languages selected for each dataset are shown in the table below:
43
+
44
+ | Dataset | Llama-3-8B-Instruct | GLM-4-9B-Chat | Languages |
45
+ |:------------|:-------------------:|:-------------:|:----------------------------------------------------------------------------------------------:|
46
+ | M-MMLU | 49.6 | 56.6 | all |
47
+ | FLORES | 25.0 | 28.8 | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no |
48
+ | MGSM | 54.0 | 65.3 | zh, en, bn, de, es, fr, ja, ru, sw, te, th |
49
+ | XWinograd | 61.7 | 73.1 | zh, en, fr, jp, ru, pt |
50
+ | XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te |
51
+ | XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi |
52
+
53
+ ### Function Call
54
+
55
+ Tested
56
+ on [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard).
57
+
58
+ | Model | Overall Acc. | AST Summary | Exec Summary | Relevance |
59
+ |:-----------------------|:------------:|:-----------:|:------------:|:---------:|
60
+ | Llama-3-8B-Instruct | 58.88 | 59.25 | 70.01 | 45.83 |
61
+ | gpt-4-turbo-2024-04-09 | 81.24 | 82.14 | 78.61 | 88.75 |
62
+ | ChatGLM3-6B | 57.88 | 62.18 | 69.78 | 5.42 |
63
+ | GLM-4-9B-Chat | 81.00 | 80.26 | 84.40 | 87.92 |
64
+
65
+ **This repository is the model repository of GLM-4-9B-Chat, supporting `128K` context length.**
66
+
67
+ ## Quick call
68
+
69
+ **For hardware configuration and system requirements, please check [here](basic_demo/README_en.md).**
70
+
71
+ ### Use the following method to quickly call the GLM-4-9B-Chat language model
72
+
73
+ Use the transformers backend for inference:
74
+
75
+ ```python
76
+ import torch
77
+ from transformers import AutoModelForCausalLM, AutoTokenizer
78
+
79
+ device = "cuda"
80
+
81
+ tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
82
+
83
+ query = "Hello"
84
+
85
+ inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
86
+ add_generation_prompt=True,
87
+ tokenize=True,
88
+ return_tensors="pt",
89
+ return_dict=True
90
+ )
91
+
92
+ inputs = inputs.to(device)
93
+ model = AutoModelForCausalLM.from_pretrained(
94
+ "THUDM/glm-4-9b-chat",
95
+ torch_dtype=torch.bfloat16,
96
+ low_cpu_mem_usage=True,
97
+ trust_remote_code=True
98
+ ).to(device).eval()
99
+
100
+ gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
101
+ with torch.no_grad():
102
+ outputs = model.generate(**inputs, **gen_kwargs)
103
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
104
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
105
+ ```
106
+
107
+ Use the vLLM backend for inference:
108
+
109
+ ```python
110
+ from transformers import AutoTokenizer
111
+ from vllm import LLM, SamplingParams
112
+
113
+ # GLM-4-9B-Chat-1M
114
+ # max_model_len, tp_size = 1048576, 4
115
+
116
+ # GLM-4-9B-Chat
117
+ # If you encounter OOM, it is recommended to reduce max_model_len or increase tp_size
118
+ max_model_len, tp_size = 131072, 1
119
+ model_name = "THUDM/glm-4-9b-chat"
120
+ prompt = [{"role": "user", "content": "hello"}]
121
+
122
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
123
+ llm = LLM(
124
+ model=model_name,
125
+ tensor_parallel_size=tp_size,
126
+ max_model_len=max_model_len,
127
+ trust_remote_code=True,
128
+ enforce_eager=True,
129
+ # GLM-4-9B-Chat-1M If you encounter OOM phenomenon, it is recommended to enable the following parameters
130
+ # enable_chunked_prefill=True,
131
+ # max_num_batched_tokens=8192
132
+ )
133
+ stop_token_ids = [151329, 151336, 151338]
134
+ sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)
135
+
136
+ inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
137
+ outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)
138
+
139
+ print(outputs[0].outputs[0].text)
140
+ ```
141
+
142
+ ## LICENSE
143
+
144
+ The weights of the GLM-4 model are available under the terms of [LICENSE](LICENSE).
145
+
146
+ ## Citations
147
+
148
+ If you find our work useful, please consider citing the following paper.
149
+
150
+ ```
151
+ @article{zeng2022glm,
152
+ title={Glm-130b: An open bilingual pre-trained model},
153
+ author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
154
+ journal={arXiv preprint arXiv:2210.02414},
155
+ year={2022}
156
+ }
157
+ ```
158
+
159
+ ```
160
+ @inproceedings{du2022glm,
161
+ title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
162
+ author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
163
+ booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
164
+ pages={320--335},
165
+ year={2022}
166
+ }
167
+ ```
THUDM/glm-4-9b-chat/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "THUDM/glm4-9b-chat",
3
+ "model_type": "chatglm",
4
+ "architectures": [
5
+ "ChatGLMModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
9
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
10
+ "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
11
+ "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
12
+ "AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
13
+ },
14
+ "add_bias_linear": false,
15
+ "add_qkv_bias": true,
16
+ "apply_query_key_layer_scaling": true,
17
+ "apply_residual_connection_post_layernorm": false,
18
+ "attention_dropout": 0.0,
19
+ "attention_softmax_in_fp32": true,
20
+ "bias_dropout_fusion": true,
21
+ "ffn_hidden_size": 13696,
22
+ "fp32_residual_connection": false,
23
+ "hidden_dropout": 0.0,
24
+ "hidden_size": 4096,
25
+ "kv_channels": 128,
26
+ "layernorm_epsilon": 1.5625e-07,
27
+ "multi_query_attention": true,
28
+ "multi_query_group_num": 2,
29
+ "num_attention_heads": 32,
30
+ "num_hidden_layers": 40,
31
+ "num_layers": 40,
32
+ "rope_ratio": 500,
33
+ "original_rope": true,
34
+ "padded_vocab_size": 151552,
35
+ "post_layer_norm": true,
36
+ "rmsnorm": true,
37
+ "seq_length": 131072,
38
+ "use_cache": true,
39
+ "torch_dtype": "bfloat16",
40
+ "transformers_version": "4.30.2",
41
+ "tie_word_embeddings": false,
42
+ "eos_token_id": [151329, 151336, 151338],
43
+ "pad_token_id": 151329
44
+ }
45
+
THUDM/glm-4-9b-chat/configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework":"Pytorch","task":"nli"}
THUDM/glm-4-9b-chat/configuration_chatglm.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ChatGLMConfig(PretrainedConfig):
5
+ model_type = "chatglm"
6
+
7
+ def __init__(
8
+ self,
9
+ num_layers=28,
10
+ padded_vocab_size=65024,
11
+ hidden_size=4096,
12
+ ffn_hidden_size=13696,
13
+ kv_channels=128,
14
+ num_attention_heads=32,
15
+ seq_length=2048,
16
+ hidden_dropout=0.0,
17
+ classifier_dropout=None,
18
+ attention_dropout=0.0,
19
+ layernorm_epsilon=1e-5,
20
+ rmsnorm=True,
21
+ apply_residual_connection_post_layernorm=False,
22
+ post_layer_norm=True,
23
+ add_bias_linear=False,
24
+ add_qkv_bias=False,
25
+ bias_dropout_fusion=True,
26
+ multi_query_attention=False,
27
+ multi_query_group_num=1,
28
+ rope_ratio=1,
29
+ apply_query_key_layer_scaling=True,
30
+ attention_softmax_in_fp32=True,
31
+ fp32_residual_connection=False,
32
+ **kwargs
33
+ ):
34
+ self.num_layers = num_layers
35
+ self.vocab_size = padded_vocab_size
36
+ self.padded_vocab_size = padded_vocab_size
37
+ self.hidden_size = hidden_size
38
+ self.ffn_hidden_size = ffn_hidden_size
39
+ self.kv_channels = kv_channels
40
+ self.num_attention_heads = num_attention_heads
41
+ self.seq_length = seq_length
42
+ self.hidden_dropout = hidden_dropout
43
+ self.classifier_dropout = classifier_dropout
44
+ self.attention_dropout = attention_dropout
45
+ self.layernorm_epsilon = layernorm_epsilon
46
+ self.rmsnorm = rmsnorm
47
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
48
+ self.post_layer_norm = post_layer_norm
49
+ self.add_bias_linear = add_bias_linear
50
+ self.add_qkv_bias = add_qkv_bias
51
+ self.bias_dropout_fusion = bias_dropout_fusion
52
+ self.multi_query_attention = multi_query_attention
53
+ self.multi_query_group_num = multi_query_group_num
54
+ self.rope_ratio = rope_ratio
55
+ self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
56
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
57
+ self.fp32_residual_connection = fp32_residual_connection
58
+ super().__init__(**kwargs)
THUDM/glm-4-9b-chat/generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token_id": [
3
+ 151329,
4
+ 151336,
5
+ 151338
6
+ ],
7
+ "pad_token_id": 151329,
8
+ "do_sample": true,
9
+ "temperature": 0.8,
10
+ "max_length": 128000,
11
+ "top_p": 0.8,
12
+ "transformers_version": "4.38.2"
13
+ }
THUDM/glm-4-9b-chat/model-00001-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0040c9cf0d4d0553c4156dbd890437788ba43237037e1f9c4a3c1a3ddfad1f6
3
+ size 1945161760
THUDM/glm-4-9b-chat/model-00002-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9163d47c6e1073d68fb03f933122e2ece0b30ce43b5309da15b783e93a34ad4
3
+ size 1815217640
THUDM/glm-4-9b-chat/model-00003-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28031e88b92dc942b47ac4dd0e73b2ce749fc87fc692a3ed72e1bdec74996968
3
+ size 1968291912
THUDM/glm-4-9b-chat/model-00004-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:708ef7836140bd1822253cae05f5891ea02cedbe4c8ef8b096f712cdfdc9b01e
3
+ size 1927406992
THUDM/glm-4-9b-chat/model-00005-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c390a67a568f7f3d440a3c3357b4d08c0539435ea6d7a36baa4a4f0274740ae5
3
+ size 1815217672
THUDM/glm-4-9b-chat/model-00006-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32e0d285c514e750e78ae42630a498ec526db4caba993fc2ea7226069410d1e7
3
+ size 1968291952
THUDM/glm-4-9b-chat/model-00007-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:165687aa1873e91d13bf404ff91a4d702f79c5301f43c2645eabb45f17808cb2
3
+ size 1927406992
THUDM/glm-4-9b-chat/model-00008-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5388bffb210043271cded04b28a5fae2eeeb31b64b695b62638d9b856e322033
3
+ size 1815217672
THUDM/glm-4-9b-chat/model-00009-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:449241babb7ce69a835c121efa26d9fd8823554ed0c8acd2af6666f482dd6809
3
+ size 1968291952
THUDM/glm-4-9b-chat/model-00010-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2544b92fc4f1cb511b31a6b06021a3136de0705436db6731d30ec5b8a2be80f6
3
+ size 1649436712
THUDM/glm-4-9b-chat/model.safetensors.index.json ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 18799902784
4
+ },
5
+ "weight_map": {
6
+ "transformer.embedding.word_embeddings.weight": "model-00001-of-00010.safetensors",
7
+ "transformer.encoder.final_layernorm.weight": "model-00010-of-00010.safetensors",
8
+ "transformer.encoder.layers.0.input_layernorm.weight": "model-00001-of-00010.safetensors",
9
+ "transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00010.safetensors",
10
+ "transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00010.safetensors",
11
+ "transformer.encoder.layers.0.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
12
+ "transformer.encoder.layers.0.self_attention.dense.weight": "model-00001-of-00010.safetensors",
13
+ "transformer.encoder.layers.0.self_attention.query_key_value.bias": "model-00001-of-00010.safetensors",
14
+ "transformer.encoder.layers.0.self_attention.query_key_value.weight": "model-00001-of-00010.safetensors",
15
+ "transformer.encoder.layers.1.input_layernorm.weight": "model-00001-of-00010.safetensors",
16
+ "transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "model-00002-of-00010.safetensors",
17
+ "transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00010.safetensors",
18
+ "transformer.encoder.layers.1.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
19
+ "transformer.encoder.layers.1.self_attention.dense.weight": "model-00001-of-00010.safetensors",
20
+ "transformer.encoder.layers.1.self_attention.query_key_value.bias": "model-00001-of-00010.safetensors",
21
+ "transformer.encoder.layers.1.self_attention.query_key_value.weight": "model-00001-of-00010.safetensors",
22
+ "transformer.encoder.layers.10.input_layernorm.weight": "model-00003-of-00010.safetensors",
23
+ "transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "model-00003-of-00010.safetensors",
24
+ "transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "model-00003-of-00010.safetensors",
25
+ "transformer.encoder.layers.10.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
26
+ "transformer.encoder.layers.10.self_attention.dense.weight": "model-00003-of-00010.safetensors",
27
+ "transformer.encoder.layers.10.self_attention.query_key_value.bias": "model-00003-of-00010.safetensors",
28
+ "transformer.encoder.layers.10.self_attention.query_key_value.weight": "model-00003-of-00010.safetensors",
29
+ "transformer.encoder.layers.11.input_layernorm.weight": "model-00003-of-00010.safetensors",
30
+ "transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "model-00004-of-00010.safetensors",
31
+ "transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "model-00004-of-00010.safetensors",
32
+ "transformer.encoder.layers.11.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
33
+ "transformer.encoder.layers.11.self_attention.dense.weight": "model-00004-of-00010.safetensors",
34
+ "transformer.encoder.layers.11.self_attention.query_key_value.bias": "model-00004-of-00010.safetensors",
35
+ "transformer.encoder.layers.11.self_attention.query_key_value.weight": "model-00004-of-00010.safetensors",
36
+ "transformer.encoder.layers.12.input_layernorm.weight": "model-00004-of-00010.safetensors",
37
+ "transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "model-00004-of-00010.safetensors",
38
+ "transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "model-00004-of-00010.safetensors",
39
+ "transformer.encoder.layers.12.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
40
+ "transformer.encoder.layers.12.self_attention.dense.weight": "model-00004-of-00010.safetensors",
41
+ "transformer.encoder.layers.12.self_attention.query_key_value.bias": "model-00004-of-00010.safetensors",
42
+ "transformer.encoder.layers.12.self_attention.query_key_value.weight": "model-00004-of-00010.safetensors",
43
+ "transformer.encoder.layers.13.input_layernorm.weight": "model-00004-of-00010.safetensors",
44
+ "transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "model-00004-of-00010.safetensors",
45
+ "transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "model-00004-of-00010.safetensors",
46
+ "transformer.encoder.layers.13.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
47
+ "transformer.encoder.layers.13.self_attention.dense.weight": "model-00004-of-00010.safetensors",
48
+ "transformer.encoder.layers.13.self_attention.query_key_value.bias": "model-00004-of-00010.safetensors",
49
+ "transformer.encoder.layers.13.self_attention.query_key_value.weight": "model-00004-of-00010.safetensors",
50
+ "transformer.encoder.layers.14.input_layernorm.weight": "model-00004-of-00010.safetensors",
51
+ "transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "model-00004-of-00010.safetensors",
52
+ "transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "model-00004-of-00010.safetensors",
53
+ "transformer.encoder.layers.14.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
54
+ "transformer.encoder.layers.14.self_attention.dense.weight": "model-00004-of-00010.safetensors",
55
+ "transformer.encoder.layers.14.self_attention.query_key_value.bias": "model-00004-of-00010.safetensors",
56
+ "transformer.encoder.layers.14.self_attention.query_key_value.weight": "model-00004-of-00010.safetensors",
57
+ "transformer.encoder.layers.15.input_layernorm.weight": "model-00004-of-00010.safetensors",
58
+ "transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "model-00005-of-00010.safetensors",
59
+ "transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "model-00004-of-00010.safetensors",
60
+ "transformer.encoder.layers.15.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
61
+ "transformer.encoder.layers.15.self_attention.dense.weight": "model-00004-of-00010.safetensors",
62
+ "transformer.encoder.layers.15.self_attention.query_key_value.bias": "model-00004-of-00010.safetensors",
63
+ "transformer.encoder.layers.15.self_attention.query_key_value.weight": "model-00004-of-00010.safetensors",
64
+ "transformer.encoder.layers.16.input_layernorm.weight": "model-00005-of-00010.safetensors",
65
+ "transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "model-00005-of-00010.safetensors",
66
+ "transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "model-00005-of-00010.safetensors",
67
+ "transformer.encoder.layers.16.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
68
+ "transformer.encoder.layers.16.self_attention.dense.weight": "model-00005-of-00010.safetensors",
69
+ "transformer.encoder.layers.16.self_attention.query_key_value.bias": "model-00005-of-00010.safetensors",
70
+ "transformer.encoder.layers.16.self_attention.query_key_value.weight": "model-00005-of-00010.safetensors",
71
+ "transformer.encoder.layers.17.input_layernorm.weight": "model-00005-of-00010.safetensors",
72
+ "transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "model-00005-of-00010.safetensors",
73
+ "transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "model-00005-of-00010.safetensors",
74
+ "transformer.encoder.layers.17.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
75
+ "transformer.encoder.layers.17.self_attention.dense.weight": "model-00005-of-00010.safetensors",
76
+ "transformer.encoder.layers.17.self_attention.query_key_value.bias": "model-00005-of-00010.safetensors",
77
+ "transformer.encoder.layers.17.self_attention.query_key_value.weight": "model-00005-of-00010.safetensors",
78
+ "transformer.encoder.layers.18.input_layernorm.weight": "model-00005-of-00010.safetensors",
79
+ "transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "model-00005-of-00010.safetensors",
80
+ "transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "model-00005-of-00010.safetensors",
81
+ "transformer.encoder.layers.18.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
82
+ "transformer.encoder.layers.18.self_attention.dense.weight": "model-00005-of-00010.safetensors",
83
+ "transformer.encoder.layers.18.self_attention.query_key_value.bias": "model-00005-of-00010.safetensors",
84
+ "transformer.encoder.layers.18.self_attention.query_key_value.weight": "model-00005-of-00010.safetensors",
85
+ "transformer.encoder.layers.19.input_layernorm.weight": "model-00005-of-00010.safetensors",
86
+ "transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "model-00005-of-00010.safetensors",
87
+ "transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "model-00005-of-00010.safetensors",
88
+ "transformer.encoder.layers.19.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
89
+ "transformer.encoder.layers.19.self_attention.dense.weight": "model-00005-of-00010.safetensors",
90
+ "transformer.encoder.layers.19.self_attention.query_key_value.bias": "model-00005-of-00010.safetensors",
91
+ "transformer.encoder.layers.19.self_attention.query_key_value.weight": "model-00005-of-00010.safetensors",
92
+ "transformer.encoder.layers.2.input_layernorm.weight": "model-00002-of-00010.safetensors",
93
+ "transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "model-00002-of-00010.safetensors",
94
+ "transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "model-00002-of-00010.safetensors",
95
+ "transformer.encoder.layers.2.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
96
+ "transformer.encoder.layers.2.self_attention.dense.weight": "model-00002-of-00010.safetensors",
97
+ "transformer.encoder.layers.2.self_attention.query_key_value.bias": "model-00002-of-00010.safetensors",
98
+ "transformer.encoder.layers.2.self_attention.query_key_value.weight": "model-00002-of-00010.safetensors",
99
+ "transformer.encoder.layers.20.input_layernorm.weight": "model-00005-of-00010.safetensors",
100
+ "transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "model-00006-of-00010.safetensors",
101
+ "transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "model-00006-of-00010.safetensors",
102
+ "transformer.encoder.layers.20.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
103
+ "transformer.encoder.layers.20.self_attention.dense.weight": "model-00005-of-00010.safetensors",
104
+ "transformer.encoder.layers.20.self_attention.query_key_value.bias": "model-00005-of-00010.safetensors",
105
+ "transformer.encoder.layers.20.self_attention.query_key_value.weight": "model-00005-of-00010.safetensors",
106
+ "transformer.encoder.layers.21.input_layernorm.weight": "model-00006-of-00010.safetensors",
107
+ "transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "model-00006-of-00010.safetensors",
108
+ "transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "model-00006-of-00010.safetensors",
109
+ "transformer.encoder.layers.21.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
110
+ "transformer.encoder.layers.21.self_attention.dense.weight": "model-00006-of-00010.safetensors",
111
+ "transformer.encoder.layers.21.self_attention.query_key_value.bias": "model-00006-of-00010.safetensors",
112
+ "transformer.encoder.layers.21.self_attention.query_key_value.weight": "model-00006-of-00010.safetensors",
113
+ "transformer.encoder.layers.22.input_layernorm.weight": "model-00006-of-00010.safetensors",
114
+ "transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "model-00006-of-00010.safetensors",
115
+ "transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "model-00006-of-00010.safetensors",
116
+ "transformer.encoder.layers.22.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
117
+ "transformer.encoder.layers.22.self_attention.dense.weight": "model-00006-of-00010.safetensors",
118
+ "transformer.encoder.layers.22.self_attention.query_key_value.bias": "model-00006-of-00010.safetensors",
119
+ "transformer.encoder.layers.22.self_attention.query_key_value.weight": "model-00006-of-00010.safetensors",
120
+ "transformer.encoder.layers.23.input_layernorm.weight": "model-00006-of-00010.safetensors",
121
+ "transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "model-00006-of-00010.safetensors",
122
+ "transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "model-00006-of-00010.safetensors",
123
+ "transformer.encoder.layers.23.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
124
+ "transformer.encoder.layers.23.self_attention.dense.weight": "model-00006-of-00010.safetensors",
125
+ "transformer.encoder.layers.23.self_attention.query_key_value.bias": "model-00006-of-00010.safetensors",
126
+ "transformer.encoder.layers.23.self_attention.query_key_value.weight": "model-00006-of-00010.safetensors",
127
+ "transformer.encoder.layers.24.input_layernorm.weight": "model-00006-of-00010.safetensors",
128
+ "transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "model-00006-of-00010.safetensors",
129
+ "transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "model-00006-of-00010.safetensors",
130
+ "transformer.encoder.layers.24.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
131
+ "transformer.encoder.layers.24.self_attention.dense.weight": "model-00006-of-00010.safetensors",
132
+ "transformer.encoder.layers.24.self_attention.query_key_value.bias": "model-00006-of-00010.safetensors",
133
+ "transformer.encoder.layers.24.self_attention.query_key_value.weight": "model-00006-of-00010.safetensors",
134
+ "transformer.encoder.layers.25.input_layernorm.weight": "model-00006-of-00010.safetensors",
135
+ "transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "model-00007-of-00010.safetensors",
136
+ "transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "model-00007-of-00010.safetensors",
137
+ "transformer.encoder.layers.25.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
138
+ "transformer.encoder.layers.25.self_attention.dense.weight": "model-00007-of-00010.safetensors",
139
+ "transformer.encoder.layers.25.self_attention.query_key_value.bias": "model-00007-of-00010.safetensors",
140
+ "transformer.encoder.layers.25.self_attention.query_key_value.weight": "model-00007-of-00010.safetensors",
141
+ "transformer.encoder.layers.26.input_layernorm.weight": "model-00007-of-00010.safetensors",
142
+ "transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "model-00007-of-00010.safetensors",
143
+ "transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "model-00007-of-00010.safetensors",
144
+ "transformer.encoder.layers.26.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
145
+ "transformer.encoder.layers.26.self_attention.dense.weight": "model-00007-of-00010.safetensors",
146
+ "transformer.encoder.layers.26.self_attention.query_key_value.bias": "model-00007-of-00010.safetensors",
147
+ "transformer.encoder.layers.26.self_attention.query_key_value.weight": "model-00007-of-00010.safetensors",
148
+ "transformer.encoder.layers.27.input_layernorm.weight": "model-00007-of-00010.safetensors",
149
+ "transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "model-00007-of-00010.safetensors",
150
+ "transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "model-00007-of-00010.safetensors",
151
+ "transformer.encoder.layers.27.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
152
+ "transformer.encoder.layers.27.self_attention.dense.weight": "model-00007-of-00010.safetensors",
153
+ "transformer.encoder.layers.27.self_attention.query_key_value.bias": "model-00007-of-00010.safetensors",
154
+ "transformer.encoder.layers.27.self_attention.query_key_value.weight": "model-00007-of-00010.safetensors",
155
+ "transformer.encoder.layers.28.input_layernorm.weight": "model-00007-of-00010.safetensors",
156
+ "transformer.encoder.layers.28.mlp.dense_4h_to_h.weight": "model-00007-of-00010.safetensors",
157
+ "transformer.encoder.layers.28.mlp.dense_h_to_4h.weight": "model-00007-of-00010.safetensors",
158
+ "transformer.encoder.layers.28.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
159
+ "transformer.encoder.layers.28.self_attention.dense.weight": "model-00007-of-00010.safetensors",
160
+ "transformer.encoder.layers.28.self_attention.query_key_value.bias": "model-00007-of-00010.safetensors",
161
+ "transformer.encoder.layers.28.self_attention.query_key_value.weight": "model-00007-of-00010.safetensors",
162
+ "transformer.encoder.layers.29.input_layernorm.weight": "model-00007-of-00010.safetensors",
163
+ "transformer.encoder.layers.29.mlp.dense_4h_to_h.weight": "model-00008-of-00010.safetensors",
164
+ "transformer.encoder.layers.29.mlp.dense_h_to_4h.weight": "model-00007-of-00010.safetensors",
165
+ "transformer.encoder.layers.29.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
166
+ "transformer.encoder.layers.29.self_attention.dense.weight": "model-00007-of-00010.safetensors",
167
+ "transformer.encoder.layers.29.self_attention.query_key_value.bias": "model-00007-of-00010.safetensors",
168
+ "transformer.encoder.layers.29.self_attention.query_key_value.weight": "model-00007-of-00010.safetensors",
169
+ "transformer.encoder.layers.3.input_layernorm.weight": "model-00002-of-00010.safetensors",
170
+ "transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "model-00002-of-00010.safetensors",
171
+ "transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "model-00002-of-00010.safetensors",
172
+ "transformer.encoder.layers.3.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
173
+ "transformer.encoder.layers.3.self_attention.dense.weight": "model-00002-of-00010.safetensors",
174
+ "transformer.encoder.layers.3.self_attention.query_key_value.bias": "model-00002-of-00010.safetensors",
175
+ "transformer.encoder.layers.3.self_attention.query_key_value.weight": "model-00002-of-00010.safetensors",
176
+ "transformer.encoder.layers.30.input_layernorm.weight": "model-00008-of-00010.safetensors",
177
+ "transformer.encoder.layers.30.mlp.dense_4h_to_h.weight": "model-00008-of-00010.safetensors",
178
+ "transformer.encoder.layers.30.mlp.dense_h_to_4h.weight": "model-00008-of-00010.safetensors",
179
+ "transformer.encoder.layers.30.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
180
+ "transformer.encoder.layers.30.self_attention.dense.weight": "model-00008-of-00010.safetensors",
181
+ "transformer.encoder.layers.30.self_attention.query_key_value.bias": "model-00008-of-00010.safetensors",
182
+ "transformer.encoder.layers.30.self_attention.query_key_value.weight": "model-00008-of-00010.safetensors",
183
+ "transformer.encoder.layers.31.input_layernorm.weight": "model-00008-of-00010.safetensors",
184
+ "transformer.encoder.layers.31.mlp.dense_4h_to_h.weight": "model-00008-of-00010.safetensors",
185
+ "transformer.encoder.layers.31.mlp.dense_h_to_4h.weight": "model-00008-of-00010.safetensors",
186
+ "transformer.encoder.layers.31.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
187
+ "transformer.encoder.layers.31.self_attention.dense.weight": "model-00008-of-00010.safetensors",
188
+ "transformer.encoder.layers.31.self_attention.query_key_value.bias": "model-00008-of-00010.safetensors",
189
+ "transformer.encoder.layers.31.self_attention.query_key_value.weight": "model-00008-of-00010.safetensors",
190
+ "transformer.encoder.layers.32.input_layernorm.weight": "model-00008-of-00010.safetensors",
191
+ "transformer.encoder.layers.32.mlp.dense_4h_to_h.weight": "model-00008-of-00010.safetensors",
192
+ "transformer.encoder.layers.32.mlp.dense_h_to_4h.weight": "model-00008-of-00010.safetensors",
193
+ "transformer.encoder.layers.32.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
194
+ "transformer.encoder.layers.32.self_attention.dense.weight": "model-00008-of-00010.safetensors",
195
+ "transformer.encoder.layers.32.self_attention.query_key_value.bias": "model-00008-of-00010.safetensors",
196
+ "transformer.encoder.layers.32.self_attention.query_key_value.weight": "model-00008-of-00010.safetensors",
197
+ "transformer.encoder.layers.33.input_layernorm.weight": "model-00008-of-00010.safetensors",
198
+ "transformer.encoder.layers.33.mlp.dense_4h_to_h.weight": "model-00008-of-00010.safetensors",
199
+ "transformer.encoder.layers.33.mlp.dense_h_to_4h.weight": "model-00008-of-00010.safetensors",
200
+ "transformer.encoder.layers.33.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
201
+ "transformer.encoder.layers.33.self_attention.dense.weight": "model-00008-of-00010.safetensors",
202
+ "transformer.encoder.layers.33.self_attention.query_key_value.bias": "model-00008-of-00010.safetensors",
203
+ "transformer.encoder.layers.33.self_attention.query_key_value.weight": "model-00008-of-00010.safetensors",
204
+ "transformer.encoder.layers.34.input_layernorm.weight": "model-00008-of-00010.safetensors",
205
+ "transformer.encoder.layers.34.mlp.dense_4h_to_h.weight": "model-00009-of-00010.safetensors",
206
+ "transformer.encoder.layers.34.mlp.dense_h_to_4h.weight": "model-00009-of-00010.safetensors",
207
+ "transformer.encoder.layers.34.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
208
+ "transformer.encoder.layers.34.self_attention.dense.weight": "model-00008-of-00010.safetensors",
209
+ "transformer.encoder.layers.34.self_attention.query_key_value.bias": "model-00008-of-00010.safetensors",
210
+ "transformer.encoder.layers.34.self_attention.query_key_value.weight": "model-00008-of-00010.safetensors",
211
+ "transformer.encoder.layers.35.input_layernorm.weight": "model-00009-of-00010.safetensors",
212
+ "transformer.encoder.layers.35.mlp.dense_4h_to_h.weight": "model-00009-of-00010.safetensors",
213
+ "transformer.encoder.layers.35.mlp.dense_h_to_4h.weight": "model-00009-of-00010.safetensors",
214
+ "transformer.encoder.layers.35.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
215
+ "transformer.encoder.layers.35.self_attention.dense.weight": "model-00009-of-00010.safetensors",
216
+ "transformer.encoder.layers.35.self_attention.query_key_value.bias": "model-00009-of-00010.safetensors",
217
+ "transformer.encoder.layers.35.self_attention.query_key_value.weight": "model-00009-of-00010.safetensors",
218
+ "transformer.encoder.layers.36.input_layernorm.weight": "model-00009-of-00010.safetensors",
219
+ "transformer.encoder.layers.36.mlp.dense_4h_to_h.weight": "model-00009-of-00010.safetensors",
220
+ "transformer.encoder.layers.36.mlp.dense_h_to_4h.weight": "model-00009-of-00010.safetensors",
221
+ "transformer.encoder.layers.36.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
222
+ "transformer.encoder.layers.36.self_attention.dense.weight": "model-00009-of-00010.safetensors",
223
+ "transformer.encoder.layers.36.self_attention.query_key_value.bias": "model-00009-of-00010.safetensors",
224
+ "transformer.encoder.layers.36.self_attention.query_key_value.weight": "model-00009-of-00010.safetensors",
225
+ "transformer.encoder.layers.37.input_layernorm.weight": "model-00009-of-00010.safetensors",
226
+ "transformer.encoder.layers.37.mlp.dense_4h_to_h.weight": "model-00009-of-00010.safetensors",
227
+ "transformer.encoder.layers.37.mlp.dense_h_to_4h.weight": "model-00009-of-00010.safetensors",
228
+ "transformer.encoder.layers.37.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
229
+ "transformer.encoder.layers.37.self_attention.dense.weight": "model-00009-of-00010.safetensors",
230
+ "transformer.encoder.layers.37.self_attention.query_key_value.bias": "model-00009-of-00010.safetensors",
231
+ "transformer.encoder.layers.37.self_attention.query_key_value.weight": "model-00009-of-00010.safetensors",
232
+ "transformer.encoder.layers.38.input_layernorm.weight": "model-00009-of-00010.safetensors",
233
+ "transformer.encoder.layers.38.mlp.dense_4h_to_h.weight": "model-00009-of-00010.safetensors",
234
+ "transformer.encoder.layers.38.mlp.dense_h_to_4h.weight": "model-00009-of-00010.safetensors",
235
+ "transformer.encoder.layers.38.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
236
+ "transformer.encoder.layers.38.self_attention.dense.weight": "model-00009-of-00010.safetensors",
237
+ "transformer.encoder.layers.38.self_attention.query_key_value.bias": "model-00009-of-00010.safetensors",
238
+ "transformer.encoder.layers.38.self_attention.query_key_value.weight": "model-00009-of-00010.safetensors",
239
+ "transformer.encoder.layers.39.input_layernorm.weight": "model-00009-of-00010.safetensors",
240
+ "transformer.encoder.layers.39.mlp.dense_4h_to_h.weight": "model-00010-of-00010.safetensors",
241
+ "transformer.encoder.layers.39.mlp.dense_h_to_4h.weight": "model-00010-of-00010.safetensors",
242
+ "transformer.encoder.layers.39.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
243
+ "transformer.encoder.layers.39.self_attention.dense.weight": "model-00010-of-00010.safetensors",
244
+ "transformer.encoder.layers.39.self_attention.query_key_value.bias": "model-00010-of-00010.safetensors",
245
+ "transformer.encoder.layers.39.self_attention.query_key_value.weight": "model-00010-of-00010.safetensors",
246
+ "transformer.encoder.layers.4.input_layernorm.weight": "model-00002-of-00010.safetensors",
247
+ "transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "model-00002-of-00010.safetensors",
248
+ "transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "model-00002-of-00010.safetensors",
249
+ "transformer.encoder.layers.4.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
250
+ "transformer.encoder.layers.4.self_attention.dense.weight": "model-00002-of-00010.safetensors",
251
+ "transformer.encoder.layers.4.self_attention.query_key_value.bias": "model-00002-of-00010.safetensors",
252
+ "transformer.encoder.layers.4.self_attention.query_key_value.weight": "model-00002-of-00010.safetensors",
253
+ "transformer.encoder.layers.5.input_layernorm.weight": "model-00002-of-00010.safetensors",
254
+ "transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "model-00002-of-00010.safetensors",
255
+ "transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "model-00002-of-00010.safetensors",
256
+ "transformer.encoder.layers.5.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
257
+ "transformer.encoder.layers.5.self_attention.dense.weight": "model-00002-of-00010.safetensors",
258
+ "transformer.encoder.layers.5.self_attention.query_key_value.bias": "model-00002-of-00010.safetensors",
259
+ "transformer.encoder.layers.5.self_attention.query_key_value.weight": "model-00002-of-00010.safetensors",
260
+ "transformer.encoder.layers.6.input_layernorm.weight": "model-00002-of-00010.safetensors",
261
+ "transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "model-00003-of-00010.safetensors",
262
+ "transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "model-00003-of-00010.safetensors",
263
+ "transformer.encoder.layers.6.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
264
+ "transformer.encoder.layers.6.self_attention.dense.weight": "model-00002-of-00010.safetensors",
265
+ "transformer.encoder.layers.6.self_attention.query_key_value.bias": "model-00002-of-00010.safetensors",
266
+ "transformer.encoder.layers.6.self_attention.query_key_value.weight": "model-00002-of-00010.safetensors",
267
+ "transformer.encoder.layers.7.input_layernorm.weight": "model-00003-of-00010.safetensors",
268
+ "transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "model-00003-of-00010.safetensors",
269
+ "transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "model-00003-of-00010.safetensors",
270
+ "transformer.encoder.layers.7.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
271
+ "transformer.encoder.layers.7.self_attention.dense.weight": "model-00003-of-00010.safetensors",
272
+ "transformer.encoder.layers.7.self_attention.query_key_value.bias": "model-00003-of-00010.safetensors",
273
+ "transformer.encoder.layers.7.self_attention.query_key_value.weight": "model-00003-of-00010.safetensors",
274
+ "transformer.encoder.layers.8.input_layernorm.weight": "model-00003-of-00010.safetensors",
275
+ "transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "model-00003-of-00010.safetensors",
276
+ "transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "model-00003-of-00010.safetensors",
277
+ "transformer.encoder.layers.8.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
278
+ "transformer.encoder.layers.8.self_attention.dense.weight": "model-00003-of-00010.safetensors",
279
+ "transformer.encoder.layers.8.self_attention.query_key_value.bias": "model-00003-of-00010.safetensors",
280
+ "transformer.encoder.layers.8.self_attention.query_key_value.weight": "model-00003-of-00010.safetensors",
281
+ "transformer.encoder.layers.9.input_layernorm.weight": "model-00003-of-00010.safetensors",
282
+ "transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "model-00003-of-00010.safetensors",
283
+ "transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "model-00003-of-00010.safetensors",
284
+ "transformer.encoder.layers.9.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
285
+ "transformer.encoder.layers.9.self_attention.dense.weight": "model-00003-of-00010.safetensors",
286
+ "transformer.encoder.layers.9.self_attention.query_key_value.bias": "model-00003-of-00010.safetensors",
287
+ "transformer.encoder.layers.9.self_attention.query_key_value.weight": "model-00003-of-00010.safetensors",
288
+ "transformer.output_layer.weight": "model-00010-of-00010.safetensors",
289
+ "transformer.rotary_pos_emb.inv_freq": "model-00001-of-00010.safetensors"
290
+ }
291
+ }
THUDM/glm-4-9b-chat/modeling_chatglm.py ADDED
@@ -0,0 +1,1215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+ import json
3
+ import math
4
+ import copy
5
+ import warnings
6
+ import re
7
+ import sys
8
+
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ import torch.nn.functional as F
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
14
+ from torch.nn.utils import skip_init
15
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
16
+ from copy import deepcopy
17
+
18
+ from transformers.modeling_outputs import (
19
+ BaseModelOutputWithPast,
20
+ CausalLMOutputWithPast,
21
+ SequenceClassifierOutputWithPast,
22
+ )
23
+ from transformers.modeling_utils import PreTrainedModel
24
+ from transformers.utils import logging, is_torch_npu_available
25
+ from transformers.generation.logits_process import LogitsProcessor
26
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
27
+
28
+ from .configuration_chatglm import ChatGLMConfig
29
+
30
+ # flags required to enable jit fusion kernels
31
+
32
+ if sys.platform != 'darwin' and not is_torch_npu_available():
33
+ torch._C._jit_set_profiling_mode(False)
34
+ torch._C._jit_set_profiling_executor(False)
35
+ torch._C._jit_override_can_fuse_on_cpu(True)
36
+ torch._C._jit_override_can_fuse_on_gpu(True)
37
+
38
+ logger = logging.get_logger(__name__)
39
+
40
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
41
+ _CONFIG_FOR_DOC = "ChatGLMConfig"
42
+
43
+ def default_init(cls, *args, **kwargs):
44
+ return cls(*args, **kwargs)
45
+
46
+
47
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
48
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
49
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
50
+ scores.zero_()
51
+ scores[..., 198] = 5e4
52
+ return scores
53
+
54
+
55
+ def split_tensor_along_last_dim(
56
+ tensor: torch.Tensor,
57
+ num_partitions: int,
58
+ contiguous_split_chunks: bool = False,
59
+ ) -> List[torch.Tensor]:
60
+ """Split a tensor along its last dimension.
61
+
62
+ Arguments:
63
+ tensor: input tensor.
64
+ num_partitions: number of partitions to split the tensor
65
+ contiguous_split_chunks: If True, make each chunk contiguous
66
+ in memory.
67
+
68
+ Returns:
69
+ A list of Tensors
70
+ """
71
+ # Get the size and dimension.
72
+ last_dim = tensor.dim() - 1
73
+ last_dim_size = tensor.size()[last_dim] // num_partitions
74
+ # Split.
75
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
76
+ # Note: torch.split does not create contiguous tensors by default.
77
+ if contiguous_split_chunks:
78
+ return tuple(chunk.contiguous() for chunk in tensor_list)
79
+
80
+ return tensor_list
81
+
82
+
83
+ class RotaryEmbedding(nn.Module):
84
+ def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None):
85
+ super().__init__()
86
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
87
+ self.register_buffer("inv_freq", inv_freq)
88
+ self.dim = dim
89
+ self.original_impl = original_impl
90
+ self.rope_ratio = rope_ratio
91
+
92
+ def forward_impl(
93
+ self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
94
+ ):
95
+ """Enhanced Transformer with Rotary Position Embedding.
96
+
97
+ Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
98
+ transformers/rope/__init__.py. MIT License:
99
+ https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
100
+ """
101
+ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
102
+ base = base * self.rope_ratio
103
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
104
+
105
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
106
+ seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
107
+
108
+ # Calculate the product of position index and $\theta_i$
109
+ idx_theta = torch.outer(seq_idx, theta).float()
110
+
111
+ cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
112
+
113
+ # this is to mimic the behaviour of complex32, else we will get different results
114
+ if dtype in (torch.float16, torch.bfloat16, torch.int8):
115
+ cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
116
+ return cache
117
+
118
+ def forward(self, max_seq_len, offset=0):
119
+ return self.forward_impl(
120
+ max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
121
+ )
122
+
123
+
124
+ @torch.jit.script
125
+ def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
126
+ # x: [b, np, sq, hn]
127
+ b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
128
+ rot_dim = rope_cache.shape[-2] * 2
129
+ x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
130
+ # truncate to support variable sizes
131
+ rope_cache = rope_cache[:, :sq]
132
+ xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
133
+ rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
134
+ x_out2 = torch.stack(
135
+ [
136
+ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
137
+ xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
138
+ ],
139
+ -1,
140
+ )
141
+ x_out2 = x_out2.flatten(3)
142
+ return torch.cat((x_out2, x_pass), dim=-1)
143
+
144
+
145
+ class RMSNorm(torch.nn.Module):
146
+ def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
147
+ super().__init__()
148
+ self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
149
+ self.eps = eps
150
+
151
+ def forward(self, hidden_states: torch.Tensor):
152
+ input_dtype = hidden_states.dtype
153
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
154
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
155
+
156
+ return (self.weight * hidden_states).to(input_dtype)
157
+
158
+
159
+ class CoreAttention(torch.nn.Module):
160
+ def __init__(self, config: ChatGLMConfig, layer_number):
161
+ super(CoreAttention, self).__init__()
162
+
163
+ self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
164
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
165
+ if self.apply_query_key_layer_scaling:
166
+ self.attention_softmax_in_fp32 = True
167
+ self.layer_number = max(1, layer_number)
168
+
169
+ projection_size = config.kv_channels * config.num_attention_heads
170
+
171
+ # Per attention head and per partition values.
172
+ self.hidden_size_per_partition = projection_size
173
+ self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
174
+ self.num_attention_heads_per_partition = config.num_attention_heads
175
+
176
+ coeff = None
177
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
178
+ if self.apply_query_key_layer_scaling:
179
+ coeff = self.layer_number
180
+ self.norm_factor *= coeff
181
+ self.coeff = coeff
182
+
183
+ self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
184
+
185
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
186
+ pytorch_major_version = int(torch.__version__.split('.')[0])
187
+ if pytorch_major_version >= 2:
188
+ if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
189
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
190
+ is_causal=True)
191
+ else:
192
+ if attention_mask is not None:
193
+ attention_mask = ~attention_mask
194
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
195
+ attention_mask)
196
+ context_layer = context_layer.transpose(1, 2).contiguous()
197
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
198
+ context_layer = context_layer.reshape(*new_context_layer_shape)
199
+ else:
200
+ # Raw attention scores
201
+
202
+ # [b, np, sq, sk]
203
+ output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
204
+
205
+ # [b, np, sq, hn] -> [b * np, sq, hn]
206
+ query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
207
+ # [b, np, sk, hn] -> [b * np, sk, hn]
208
+ key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
209
+
210
+ # preallocting input tensor: [b * np, sq, sk]
211
+ matmul_input_buffer = torch.empty(
212
+ output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
213
+ device=query_layer.device
214
+ )
215
+
216
+ # Raw attention scores. [b * np, sq, sk]
217
+ matmul_result = torch.baddbmm(
218
+ matmul_input_buffer,
219
+ query_layer, # [b * np, sq, hn]
220
+ key_layer.transpose(1, 2), # [b * np, hn, sk]
221
+ beta=0.0,
222
+ alpha=(1.0 / self.norm_factor),
223
+ )
224
+
225
+ # change view to [b, np, sq, sk]
226
+ attention_scores = matmul_result.view(*output_size)
227
+
228
+ # ===========================
229
+ # Attention probs and dropout
230
+ # ===========================
231
+
232
+ # attention scores and attention mask [b, np, sq, sk]
233
+ if self.attention_softmax_in_fp32:
234
+ attention_scores = attention_scores.float()
235
+ if self.coeff is not None:
236
+ attention_scores = attention_scores * self.coeff
237
+ if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
238
+ attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
239
+ device=attention_scores.device, dtype=torch.bool)
240
+ attention_mask.tril_()
241
+ attention_mask = ~attention_mask
242
+ if attention_mask is not None:
243
+ attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
244
+ attention_probs = F.softmax(attention_scores, dim=-1)
245
+ attention_probs = attention_probs.type_as(value_layer)
246
+
247
+ # This is actually dropping out entire tokens to attend to, which might
248
+ # seem a bit unusual, but is taken from the original Transformer paper.
249
+ attention_probs = self.attention_dropout(attention_probs)
250
+
251
+ # query layer shape: [b * np, sq, hn]
252
+ # value layer shape: [b, np, sk, hn]
253
+ # attention shape: [b, np, sq, sk]
254
+ # context layer shape: [b, np, sq, hn]
255
+ output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
256
+ # change view [b * np, sk, hn]
257
+ value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
258
+ # change view [b * np, sq, sk]
259
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
260
+ # matmul: [b * np, sq, hn]
261
+ context_layer = torch.bmm(attention_probs, value_layer)
262
+ # change view [b, np, sq, hn]
263
+ context_layer = context_layer.view(*output_size)
264
+ # [b, np, sq, hn] --> [b, sq, np, hn]
265
+ context_layer = context_layer.transpose(1, 2).contiguous()
266
+ # [b, sq, np, hn] --> [b, sq, hp]
267
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
268
+ context_layer = context_layer.reshape(*new_context_layer_shape)
269
+
270
+ return context_layer
271
+
272
+
273
+ class SelfAttention(torch.nn.Module):
274
+ """Parallel self-attention layer abstract class.
275
+
276
+ Self-attention layer takes input with size [s, b, h]
277
+ and returns output of the same size.
278
+ """
279
+
280
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
281
+ super(SelfAttention, self).__init__()
282
+ self.layer_number = max(1, layer_number)
283
+
284
+ self.projection_size = config.kv_channels * config.num_attention_heads
285
+
286
+ # Per attention head and per partition values.
287
+ self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
288
+ self.num_attention_heads_per_partition = config.num_attention_heads
289
+
290
+ self.multi_query_attention = config.multi_query_attention
291
+ self.qkv_hidden_size = 3 * self.projection_size
292
+ if self.multi_query_attention:
293
+ self.num_multi_query_groups_per_partition = config.multi_query_group_num
294
+ self.qkv_hidden_size = (
295
+ self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
296
+ )
297
+ self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
298
+ bias=config.add_bias_linear or config.add_qkv_bias,
299
+ device=device, **_config_to_kwargs(config)
300
+ )
301
+
302
+ self.core_attention = CoreAttention(config, self.layer_number)
303
+
304
+ # Output.
305
+ self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
306
+ device=device, **_config_to_kwargs(config)
307
+ )
308
+
309
+ def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
310
+ if self.multi_query_attention:
311
+ num_attention_heads = self.num_multi_query_groups_per_partition
312
+ else:
313
+ num_attention_heads = self.num_attention_heads_per_partition
314
+ return torch.empty(
315
+ inference_max_sequence_len,
316
+ batch_size,
317
+ num_attention_heads,
318
+ self.hidden_size_per_attention_head,
319
+ dtype=dtype,
320
+ device=device,
321
+ )
322
+
323
+ def forward(
324
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
325
+ ):
326
+ # hidden_states: [b, sq, h]
327
+
328
+ # =================================================
329
+ # Pre-allocate memory for key-values for inference.
330
+ # =================================================
331
+ # =====================
332
+ # Query, Key, and Value
333
+ # =====================
334
+
335
+ # Attention heads [b, sq, h] --> [b, sq, (np * 3 * hn)]
336
+ mixed_x_layer = self.query_key_value(hidden_states)
337
+
338
+ if self.multi_query_attention:
339
+ (query_layer, key_layer, value_layer) = mixed_x_layer.split(
340
+ [
341
+ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
342
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
343
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
344
+ ],
345
+ dim=-1,
346
+ )
347
+ query_layer = query_layer.view(
348
+ query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
349
+ )
350
+ key_layer = key_layer.view(
351
+ key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
352
+ )
353
+ value_layer = value_layer.view(
354
+ value_layer.size()[:-1]
355
+ + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
356
+ )
357
+ else:
358
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
359
+ (self.num_attention_heads_per_partition,
360
+ 3 * self.hidden_size_per_attention_head)
361
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
362
+
363
+ # [b, sq, np, 3 * hn] --> 3 [b, sq, np, hn]
364
+ (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
365
+
366
+ # [b, sq, np, hn] -> [b, np, sq, hn]
367
+ query_layer, key_layer, value_layer = [k.transpose(1, 2) for k in [query_layer, key_layer, value_layer]]
368
+
369
+ # apply relative positional encoding (rotary embedding)
370
+ if rotary_pos_emb is not None:
371
+ query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
372
+ key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
373
+
374
+ # adjust key and value for inference
375
+ if kv_cache is not None:
376
+ cache_k, cache_v = kv_cache
377
+ key_layer = torch.cat((cache_k, key_layer), dim=2)
378
+ value_layer = torch.cat((cache_v, value_layer), dim=2)
379
+ if use_cache:
380
+ if kv_cache is None:
381
+ kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)), dim=1)
382
+ else:
383
+ kv_cache = (key_layer, value_layer)
384
+ else:
385
+ kv_cache = None
386
+
387
+ if self.multi_query_attention:
388
+ key_layer = key_layer.unsqueeze(2)
389
+ key_layer = key_layer.expand(
390
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
391
+ )
392
+ key_layer = key_layer.contiguous().view(
393
+ key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:]
394
+ )
395
+ value_layer = value_layer.unsqueeze(2)
396
+ value_layer = value_layer.expand(
397
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
398
+ )
399
+ value_layer = value_layer.contiguous().view(
400
+ value_layer.size()[:1] + (self.num_attention_heads_per_partition,) + value_layer.size()[3:]
401
+ )
402
+
403
+ # ==================================
404
+ # core attention computation
405
+ # ==================================
406
+
407
+ context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
408
+
409
+ # =================
410
+ # Output. [sq, b, h]
411
+ # =================
412
+
413
+ output = self.dense(context_layer)
414
+
415
+ return output, kv_cache
416
+
417
+
418
+ def _config_to_kwargs(args):
419
+ common_kwargs = {
420
+ "dtype": args.torch_dtype,
421
+ }
422
+ return common_kwargs
423
+
424
+
425
+ class MLP(torch.nn.Module):
426
+ """MLP.
427
+
428
+ MLP will take the input with h hidden state, project it to 4*h
429
+ hidden dimension, perform nonlinear transformation, and project the
430
+ state back into h hidden dimension.
431
+ """
432
+
433
+ def __init__(self, config: ChatGLMConfig, device=None):
434
+ super(MLP, self).__init__()
435
+
436
+ self.add_bias = config.add_bias_linear
437
+
438
+ # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
439
+ self.dense_h_to_4h = nn.Linear(
440
+ config.hidden_size,
441
+ config.ffn_hidden_size * 2,
442
+ bias=self.add_bias,
443
+ device=device,
444
+ **_config_to_kwargs(config)
445
+ )
446
+
447
+ def swiglu(x):
448
+ x = torch.chunk(x, 2, dim=-1)
449
+ return F.silu(x[0]) * x[1]
450
+
451
+ self.activation_func = swiglu
452
+
453
+ # Project back to h.
454
+ self.dense_4h_to_h = nn.Linear(
455
+ config.ffn_hidden_size,
456
+ config.hidden_size,
457
+ bias=self.add_bias,
458
+ device=device,
459
+ **_config_to_kwargs(config)
460
+ )
461
+
462
+ def forward(self, hidden_states):
463
+ # [s, b, 4hp]
464
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
465
+ intermediate_parallel = self.activation_func(intermediate_parallel)
466
+ # [s, b, h]
467
+ output = self.dense_4h_to_h(intermediate_parallel)
468
+ return output
469
+
470
+
471
+ class GLMBlock(torch.nn.Module):
472
+ """A single transformer layer.
473
+
474
+ Transformer layer takes input with size [s, b, h] and returns an
475
+ output of the same size.
476
+ """
477
+
478
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
479
+ super(GLMBlock, self).__init__()
480
+ self.layer_number = layer_number
481
+
482
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
483
+
484
+ self.fp32_residual_connection = config.fp32_residual_connection
485
+
486
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
487
+ # Layernorm on the input data.
488
+ self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
489
+ dtype=config.torch_dtype)
490
+
491
+ # Self attention.
492
+ self.self_attention = SelfAttention(config, layer_number, device=device)
493
+ self.hidden_dropout = config.hidden_dropout
494
+
495
+ # Layernorm on the attention output
496
+ self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
497
+ dtype=config.torch_dtype)
498
+
499
+ # MLP
500
+ self.mlp = MLP(config, device=device)
501
+
502
+ def forward(
503
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
504
+ ):
505
+ # hidden_states: [s, b, h]
506
+
507
+ # Layer norm at the beginning of the transformer layer.
508
+ layernorm_output = self.input_layernorm(hidden_states)
509
+ # Self attention.
510
+ attention_output, kv_cache = self.self_attention(
511
+ layernorm_output,
512
+ attention_mask,
513
+ rotary_pos_emb,
514
+ kv_cache=kv_cache,
515
+ use_cache=use_cache
516
+ )
517
+
518
+ # Residual connection.
519
+ if self.apply_residual_connection_post_layernorm:
520
+ residual = layernorm_output
521
+ else:
522
+ residual = hidden_states
523
+
524
+ layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
525
+ layernorm_input = residual + layernorm_input
526
+
527
+ # Layer norm post the self attention.
528
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
529
+
530
+ # MLP.
531
+ mlp_output = self.mlp(layernorm_output)
532
+
533
+ # Second residual connection.
534
+ if self.apply_residual_connection_post_layernorm:
535
+ residual = layernorm_output
536
+ else:
537
+ residual = layernorm_input
538
+
539
+ output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
540
+ output = residual + output
541
+
542
+ return output, kv_cache
543
+
544
+
545
+ class GLMTransformer(torch.nn.Module):
546
+ """Transformer class."""
547
+
548
+ def __init__(self, config: ChatGLMConfig, device=None):
549
+ super(GLMTransformer, self).__init__()
550
+
551
+ self.fp32_residual_connection = config.fp32_residual_connection
552
+ self.post_layer_norm = config.post_layer_norm
553
+
554
+ # Number of layers.
555
+ self.num_layers = config.num_layers
556
+
557
+ # Transformer layers.
558
+ def build_layer(layer_number):
559
+ return GLMBlock(config, layer_number, device=device)
560
+
561
+ self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
562
+
563
+ if self.post_layer_norm:
564
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
565
+ # Final layer norm before output.
566
+ self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
567
+ dtype=config.torch_dtype)
568
+
569
+ self.gradient_checkpointing = False
570
+
571
+ def _get_layer(self, layer_number):
572
+ return self.layers[layer_number]
573
+
574
+ def forward(
575
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
576
+ use_cache: Optional[bool] = True,
577
+ output_hidden_states: Optional[bool] = False,
578
+ ):
579
+ if not kv_caches:
580
+ kv_caches = [None for _ in range(self.num_layers)]
581
+ presents = () if use_cache else None
582
+ if self.gradient_checkpointing and self.training:
583
+ if use_cache:
584
+ logger.warning_once(
585
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
586
+ )
587
+ use_cache = False
588
+
589
+ all_self_attentions = None
590
+ all_hidden_states = () if output_hidden_states else None
591
+ for index in range(self.num_layers):
592
+ if output_hidden_states:
593
+ all_hidden_states = all_hidden_states + (hidden_states,)
594
+
595
+ layer = self._get_layer(index)
596
+ if self.gradient_checkpointing and self.training:
597
+ layer_ret = torch.utils.checkpoint.checkpoint(
598
+ layer,
599
+ hidden_states,
600
+ attention_mask,
601
+ rotary_pos_emb,
602
+ kv_caches[index],
603
+ use_cache,
604
+ use_reentrant=False
605
+ )
606
+ else:
607
+ layer_ret = layer(
608
+ hidden_states,
609
+ attention_mask,
610
+ rotary_pos_emb,
611
+ kv_cache=kv_caches[index],
612
+ use_cache=use_cache
613
+ )
614
+ hidden_states, kv_cache = layer_ret
615
+ if use_cache:
616
+ # token by token decoding, use tuple format
617
+ if kv_caches[0] is not None:
618
+ presents = presents + (kv_cache,)
619
+ # prefilling in decoding, use tensor format to save cuda memory
620
+ else:
621
+ if len(presents) == 0:
622
+ presents = kv_cache
623
+ else:
624
+ presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
625
+
626
+ if output_hidden_states:
627
+ all_hidden_states = all_hidden_states + (hidden_states,)
628
+
629
+ # Final layer norm.
630
+ if self.post_layer_norm:
631
+ hidden_states = self.final_layernorm(hidden_states)
632
+
633
+ return hidden_states, presents, all_hidden_states, all_self_attentions
634
+
635
+
636
+ class ChatGLMPreTrainedModel(PreTrainedModel):
637
+ """
638
+ An abstract class to handle weights initialization and
639
+ a simple interface for downloading and loading pretrained models.
640
+ """
641
+
642
+ is_parallelizable = False
643
+ supports_gradient_checkpointing = True
644
+ config_class = ChatGLMConfig
645
+ base_model_prefix = "transformer"
646
+ _no_split_modules = ["GLMBlock"]
647
+
648
+ def _init_weights(self, module: nn.Module):
649
+ """Initialize the weights."""
650
+ return
651
+
652
+ def get_masks(self, input_ids, past_key_values, padding_mask=None):
653
+ batch_size, seq_length = input_ids.shape
654
+ full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
655
+ full_attention_mask.tril_()
656
+ past_length = 0
657
+ if past_key_values:
658
+ past_length = past_key_values[0][0].shape[2]
659
+ if past_length:
660
+ full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
661
+ device=input_ids.device), full_attention_mask), dim=-1)
662
+ if padding_mask is not None:
663
+ full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
664
+ if not past_length and padding_mask is not None:
665
+ full_attention_mask -= padding_mask.unsqueeze(-1) - 1
666
+ full_attention_mask = (full_attention_mask < 0.5).bool()
667
+ full_attention_mask.unsqueeze_(1)
668
+ return full_attention_mask
669
+
670
+ def get_position_ids(self, input_ids, device):
671
+ batch_size, seq_length = input_ids.shape
672
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
673
+ return position_ids
674
+
675
+ def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
676
+ if not self.supports_gradient_checkpointing:
677
+ raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
678
+
679
+
680
+ class Embedding(torch.nn.Module):
681
+ """Language model embeddings."""
682
+
683
+ def __init__(self, config: ChatGLMConfig, device=None):
684
+ super(Embedding, self).__init__()
685
+
686
+ self.hidden_size = config.hidden_size
687
+ # Word embeddings (parallel).
688
+ self.word_embeddings = nn.Embedding(
689
+ config.padded_vocab_size,
690
+ self.hidden_size,
691
+ dtype=config.torch_dtype,
692
+ device=device
693
+ )
694
+ self.fp32_residual_connection = config.fp32_residual_connection
695
+
696
+ def forward(self, input_ids):
697
+ # Embeddings.
698
+ words_embeddings = self.word_embeddings(input_ids)
699
+ embeddings = words_embeddings
700
+ # If the input flag for fp32 residual connection is set, convert for float.
701
+ if self.fp32_residual_connection:
702
+ embeddings = embeddings.float()
703
+ return embeddings
704
+
705
+
706
+ class ChatGLMModel(ChatGLMPreTrainedModel):
707
+ def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
708
+ super().__init__(config)
709
+ if empty_init:
710
+ init_method = skip_init
711
+ else:
712
+ init_method = default_init
713
+ init_kwargs = {}
714
+ if device is not None:
715
+ init_kwargs["device"] = device
716
+ self.embedding = init_method(Embedding, config, **init_kwargs)
717
+ self.num_layers = config.num_layers
718
+ self.multi_query_group_num = config.multi_query_group_num
719
+ self.kv_channels = config.kv_channels
720
+
721
+ # Rotary positional embeddings
722
+ self.seq_length = config.seq_length
723
+ rotary_dim = (
724
+ config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
725
+ )
726
+
727
+ self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio, original_impl=config.original_rope,
728
+ device=device, dtype=config.torch_dtype)
729
+ self.encoder = init_method(GLMTransformer, config, **init_kwargs)
730
+ self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
731
+ dtype=config.torch_dtype, **init_kwargs)
732
+
733
+ def get_input_embeddings(self):
734
+ return self.embedding.word_embeddings
735
+
736
+ def set_input_embeddings(self, value):
737
+ self.embedding.word_embeddings = value
738
+
739
+ def forward(
740
+ self,
741
+ input_ids,
742
+ position_ids: Optional[torch.Tensor] = None,
743
+ attention_mask: Optional[torch.BoolTensor] = None,
744
+ full_attention_mask: Optional[torch.BoolTensor] = None,
745
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
746
+ inputs_embeds: Optional[torch.Tensor] = None,
747
+ use_cache: Optional[bool] = None,
748
+ output_hidden_states: Optional[bool] = None,
749
+ return_dict: Optional[bool] = None,
750
+ ):
751
+ output_hidden_states = (
752
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
753
+ )
754
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
755
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
756
+
757
+ batch_size, seq_length = input_ids.shape
758
+
759
+ if inputs_embeds is None:
760
+ inputs_embeds = self.embedding(input_ids)
761
+
762
+ if full_attention_mask is None:
763
+ if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
764
+ full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
765
+
766
+ # Rotary positional embeddings
767
+ rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
768
+ if position_ids is not None:
769
+ rotary_pos_emb = rotary_pos_emb[position_ids]
770
+ else:
771
+ rotary_pos_emb = rotary_pos_emb[None, :seq_length]
772
+
773
+ # Run encoder.
774
+ hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
775
+ inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
776
+ kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
777
+ )
778
+ if presents is not None and type(presents) is torch.Tensor:
779
+ presents = presents.split(1, dim=0)
780
+ presents = list(presents)
781
+ presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents]
782
+ presents = [tuple([x.squeeze(0) for x in y]) for y in presents]
783
+ presents = tuple(presents)
784
+
785
+ if not return_dict:
786
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
787
+
788
+ return BaseModelOutputWithPast(
789
+ last_hidden_state=hidden_states,
790
+ past_key_values=presents,
791
+ hidden_states=all_hidden_states,
792
+ attentions=all_self_attentions,
793
+ )
794
+
795
+
796
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
797
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
798
+ super().__init__(config)
799
+
800
+ self.max_sequence_length = config.max_length
801
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
802
+ self.config = config
803
+
804
+ def _update_model_kwargs_for_generation(
805
+ self,
806
+ outputs: ModelOutput,
807
+ model_kwargs: Dict[str, Any],
808
+ is_encoder_decoder: bool = False,
809
+ standardize_cache_format: bool = False,
810
+ ) -> Dict[str, Any]:
811
+ # update past_key_values
812
+ model_kwargs["past_key_values"] = self._extract_past_from_model_output(
813
+ outputs, standardize_cache_format=standardize_cache_format
814
+ )
815
+
816
+ # update attention mask
817
+ if "attention_mask" in model_kwargs:
818
+ attention_mask = model_kwargs["attention_mask"]
819
+ model_kwargs["attention_mask"] = torch.cat(
820
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
821
+ )
822
+
823
+ # update position ids
824
+ if "position_ids" in model_kwargs:
825
+ position_ids = model_kwargs["position_ids"]
826
+ new_position_id = position_ids[..., -1:].clone()
827
+ new_position_id += 1
828
+ model_kwargs["position_ids"] = torch.cat(
829
+ [position_ids, new_position_id], dim=-1
830
+ )
831
+
832
+ model_kwargs["is_first_forward"] = False
833
+ return model_kwargs
834
+
835
+ def prepare_inputs_for_generation(
836
+ self,
837
+ input_ids: torch.LongTensor,
838
+ past_key_values: Optional[torch.Tensor] = None,
839
+ attention_mask: Optional[torch.Tensor] = None,
840
+ position_ids: Optional[torch.Tensor] = None,
841
+ use_cache: Optional[bool] = None,
842
+ is_first_forward: bool = True,
843
+ **kwargs
844
+ ) -> dict:
845
+ # only last token for input_ids if past is not None
846
+ if position_ids is None:
847
+ position_ids = self.get_position_ids(input_ids, device=input_ids.device)
848
+ if not is_first_forward:
849
+ if past_key_values is not None:
850
+ position_ids = position_ids[..., -1:]
851
+ input_ids = input_ids[:, -1:]
852
+ return {
853
+ "input_ids": input_ids,
854
+ "past_key_values": past_key_values,
855
+ "position_ids": position_ids,
856
+ "attention_mask": attention_mask,
857
+ "return_last_logit": True,
858
+ "use_cache": use_cache
859
+ }
860
+
861
+ def forward(
862
+ self,
863
+ input_ids: Optional[torch.Tensor] = None,
864
+ position_ids: Optional[torch.Tensor] = None,
865
+ attention_mask: Optional[torch.Tensor] = None,
866
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
867
+ inputs_embeds: Optional[torch.Tensor] = None,
868
+ labels: Optional[torch.Tensor] = None,
869
+ use_cache: Optional[bool] = None,
870
+ output_attentions: Optional[bool] = None,
871
+ output_hidden_states: Optional[bool] = None,
872
+ return_dict: Optional[bool] = None,
873
+ return_last_logit: Optional[bool] = False,
874
+ ):
875
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
876
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
877
+
878
+ transformer_outputs = self.transformer(
879
+ input_ids=input_ids,
880
+ position_ids=position_ids,
881
+ attention_mask=attention_mask,
882
+ past_key_values=past_key_values,
883
+ inputs_embeds=inputs_embeds,
884
+ use_cache=use_cache,
885
+ output_hidden_states=output_hidden_states,
886
+ return_dict=return_dict,
887
+ )
888
+
889
+ hidden_states = transformer_outputs[0]
890
+ if return_last_logit:
891
+ hidden_states = hidden_states[:, -1:]
892
+ lm_logits = self.transformer.output_layer(hidden_states)
893
+
894
+ loss = None
895
+ if labels is not None:
896
+ lm_logits = lm_logits.to(torch.float32)
897
+
898
+ # Shift so that tokens < n predict n
899
+ shift_logits = lm_logits[..., :-1, :].contiguous()
900
+ shift_labels = labels[..., 1:].contiguous()
901
+ # Flatten the tokens
902
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
903
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
904
+
905
+ lm_logits = lm_logits.to(hidden_states.dtype)
906
+ loss = loss.to(hidden_states.dtype)
907
+
908
+ if not return_dict:
909
+ output = (lm_logits,) + transformer_outputs[1:]
910
+ return ((loss,) + output) if loss is not None else output
911
+
912
+ return CausalLMOutputWithPast(
913
+ loss=loss,
914
+ logits=lm_logits,
915
+ past_key_values=transformer_outputs.past_key_values,
916
+ hidden_states=transformer_outputs.hidden_states,
917
+ attentions=transformer_outputs.attentions,
918
+ )
919
+
920
+ @staticmethod
921
+ def _reorder_cache(
922
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
923
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
924
+ """
925
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
926
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
927
+ beam_idx at every generation step.
928
+
929
+ Output shares the same memory storage as `past`.
930
+ """
931
+ return tuple(
932
+ (
933
+ layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)),
934
+ layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)),
935
+ )
936
+ for layer_past in past
937
+ )
938
+
939
+ def process_response(self, output, history):
940
+ content = ""
941
+ history = deepcopy(history)
942
+ for response in output.split("<|assistant|>"):
943
+ if "\n" in response:
944
+ metadata, content = response.split("\n", maxsplit=1)
945
+ else:
946
+ metadata, content = "", response
947
+ if not metadata.strip():
948
+ content = content.strip()
949
+ history.append({"role": "assistant", "metadata": metadata, "content": content})
950
+ content = content.replace("[[训练时间]]", "2023年")
951
+ else:
952
+ history.append({"role": "assistant", "metadata": metadata, "content": content})
953
+ if history[0]["role"] == "system" and "tools" in history[0]:
954
+ parameters = json.loads(content)
955
+ content = {"name": metadata.strip(), "parameters": parameters}
956
+ else:
957
+ content = {"name": metadata.strip(), "content": content}
958
+ return content, history
959
+
960
+ @torch.inference_mode()
961
+ def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
962
+ max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
963
+ **kwargs):
964
+ if history is None:
965
+ history = []
966
+ if logits_processor is None:
967
+ logits_processor = LogitsProcessorList()
968
+ logits_processor.append(InvalidScoreLogitsProcessor())
969
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
970
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
971
+ history.append({"role": role, "content": query})
972
+ inputs = tokenizer.apply_chat_template(history, add_generation_prompt=True, tokenize=True,
973
+ return_tensors="pt", return_dict=True)
974
+ inputs = inputs.to(self.device)
975
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
976
+ tokenizer.convert_tokens_to_ids("<|observation|>")]
977
+ outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
978
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
979
+ response = tokenizer.decode(outputs)
980
+ response, history = self.process_response(response, history)
981
+ return response, history
982
+
983
+ @torch.inference_mode()
984
+ def stream_chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
985
+ past_key_values=None, max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
986
+ logits_processor=None, return_past_key_values=False, **kwargs):
987
+ if history is None:
988
+ history = []
989
+ if logits_processor is None:
990
+ logits_processor = LogitsProcessorList()
991
+ logits_processor.append(InvalidScoreLogitsProcessor())
992
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
993
+ tokenizer.convert_tokens_to_ids("<|observation|>")]
994
+ gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
995
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
996
+ if past_key_values is None:
997
+ inputs = tokenizer.apply_chat_template(history + [{"role": role, "content": query}],
998
+ add_generation_prompt=True, tokenize=True, return_tensors="pt",
999
+ return_dict=True)
1000
+ else:
1001
+ inputs = tokenizer.apply_chat_template([{"role": role, "content": query}], add_special_tokens=False,
1002
+ add_generation_prompt=True, tokenize=True, return_tensors="pt",
1003
+ return_dict=True)
1004
+ inputs = inputs.to(self.device)
1005
+ if past_key_values is not None:
1006
+ past_length = past_key_values[0][0].shape[2]
1007
+ inputs.position_ids += past_length
1008
+ attention_mask = inputs.attention_mask
1009
+ attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
1010
+ inputs['attention_mask'] = attention_mask
1011
+ history.append({"role": role, "content": query})
1012
+ for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
1013
+ eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
1014
+ **gen_kwargs):
1015
+ if return_past_key_values:
1016
+ outputs, past_key_values = outputs
1017
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1018
+ response = tokenizer.decode(outputs)
1019
+ if response and response[-1] != "�":
1020
+ response, new_history = self.process_response(response, history)
1021
+ if return_past_key_values:
1022
+ yield response, new_history, past_key_values
1023
+ else:
1024
+ yield response, new_history
1025
+
1026
+ @torch.inference_mode()
1027
+ def stream_generate(
1028
+ self,
1029
+ input_ids,
1030
+ generation_config: Optional[GenerationConfig] = None,
1031
+ logits_processor: Optional[LogitsProcessorList] = None,
1032
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1033
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1034
+ return_past_key_values=False,
1035
+ **kwargs,
1036
+ ):
1037
+ batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
1038
+
1039
+ if generation_config is None:
1040
+ generation_config = self.generation_config
1041
+ generation_config = copy.deepcopy(generation_config)
1042
+ model_kwargs = generation_config.update(**kwargs)
1043
+ model_kwargs["use_cache"] = generation_config.use_cache
1044
+ bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
1045
+
1046
+ if isinstance(eos_token_id, int):
1047
+ eos_token_id = [eos_token_id]
1048
+ eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
1049
+
1050
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1051
+ if has_default_max_length and generation_config.max_new_tokens is None:
1052
+ warnings.warn(
1053
+ f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
1054
+ "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
1055
+ " recommend using `max_new_tokens` to control the maximum length of the generation.",
1056
+ UserWarning,
1057
+ )
1058
+ elif generation_config.max_new_tokens is not None:
1059
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
1060
+ if not has_default_max_length:
1061
+ logger.warn(
1062
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
1063
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
1064
+ "Please refer to the documentation for more information. "
1065
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
1066
+ UserWarning,
1067
+ )
1068
+
1069
+ if input_ids_seq_length >= generation_config.max_length:
1070
+ input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1071
+ logger.warning(
1072
+ f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
1073
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1074
+ " increasing `max_new_tokens`."
1075
+ )
1076
+
1077
+ # 2. Set generation parameters if not already defined
1078
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
1079
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
1080
+
1081
+ logits_processor = self._get_logits_processor(
1082
+ generation_config=generation_config,
1083
+ input_ids_seq_length=input_ids_seq_length,
1084
+ encoder_input_ids=input_ids,
1085
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1086
+ logits_processor=logits_processor,
1087
+ )
1088
+
1089
+ stopping_criteria = self._get_stopping_criteria(
1090
+ generation_config=generation_config, stopping_criteria=stopping_criteria
1091
+ )
1092
+ logits_warper = self._get_logits_warper(generation_config)
1093
+
1094
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
1095
+ scores = None
1096
+ while True:
1097
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
1098
+ # forward pass to get next token
1099
+ outputs = self(
1100
+ **model_inputs,
1101
+ return_dict=True,
1102
+ output_attentions=False,
1103
+ output_hidden_states=False,
1104
+ )
1105
+
1106
+ next_token_logits = outputs.logits[:, -1, :]
1107
+
1108
+ # pre-process distribution
1109
+ next_token_scores = logits_processor(input_ids, next_token_logits)
1110
+ next_token_scores = logits_warper(input_ids, next_token_scores)
1111
+
1112
+ # sample
1113
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
1114
+ if generation_config.do_sample:
1115
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
1116
+ else:
1117
+ next_tokens = torch.argmax(probs, dim=-1)
1118
+ # update generated ids, model inputs, and length for next step
1119
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
1120
+ model_kwargs = self._update_model_kwargs_for_generation(
1121
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
1122
+ )
1123
+ unfinished_sequences = unfinished_sequences.mul(
1124
+ next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
1125
+ )
1126
+ if return_past_key_values:
1127
+ yield input_ids, outputs.past_key_values
1128
+ else:
1129
+ yield input_ids
1130
+ # stop when each sentence is finished, or if we exceed the maximum length
1131
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
1132
+ break
1133
+
1134
+
1135
+ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
1136
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
1137
+ super().__init__(config)
1138
+
1139
+ self.num_labels = config.num_labels
1140
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
1141
+
1142
+ self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=torch.half)
1143
+ if config.classifier_dropout is not None:
1144
+ self.dropout = nn.Dropout(config.classifier_dropout)
1145
+ else:
1146
+ self.dropout = None
1147
+ self.config = config
1148
+
1149
+ def forward(
1150
+ self,
1151
+ input_ids: Optional[torch.LongTensor] = None,
1152
+ position_ids: Optional[torch.LongTensor] = None,
1153
+ attention_mask: Optional[torch.Tensor] = None,
1154
+ full_attention_mask: Optional[torch.Tensor] = None,
1155
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1156
+ inputs_embeds: Optional[torch.LongTensor] = None,
1157
+ labels: Optional[torch.LongTensor] = None,
1158
+ use_cache: Optional[bool] = None,
1159
+ output_hidden_states: Optional[bool] = None,
1160
+ return_dict: Optional[bool] = None,
1161
+ ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
1162
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1163
+
1164
+ transformer_outputs = self.transformer(
1165
+ input_ids=input_ids,
1166
+ position_ids=position_ids,
1167
+ attention_mask=attention_mask,
1168
+ full_attention_mask=full_attention_mask,
1169
+ past_key_values=past_key_values,
1170
+ inputs_embeds=inputs_embeds,
1171
+ use_cache=use_cache,
1172
+ output_hidden_states=output_hidden_states,
1173
+ return_dict=return_dict,
1174
+ )
1175
+
1176
+ hidden_states = transformer_outputs[0]
1177
+ pooled_hidden_states = hidden_states[:, -1]
1178
+ if self.dropout is not None:
1179
+ pooled_hidden_states = self.dropout(pooled_hidden_states)
1180
+ logits = self.classifier_head(pooled_hidden_states)
1181
+
1182
+ loss = None
1183
+ if labels is not None:
1184
+ if self.config.problem_type is None:
1185
+ if self.num_labels == 1:
1186
+ self.config.problem_type = "regression"
1187
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1188
+ self.config.problem_type = "single_label_classification"
1189
+ else:
1190
+ self.config.problem_type = "multi_label_classification"
1191
+
1192
+ if self.config.problem_type == "regression":
1193
+ loss_fct = MSELoss()
1194
+ if self.num_labels == 1:
1195
+ loss = loss_fct(logits.squeeze().float(), labels.squeeze())
1196
+ else:
1197
+ loss = loss_fct(logits.float(), labels)
1198
+ elif self.config.problem_type == "single_label_classification":
1199
+ loss_fct = CrossEntropyLoss()
1200
+ loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1))
1201
+ elif self.config.problem_type == "multi_label_classification":
1202
+ loss_fct = BCEWithLogitsLoss()
1203
+ loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
1204
+
1205
+ if not return_dict:
1206
+ output = (logits,) + transformer_outputs[1:]
1207
+ return ((loss,) + output) if loss is not None else output
1208
+
1209
+ return SequenceClassifierOutputWithPast(
1210
+ loss=loss,
1211
+ logits=logits,
1212
+ past_key_values=transformer_outputs.past_key_values,
1213
+ hidden_states=transformer_outputs.hidden_states,
1214
+ attentions=transformer_outputs.attentions,
1215
+ )
THUDM/glm-4-9b-chat/tokenization_chatglm.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import os
4
+ import json
5
+ import tiktoken
6
+ from torch import TensorType
7
+ from typing import List, Optional, Union, Dict, Any
8
+ from transformers import PreTrainedTokenizer
9
+ from transformers.utils import logging, PaddingStrategy
10
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
11
+
12
+
13
+ class ChatGLM4Tokenizer(PreTrainedTokenizer):
14
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
15
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
16
+
17
+ def __init__(
18
+ self,
19
+ vocab_file,
20
+ padding_side="left",
21
+ clean_up_tokenization_spaces=False,
22
+ encode_special_tokens=False,
23
+ **kwargs
24
+ ):
25
+ self.name = "GLM4Tokenizer"
26
+ self.vocab_file = vocab_file
27
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
28
+ self.pat_str = re.compile(pat_str)
29
+ self.encode_special_tokens = encode_special_tokens
30
+
31
+ mergeable_ranks = {}
32
+ with open(vocab_file) as f:
33
+ for line in f:
34
+ token, rank = line.strip().split()
35
+ rank = int(rank)
36
+ token = base64.b64decode(token)
37
+ mergeable_ranks[token] = rank
38
+
39
+ self.mergeable_ranks = mergeable_ranks
40
+
41
+ self.tokenizer = tiktoken.Encoding(
42
+ name="my_tokenizer",
43
+ pat_str=pat_str,
44
+ mergeable_ranks=mergeable_ranks,
45
+ special_tokens={}
46
+ )
47
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
48
+ self.n_words = len(self.decoder)
49
+
50
+ super().__init__(
51
+ padding_side=padding_side,
52
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
53
+ **kwargs
54
+ )
55
+
56
+ @property
57
+ def vocab_size(self):
58
+ return self.n_words
59
+
60
+ def get_vocab(self):
61
+ """ Returns vocab as a dict """
62
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
63
+ vocab.update(self.added_tokens_encoder)
64
+ return vocab
65
+
66
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
67
+ """
68
+ Converts a sequence of tokens in a single string.
69
+ """
70
+ text = ""
71
+ temp = b""
72
+ for t in tokens:
73
+ if isinstance(t, int):
74
+ t = chr(t)
75
+ if isinstance(t, str):
76
+ if temp:
77
+ text += temp.decode("utf-8", errors="replace")
78
+ elif isinstance(t, bytes):
79
+ temp += t
80
+ else:
81
+ raise TypeError("token should only be of type int, bytes or str")
82
+ if temp:
83
+ text += temp.decode("utf-8", errors="replace")
84
+ return text
85
+
86
+ def _tokenize(self, text, **kwargs):
87
+ tokens = []
88
+ ids = self.tokenizer.encode(text)
89
+ for t in ids:
90
+ tokens.append(self.decoder[t])
91
+ return tokens
92
+
93
+ def _convert_token_to_id(self, token):
94
+ """ Converts a token (str) in an id using the vocab. """
95
+ return self.mergeable_ranks[token]
96
+
97
+ def _convert_id_to_token(self, index):
98
+ """Converts an index (integer) in a token (str) using the vocab."""
99
+ return self.decoder.get(index, "")
100
+
101
+ def save_vocabulary(self, save_directory, filename_prefix=None):
102
+ """
103
+ Save the vocabulary and special tokens file to a directory.
104
+
105
+ Args:
106
+ save_directory (`str`):
107
+ The directory in which to save the vocabulary.
108
+ filename_prefix (`str`, *optional*):
109
+ An optional prefix to add to the named of the saved files.
110
+
111
+ Returns:
112
+ `Tuple(str)`: Paths to the files saved.
113
+ """
114
+ if os.path.isdir(save_directory):
115
+ vocab_file = os.path.join(
116
+ save_directory, self.vocab_files_names["vocab_file"]
117
+ )
118
+ else:
119
+ vocab_file = save_directory
120
+
121
+ with open(self.vocab_file, 'rb') as fin:
122
+ proto_str = fin.read()
123
+
124
+ with open(vocab_file, "wb") as writer:
125
+ writer.write(proto_str)
126
+
127
+ return (vocab_file,)
128
+
129
+ def get_prefix_tokens(self):
130
+ prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
131
+ return prefix_tokens
132
+
133
+ def build_single_message(self, role, metadata, message, tokenize=True):
134
+ assert role in ["system", "user", "assistant", "observation"], role
135
+ if tokenize:
136
+ role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
137
+ disallowed_special=())
138
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
139
+ tokens = role_tokens + message_tokens
140
+ return tokens
141
+ else:
142
+ return str(f"<|{role}|>{metadata}\n{message}")
143
+
144
+ def apply_chat_template(
145
+ self,
146
+ conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"],
147
+ add_generation_prompt: bool = False,
148
+ tokenize: bool = True,
149
+ padding: bool = False,
150
+ truncation: bool = False,
151
+ max_length: Optional[int] = None,
152
+ return_tensors: Optional[Union[str, TensorType]] = None,
153
+ return_dict: bool = False,
154
+ tokenizer_kwargs: Optional[Dict[str, Any]] = None,
155
+ add_special_tokens: bool = True,
156
+ **kwargs,
157
+ ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
158
+
159
+ if return_dict and not tokenize:
160
+ raise ValueError(
161
+ "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
162
+ "of tokenizer outputs to return."
163
+ )
164
+
165
+ def handle_single_conversation(conversation):
166
+ input_ids = self.get_prefix_tokens() if add_special_tokens else []
167
+ input_message = "[gMASK]<sop>" if add_special_tokens else ""
168
+ for item in conversation:
169
+ if item.get("tools"):
170
+ tools = item["tools"]
171
+ content = "你是一个名为 GLM-4 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。"
172
+ for tool in tools:
173
+ if tool["type"] == "function":
174
+ function = tool["function"]
175
+ content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}"
176
+ content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。"
177
+ elif tool["type"] == "python":
178
+ content += "\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。"
179
+ elif tool["type"] == "simple_browser":
180
+ content += "\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。"
181
+ elif tool["type"] == "cogview":
182
+ content += "\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。"
183
+ else:
184
+ raise NotImplementedError(f"Unknown tool type {tool['type']}")
185
+ input = self.build_single_message("system", "", content, tokenize=tokenize)
186
+ if tokenize:
187
+ input_ids.extend(input)
188
+ else:
189
+ input_message += input
190
+ if item["content"]:
191
+ input = self.build_single_message(
192
+ item["role"],
193
+ item.get("metadata", ""),
194
+ item["content"],
195
+ tokenize=tokenize
196
+ )
197
+ if tokenize:
198
+ input_ids.extend(input)
199
+ else:
200
+ input_message += input
201
+ if add_generation_prompt:
202
+ if tokenize:
203
+ input_ids.extend([self.convert_tokens_to_ids("<|assistant|>")])
204
+ else:
205
+ input_message += "<|assistant|>"
206
+
207
+ return input_ids if tokenize else input_message
208
+
209
+ # Main logic to handle different conversation formats
210
+ if isinstance(conversation, list) and all(isinstance(i, dict) for i in conversation):
211
+ result = handle_single_conversation(conversation)
212
+ elif isinstance(conversation, list) and all(isinstance(i, list) for i in conversation):
213
+ result = [handle_single_conversation(c) for c in conversation]
214
+ elif hasattr(conversation, "messages"):
215
+ result = handle_single_conversation(conversation.messages)
216
+ else:
217
+ raise ValueError("Invalid conversation format")
218
+
219
+ if tokenize:
220
+ output = self.batch_encode_plus(
221
+ [result] if isinstance(result[0], int) else result,
222
+ padding=padding,
223
+ truncation=truncation,
224
+ max_length=max_length,
225
+ return_tensors=return_tensors,
226
+ is_split_into_words=True,
227
+ add_special_tokens=False
228
+ )
229
+ if return_dict:
230
+ return output
231
+ else:
232
+ return output["input_ids"]
233
+ else:
234
+ return result
235
+
236
+
237
+ def build_inputs_with_special_tokens(
238
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
239
+ ) -> List[int]:
240
+ """
241
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
242
+ adding special tokens. A BERT sequence has the following format:
243
+
244
+ - single sequence: `[CLS] X [SEP]`
245
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
246
+
247
+ Args:
248
+ token_ids_0 (`List[int]`):
249
+ List of IDs to which the special tokens will be added.
250
+ token_ids_1 (`List[int]`, *optional*):
251
+ Optional second list of IDs for sequence pairs.
252
+
253
+ Returns:
254
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
255
+ """
256
+ prefix_tokens = self.get_prefix_tokens()
257
+ token_ids_0 = prefix_tokens + token_ids_0
258
+ if token_ids_1 is not None:
259
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
260
+ return token_ids_0
261
+
262
+ def _pad(
263
+ self,
264
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
265
+ max_length: Optional[int] = None,
266
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
267
+ pad_to_multiple_of: Optional[int] = None,
268
+ return_attention_mask: Optional[bool] = None,
269
+ ) -> dict:
270
+ """
271
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
272
+
273
+ Args:
274
+ encoded_inputs:
275
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
276
+ max_length: maximum length of the returned list and optionally padding length (see below).
277
+ Will truncate by taking into account the special tokens.
278
+ padding_strategy: PaddingStrategy to use for padding.
279
+
280
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
281
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
282
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
283
+ The tokenizer padding sides are defined in self.padding_side:
284
+
285
+ - 'left': pads on the left of the sequences
286
+ - 'right': pads on the right of the sequences
287
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
288
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
289
+ `>= 7.5` (Volta).
290
+ return_attention_mask:
291
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
292
+ """
293
+ # Load from model defaults
294
+ assert self.padding_side == "left"
295
+
296
+ required_input = encoded_inputs[self.model_input_names[0]]
297
+ seq_length = len(required_input)
298
+
299
+ if padding_strategy == PaddingStrategy.LONGEST:
300
+ max_length = len(required_input)
301
+
302
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
303
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
304
+
305
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
306
+
307
+ # Initialize attention mask if not present.
308
+ if "attention_mask" not in encoded_inputs:
309
+ encoded_inputs["attention_mask"] = [1] * seq_length
310
+
311
+ if "position_ids" not in encoded_inputs:
312
+ encoded_inputs["position_ids"] = list(range(seq_length))
313
+
314
+ if needs_to_be_padded:
315
+ difference = max_length - len(required_input)
316
+
317
+ if "attention_mask" in encoded_inputs:
318
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
319
+ if "position_ids" in encoded_inputs:
320
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
321
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
322
+
323
+ return encoded_inputs
THUDM/glm-4-9b-chat/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
3
+ size 2623634
THUDM/glm-4-9b-chat/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_chatglm.ChatGLM4Tokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "added_tokens_decoder": {
9
+ "151329": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false,
15
+ "special": true
16
+ },
17
+ "151330": {
18
+ "content": "[MASK]",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false,
23
+ "special": true
24
+ },
25
+ "151331": {
26
+ "content": "[gMASK]",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false,
31
+ "special": true
32
+ },
33
+ "151332": {
34
+ "content": "[sMASK]",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false,
39
+ "special": true
40
+ },
41
+ "151333": {
42
+ "content": "<sop>",
43
+ "lstrip": false,
44
+ "normalized": false,
45
+ "rstrip": false,
46
+ "single_word": false,
47
+ "special": true
48
+ },
49
+ "151334": {
50
+ "content": "<eop>",
51
+ "lstrip": false,
52
+ "normalized": false,
53
+ "rstrip": false,
54
+ "single_word": false,
55
+ "special": true
56
+ },
57
+ "151335": {
58
+ "content": "<|system|>",
59
+ "lstrip": false,
60
+ "normalized": false,
61
+ "rstrip": false,
62
+ "single_word": false,
63
+ "special": true
64
+ },
65
+ "151336": {
66
+ "content": "<|user|>",
67
+ "lstrip": false,
68
+ "normalized": false,
69
+ "rstrip": false,
70
+ "single_word": false,
71
+ "special": true
72
+ },
73
+ "151337": {
74
+ "content": "<|assistant|>",
75
+ "lstrip": false,
76
+ "normalized": false,
77
+ "rstrip": false,
78
+ "single_word": false,
79
+ "special": true
80
+ },
81
+ "151338": {
82
+ "content": "<|observation|>",
83
+ "lstrip": false,
84
+ "normalized": false,
85
+ "rstrip": false,
86
+ "single_word": false,
87
+ "special": true
88
+ },
89
+ "151339": {
90
+ "content": "<|begin_of_image|>",
91
+ "lstrip": false,
92
+ "normalized": false,
93
+ "rstrip": false,
94
+ "single_word": false,
95
+ "special": true
96
+ },
97
+ "151340": {
98
+ "content": "<|end_of_image|>",
99
+ "lstrip": false,
100
+ "normalized": false,
101
+ "rstrip": false,
102
+ "single_word": false,
103
+ "special": true
104
+ },
105
+ "151341": {
106
+ "content": "<|begin_of_video|>",
107
+ "lstrip": false,
108
+ "normalized": false,
109
+ "rstrip": false,
110
+ "single_word": false,
111
+ "special": true
112
+ },
113
+ "151342": {
114
+ "content": "<|end_of_video|>",
115
+ "lstrip": false,
116
+ "normalized": false,
117
+ "rstrip": false,
118
+ "single_word": false,
119
+ "special": true
120
+ }
121
+ },
122
+ "additional_special_tokens": ["<|endoftext|>", "[MASK]", "[gMASK]", "[sMASK]", "<sop>", "<eop>", "<|system|>",
123
+ "<|user|>", "<|assistant|>", "<|observation|>", "<|begin_of_image|>", "<|end_of_image|>",
124
+ "<|begin_of_video|>", "<|end_of_video|>"],
125
+ "clean_up_tokenization_spaces": false,
126
+ "do_lower_case": false,
127
+ "eos_token": "<|endoftext|>",
128
+ "pad_token": "<|endoftext|>",
129
+ "model_max_length": 128000,
130
+ "padding_side": "left",
131
+ "remove_space": false,
132
+ "tokenizer_class": "ChatGLM4Tokenizer"
133
+ }
openai_api_request.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This script creates a OpenAI Request demo for the glm-4-9b model, just Use OpenAI API to interact with the model.
3
+ """
4
+
5
+ from openai import OpenAI
6
+
7
+ base_url = "http://127.0.0.1:8000/v1/"
8
+ client = OpenAI(api_key="EMPTY", base_url=base_url)
9
+
10
+
11
+ def function_chat(use_stream=False):
12
+ messages = [
13
+ {
14
+ "role": "user", "content": "What's the Celsius temperature in San Francisco?"
15
+ },
16
+
17
+ # Give Observations
18
+ # {
19
+ # "role": "assistant",
20
+ # "content": None,
21
+ # "function_call": None,
22
+ # "tool_calls": [
23
+ # {
24
+ # "id": "call_1717912616815",
25
+ # "function": {
26
+ # "name": "get_current_weather",
27
+ # "arguments": "{\"location\": \"San Francisco, CA\", \"format\": \"celsius\"}"
28
+ # },
29
+ # "type": "function"
30
+ # }
31
+ # ]
32
+ # },
33
+ # {
34
+ # "tool_call_id": "call_1717912616815",
35
+ # "role": "tool",
36
+ # "name": "get_current_weather",
37
+ # "content": "23°C",
38
+ # }
39
+ ]
40
+ tools = [
41
+ {
42
+ "type": "function",
43
+ "function": {
44
+ "name": "get_current_weather",
45
+ "description": "Get the current weather",
46
+ "parameters": {
47
+ "type": "object",
48
+ "properties": {
49
+ "location": {
50
+ "type": "string",
51
+ "description": "The city and state, e.g. San Francisco, CA",
52
+ },
53
+ "format": {
54
+ "type": "string",
55
+ "enum": ["celsius", "fahrenheit"],
56
+ "description": "The temperature unit to use. Infer this from the users location.",
57
+ },
58
+ },
59
+ "required": ["location", "format"],
60
+ },
61
+ }
62
+ },
63
+ ]
64
+
65
+ # All Tools: CogView
66
+ # messages = [{"role": "user", "content": "帮我画一张天空的画画吧"}]
67
+ # tools = [{"type": "cogview"}]
68
+
69
+ # All Tools: Searching
70
+ # messages = [{"role": "user", "content": "今天黄金的价格"}]
71
+ # tools = [{"type": "simple_browser"}]
72
+
73
+ response = client.chat.completions.create(
74
+ model="glm-4",
75
+ messages=messages,
76
+ tools=tools,
77
+ stream=use_stream,
78
+ max_tokens=256,
79
+ temperature=0.9,
80
+ presence_penalty=1.2,
81
+ top_p=0.1,
82
+ tool_choice="auto"
83
+ )
84
+ if response:
85
+ if use_stream:
86
+ for chunk in response:
87
+ print(chunk)
88
+ else:
89
+ print(response)
90
+ else:
91
+ print("Error:", response.status_code)
92
+
93
+
94
+ def simple_chat(use_stream=False):
95
+ messages = [
96
+ {
97
+ "role": "system",
98
+ "content": "请在你输出的时候都带上“喵喵喵”三个字,放在开头。",
99
+ },
100
+ {
101
+ "role": "user",
102
+ "content": "你是谁"
103
+ }
104
+ ]
105
+ response = client.chat.completions.create(
106
+ model="glm-4",
107
+ messages=messages,
108
+ stream=use_stream,
109
+ max_tokens=256,
110
+ temperature=0.4,
111
+ presence_penalty=1.2,
112
+ top_p=0.8,
113
+ )
114
+ if response:
115
+ if use_stream:
116
+ for chunk in response:
117
+ print(chunk)
118
+ else:
119
+ print(response)
120
+ else:
121
+ print("Error:", response.status_code)
122
+
123
+
124
+ if __name__ == "__main__":
125
+ # simple_chat(use_stream=False)
126
+ function_chat(use_stream=False)
127
+
openai_api_server.py ADDED
@@ -0,0 +1,635 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ from asyncio.log import logger
3
+ import re
4
+ import uvicorn
5
+ import gc
6
+ import json
7
+ import torch
8
+ import random
9
+ import string
10
+
11
+ from vllm import SamplingParams, AsyncEngineArgs, AsyncLLMEngine
12
+ from fastapi import FastAPI, HTTPException, Response
13
+ from fastapi.middleware.cors import CORSMiddleware
14
+ from contextlib import asynccontextmanager
15
+ from typing import List, Literal, Optional, Union
16
+ from pydantic import BaseModel, Field
17
+ from transformers import AutoTokenizer, LogitsProcessor
18
+ from sse_starlette.sse import EventSourceResponse
19
+
20
+ EventSourceResponse.DEFAULT_PING_INTERVAL = 1000
21
+ import os
22
+
23
+ MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4-9b-chat')
24
+ MAX_MODEL_LENGTH = 8192
25
+
26
+
27
+ @asynccontextmanager
28
+ async def lifespan(app: FastAPI):
29
+ yield
30
+ if torch.cuda.is_available():
31
+ torch.cuda.empty_cache()
32
+ torch.cuda.ipc_collect()
33
+
34
+
35
+ app = FastAPI(lifespan=lifespan)
36
+
37
+ app.add_middleware(
38
+ CORSMiddleware,
39
+ allow_origins=["*"],
40
+ allow_credentials=True,
41
+ allow_methods=["*"],
42
+ allow_headers=["*"],
43
+ )
44
+
45
+
46
+ def generate_id(prefix: str, k=29) -> str:
47
+ suffix = ''.join(random.choices(string.ascii_letters + string.digits, k=k))
48
+ return f"{prefix}{suffix}"
49
+
50
+
51
+ class ModelCard(BaseModel):
52
+ id: str = ""
53
+ object: str = "model"
54
+ created: int = Field(default_factory=lambda: int(time.time()))
55
+ owned_by: str = "owner"
56
+ root: Optional[str] = None
57
+ parent: Optional[str] = None
58
+ permission: Optional[list] = None
59
+
60
+
61
+ class ModelList(BaseModel):
62
+ object: str = "list"
63
+ data: List[ModelCard] = ["glm-4"]
64
+
65
+
66
+ class FunctionCall(BaseModel):
67
+ name: Optional[str] = None
68
+ arguments: Optional[str] = None
69
+
70
+
71
+ class ChoiceDeltaToolCallFunction(BaseModel):
72
+ name: Optional[str] = None
73
+ arguments: Optional[str] = None
74
+
75
+
76
+ class UsageInfo(BaseModel):
77
+ prompt_tokens: int = 0
78
+ total_tokens: int = 0
79
+ completion_tokens: Optional[int] = 0
80
+
81
+
82
+ class ChatCompletionMessageToolCall(BaseModel):
83
+ index: Optional[int] = 0
84
+ id: Optional[str] = None
85
+ function: FunctionCall
86
+ type: Optional[Literal["function"]] = 'function'
87
+
88
+
89
+ class ChatMessage(BaseModel):
90
+ # “function” 字段解释:
91
+ # 使用较老的OpenAI API版本需要注意在这里添加 function 字段并在 process_messages函数中添加相应角色转换逻辑为 observation
92
+
93
+ role: Literal["user", "assistant", "system", "tool"]
94
+ content: Optional[str] = None
95
+ function_call: Optional[ChoiceDeltaToolCallFunction] = None
96
+ tool_calls: Optional[List[ChatCompletionMessageToolCall]] = None
97
+
98
+
99
+ class DeltaMessage(BaseModel):
100
+ role: Optional[Literal["user", "assistant", "system"]] = None
101
+ content: Optional[str] = None
102
+ function_call: Optional[ChoiceDeltaToolCallFunction] = None
103
+ tool_calls: Optional[List[ChatCompletionMessageToolCall]] = None
104
+
105
+
106
+ class ChatCompletionResponseChoice(BaseModel):
107
+ index: int
108
+ message: ChatMessage
109
+ finish_reason: Literal["stop", "length", "tool_calls"]
110
+
111
+
112
+ class ChatCompletionResponseStreamChoice(BaseModel):
113
+ delta: DeltaMessage
114
+ finish_reason: Optional[Literal["stop", "length", "tool_calls"]]
115
+ index: int
116
+
117
+
118
+ class ChatCompletionResponse(BaseModel):
119
+ model: str
120
+ id: Optional[str] = Field(default_factory=lambda: generate_id('chatcmpl-', 29))
121
+ object: Literal["chat.completion", "chat.completion.chunk"]
122
+ choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
123
+ created: Optional[int] = Field(default_factory=lambda: int(time.time()))
124
+ system_fingerprint: Optional[str] = Field(default_factory=lambda: generate_id('fp_', 9))
125
+ usage: Optional[UsageInfo] = None
126
+
127
+
128
+ class ChatCompletionRequest(BaseModel):
129
+ model: str
130
+ messages: List[ChatMessage]
131
+ temperature: Optional[float] = 0.8
132
+ top_p: Optional[float] = 0.8
133
+ max_tokens: Optional[int] = None
134
+ stream: Optional[bool] = False
135
+ tools: Optional[Union[dict, List[dict]]] = None
136
+ tool_choice: Optional[Union[str, dict]] = None
137
+ repetition_penalty: Optional[float] = 1.1
138
+
139
+
140
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
141
+ def __call__(
142
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor
143
+ ) -> torch.FloatTensor:
144
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
145
+ scores.zero_()
146
+ scores[..., 5] = 5e4
147
+ return scores
148
+
149
+
150
+ def process_response(output: str, tools: dict | List[dict] = None, use_tool: bool = False) -> Union[str, dict]:
151
+ lines = output.strip().split("\n")
152
+ arguments_json = None
153
+ special_tools = ["cogview", "simple_browser"]
154
+ tools = {tool['function']['name'] for tool in tools}
155
+
156
+ # 这是一个简单的工具比较函数,不能保证拦截所有非工具输出的结果,比如参数未对齐等特殊情况。
157
+ ##TODO 如果你希望做更多判断,可以在这里进行逻辑完善。
158
+
159
+ if len(lines) >= 2 and lines[1].startswith("{"):
160
+ function_name = lines[0].strip()
161
+ arguments = "\n".join(lines[1:]).strip()
162
+ if function_name in tools or function_name in special_tools:
163
+ try:
164
+ arguments_json = json.loads(arguments)
165
+ is_tool_call = True
166
+ except json.JSONDecodeError:
167
+ is_tool_call = function_name in special_tools
168
+
169
+ if is_tool_call and use_tool:
170
+ content = {
171
+ "name": function_name,
172
+ "arguments": json.dumps(arguments_json if isinstance(arguments_json, dict) else arguments,
173
+ ensure_ascii=False)
174
+ }
175
+ if function_name == "simple_browser":
176
+ search_pattern = re.compile(r'search\("(.+?)"\s*,\s*recency_days\s*=\s*(\d+)\)')
177
+ match = search_pattern.match(arguments)
178
+ if match:
179
+ content["arguments"] = json.dumps({
180
+ "query": match.group(1),
181
+ "recency_days": int(match.group(2))
182
+ }, ensure_ascii=False)
183
+ elif function_name == "cogview":
184
+ content["arguments"] = json.dumps({
185
+ "prompt": arguments
186
+ }, ensure_ascii=False)
187
+
188
+ return content
189
+ return output.strip()
190
+
191
+
192
+ @torch.inference_mode()
193
+ async def generate_stream_glm4(params):
194
+ messages = params["messages"]
195
+ tools = params["tools"]
196
+ tool_choice = params["tool_choice"]
197
+ temperature = float(params.get("temperature", 1.0))
198
+ repetition_penalty = float(params.get("repetition_penalty", 1.0))
199
+ top_p = float(params.get("top_p", 1.0))
200
+ max_new_tokens = int(params.get("max_tokens", 8192))
201
+
202
+ messages = process_messages(messages, tools=tools, tool_choice=tool_choice)
203
+ inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
204
+ params_dict = {
205
+ "n": 1,
206
+ "best_of": 1,
207
+ "presence_penalty": 1.0,
208
+ "frequency_penalty": 0.0,
209
+ "temperature": temperature,
210
+ "top_p": top_p,
211
+ "top_k": -1,
212
+ "repetition_penalty": repetition_penalty,
213
+ "use_beam_search": False,
214
+ "length_penalty": 1,
215
+ "early_stopping": False,
216
+ "stop_token_ids": [151329, 151336, 151338],
217
+ "ignore_eos": False,
218
+ "max_tokens": max_new_tokens,
219
+ "logprobs": None,
220
+ "prompt_logprobs": None,
221
+ "skip_special_tokens": True,
222
+ }
223
+ sampling_params = SamplingParams(**params_dict)
224
+ async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}"):
225
+ output_len = len(output.outputs[0].token_ids)
226
+ input_len = len(output.prompt_token_ids)
227
+ ret = {
228
+ "text": output.outputs[0].text,
229
+ "usage": {
230
+ "prompt_tokens": input_len,
231
+ "completion_tokens": output_len,
232
+ "total_tokens": output_len + input_len
233
+ },
234
+ "finish_reason": output.outputs[0].finish_reason,
235
+ }
236
+ yield ret
237
+ gc.collect()
238
+ torch.cuda.empty_cache()
239
+
240
+
241
+ def process_messages(messages, tools=None, tool_choice="none"):
242
+ _messages = messages
243
+ processed_messages = []
244
+ msg_has_sys = False
245
+
246
+ def filter_tools(tool_choice, tools):
247
+ function_name = tool_choice.get('function', {}).get('name', None)
248
+ if not function_name:
249
+ return []
250
+ filtered_tools = [
251
+ tool for tool in tools
252
+ if tool.get('function', {}).get('name') == function_name
253
+ ]
254
+ return filtered_tools
255
+
256
+ if tool_choice != "none":
257
+ if isinstance(tool_choice, dict):
258
+ tools = filter_tools(tool_choice, tools)
259
+ if tools:
260
+ processed_messages.append(
261
+ {
262
+ "role": "system",
263
+ "content": None,
264
+ "tools": tools
265
+ }
266
+ )
267
+ msg_has_sys = True
268
+
269
+ if isinstance(tool_choice, dict) and tools:
270
+ processed_messages.append(
271
+ {
272
+ "role": "assistant",
273
+ "metadata": tool_choice["function"]["name"],
274
+ "content": ""
275
+ }
276
+ )
277
+
278
+ for m in _messages:
279
+ role, content, func_call = m.role, m.content, m.function_call
280
+ tool_calls = getattr(m, 'tool_calls', None)
281
+
282
+ if role == "function":
283
+ processed_messages.append(
284
+ {
285
+ "role": "observation",
286
+ "content": content
287
+ }
288
+ )
289
+ elif role == "tool":
290
+ processed_messages.append(
291
+ {
292
+ "role": "observation",
293
+ "content": content,
294
+ "function_call": True
295
+ }
296
+ )
297
+ elif role == "assistant":
298
+ if tool_calls:
299
+ for tool_call in tool_calls:
300
+ processed_messages.append(
301
+ {
302
+ "role": "assistant",
303
+ "metadata": tool_call.function.name,
304
+ "content": tool_call.function.arguments
305
+ }
306
+ )
307
+ else:
308
+ for response in content.split("\n"):
309
+ if "\n" in response:
310
+ metadata, sub_content = response.split("\n", maxsplit=1)
311
+ else:
312
+ metadata, sub_content = "", response
313
+ processed_messages.append(
314
+ {
315
+ "role": role,
316
+ "metadata": metadata,
317
+ "content": sub_content.strip()
318
+ }
319
+ )
320
+ else:
321
+ if role == "system" and msg_has_sys:
322
+ msg_has_sys = False
323
+ continue
324
+ processed_messages.append({"role": role, "content": content})
325
+
326
+ if not tools or tool_choice == "none":
327
+ for m in _messages:
328
+ if m.role == 'system':
329
+ processed_messages.insert(0, {"role": m.role, "content": m.content})
330
+ break
331
+ return processed_messages
332
+
333
+
334
+ @app.get("/health")
335
+ async def health() -> Response:
336
+ """Health check."""
337
+ return Response(status_code=200)
338
+
339
+
340
+ @app.get("/v1/models", response_model=ModelList)
341
+ async def list_models():
342
+ model_card = ModelCard(id="glm-4")
343
+ return ModelList(data=[model_card])
344
+
345
+
346
+ @app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
347
+ async def create_chat_completion(request: ChatCompletionRequest):
348
+ if len(request.messages) < 1 or request.messages[-1].role == "assistant":
349
+ raise HTTPException(status_code=400, detail="Invalid request")
350
+
351
+ gen_params = dict(
352
+ messages=request.messages,
353
+ temperature=request.temperature,
354
+ top_p=request.top_p,
355
+ max_tokens=request.max_tokens or 1024,
356
+ echo=False,
357
+ stream=request.stream,
358
+ repetition_penalty=request.repetition_penalty,
359
+ tools=request.tools,
360
+ tool_choice=request.tool_choice,
361
+ )
362
+ logger.debug(f"==== request ====\n{gen_params}")
363
+
364
+ if request.stream:
365
+ predict_stream_generator = predict_stream(request.model, gen_params)
366
+ output = await anext(predict_stream_generator)
367
+ if output:
368
+ return EventSourceResponse(predict_stream_generator, media_type="text/event-stream")
369
+ logger.debug(f"First result output:\n{output}")
370
+
371
+ function_call = None
372
+ if output and request.tools:
373
+ try:
374
+ function_call = process_response(output, request.tools, use_tool=True)
375
+ except:
376
+ logger.warning("Failed to parse tool call")
377
+
378
+ if isinstance(function_call, dict):
379
+ function_call = ChoiceDeltaToolCallFunction(**function_call)
380
+ generate = parse_output_text(request.model, output, function_call=function_call)
381
+ return EventSourceResponse(generate, media_type="text/event-stream")
382
+ else:
383
+ return EventSourceResponse(predict_stream_generator, media_type="text/event-stream")
384
+ response = ""
385
+ async for response in generate_stream_glm4(gen_params):
386
+ pass
387
+
388
+ if response["text"].startswith("\n"):
389
+ response["text"] = response["text"][1:]
390
+ response["text"] = response["text"].strip()
391
+
392
+ usage = UsageInfo()
393
+
394
+ function_call, finish_reason = None, "stop"
395
+ tool_calls = None
396
+ if request.tools:
397
+ try:
398
+ function_call = process_response(response["text"], request.tools, use_tool=True)
399
+ except Exception as e:
400
+ logger.warning(f"Failed to parse tool call: {e}")
401
+ if isinstance(function_call, dict):
402
+ finish_reason = "tool_calls"
403
+ function_call_response = ChoiceDeltaToolCallFunction(**function_call)
404
+ function_call_instance = FunctionCall(
405
+ name=function_call_response.name,
406
+ arguments=function_call_response.arguments
407
+ )
408
+ tool_calls = [
409
+ ChatCompletionMessageToolCall(
410
+ id=generate_id('call_', 24),
411
+ function=function_call_instance,
412
+ type="function")]
413
+
414
+ message = ChatMessage(
415
+ role="assistant",
416
+ content=None if tool_calls else response["text"],
417
+ function_call=None,
418
+ tool_calls=tool_calls,
419
+ )
420
+
421
+ logger.debug(f"==== message ====\n{message}")
422
+
423
+ choice_data = ChatCompletionResponseChoice(
424
+ index=0,
425
+ message=message,
426
+ finish_reason=finish_reason,
427
+ )
428
+ task_usage = UsageInfo.model_validate(response["usage"])
429
+ for usage_key, usage_value in task_usage.model_dump().items():
430
+ setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
431
+
432
+ return ChatCompletionResponse(
433
+ model=request.model,
434
+ choices=[choice_data],
435
+ object="chat.completion",
436
+ usage=usage
437
+ )
438
+
439
+
440
+ async def predict_stream(model_id, gen_params):
441
+ output = ""
442
+ is_function_call = False
443
+ has_send_first_chunk = False
444
+ created_time = int(time.time())
445
+ function_name = None
446
+ response_id = generate_id('chatcmpl-', 29)
447
+ system_fingerprint = generate_id('fp_', 9)
448
+ tools = {tool['function']['name'] for tool in gen_params['tools']} if gen_params['tools'] else None
449
+ async for new_response in generate_stream_glm4(gen_params):
450
+ decoded_unicode = new_response["text"]
451
+ delta_text = decoded_unicode[len(output):]
452
+ output = decoded_unicode
453
+ lines = output.strip().split("\n")
454
+
455
+ # 检查是否为工具
456
+ # 这是一个简单的工具比较函数,不能保证拦截所有非工具输出的结果,比如参数未对齐等特殊情况。
457
+ ##TODO 如果你希望做更多处理,可以在这里进行逻辑完善。
458
+
459
+ if not is_function_call and len(lines) >= 2:
460
+ first_line = lines[0].strip()
461
+ if first_line in tools:
462
+ is_function_call = True
463
+ function_name = first_line
464
+
465
+ # 工具调用返回
466
+ if is_function_call:
467
+ if not has_send_first_chunk:
468
+ function_call = {"name": function_name, "arguments": ""}
469
+ tool_call = ChatCompletionMessageToolCall(
470
+ index=0,
471
+ id=generate_id('call_', 24),
472
+ function=FunctionCall(**function_call),
473
+ type="function"
474
+ )
475
+ message = DeltaMessage(
476
+ content=None,
477
+ role="assistant",
478
+ function_call=None,
479
+ tool_calls=[tool_call]
480
+ )
481
+ choice_data = ChatCompletionResponseStreamChoice(
482
+ index=0,
483
+ delta=message,
484
+ finish_reason=None
485
+ )
486
+ chunk = ChatCompletionResponse(
487
+ model=model_id,
488
+ id=response_id,
489
+ choices=[choice_data],
490
+ created=created_time,
491
+ system_fingerprint=system_fingerprint,
492
+ object="chat.completion.chunk"
493
+ )
494
+ yield ""
495
+ yield chunk.model_dump_json(exclude_unset=True)
496
+ has_send_first_chunk = True
497
+
498
+ function_call = {"name": None, "arguments": delta_text}
499
+ tool_call = ChatCompletionMessageToolCall(
500
+ index=0,
501
+ id=None,
502
+ function=FunctionCall(**function_call),
503
+ type="function"
504
+ )
505
+ message = DeltaMessage(
506
+ content=None,
507
+ role=None,
508
+ function_call=None,
509
+ tool_calls=[tool_call]
510
+ )
511
+ choice_data = ChatCompletionResponseStreamChoice(
512
+ index=0,
513
+ delta=message,
514
+ finish_reason=None
515
+ )
516
+ chunk = ChatCompletionResponse(
517
+ model=model_id,
518
+ id=response_id,
519
+ choices=[choice_data],
520
+ created=created_time,
521
+ system_fingerprint=system_fingerprint,
522
+ object="chat.completion.chunk"
523
+ )
524
+ yield chunk.model_dump_json(exclude_unset=True)
525
+
526
+ # 用户请求了 Function Call 但是框架还没确定是否为Function Call
527
+ elif (gen_params["tools"] and gen_params["tool_choice"] != "none") or is_function_call:
528
+ continue
529
+
530
+ # 常规返回
531
+ else:
532
+ finish_reason = new_response.get("finish_reason", None)
533
+ if not has_send_first_chunk:
534
+ message = DeltaMessage(
535
+ content="",
536
+ role="assistant",
537
+ function_call=None,
538
+ )
539
+ choice_data = ChatCompletionResponseStreamChoice(
540
+ index=0,
541
+ delta=message,
542
+ finish_reason=finish_reason
543
+ )
544
+ chunk = ChatCompletionResponse(
545
+ model=model_id,
546
+ id=response_id,
547
+ choices=[choice_data],
548
+ created=created_time,
549
+ system_fingerprint=system_fingerprint,
550
+ object="chat.completion.chunk"
551
+ )
552
+ yield chunk.model_dump_json(exclude_unset=True)
553
+ has_send_first_chunk = True
554
+
555
+ message = DeltaMessage(
556
+ content=delta_text,
557
+ role="assistant",
558
+ function_call=None,
559
+ )
560
+ choice_data = ChatCompletionResponseStreamChoice(
561
+ index=0,
562
+ delta=message,
563
+ finish_reason=finish_reason
564
+ )
565
+ chunk = ChatCompletionResponse(
566
+ model=model_id,
567
+ id=response_id,
568
+ choices=[choice_data],
569
+ created=created_time,
570
+ system_fingerprint=system_fingerprint,
571
+ object="chat.completion.chunk"
572
+ )
573
+ yield chunk.model_dump_json(exclude_unset=True)
574
+
575
+ # 工具调用需要额外返回一个字段以对齐 OpenAI 接口
576
+ if is_function_call:
577
+ yield ChatCompletionResponse(
578
+ model=model_id,
579
+ id=response_id,
580
+ system_fingerprint=system_fingerprint,
581
+ choices=[
582
+ ChatCompletionResponseStreamChoice(
583
+ index=0,
584
+ delta=DeltaMessage(
585
+ content=None,
586
+ role=None,
587
+ function_call=None,
588
+ ),
589
+ finish_reason="tool_calls"
590
+ )],
591
+ created=created_time,
592
+ object="chat.completion.chunk",
593
+ usage=None
594
+ ).model_dump_json(exclude_unset=True)
595
+ yield '[DONE]'
596
+
597
+
598
+ async def parse_output_text(model_id: str, value: str, function_call: ChoiceDeltaToolCallFunction = None):
599
+ delta = DeltaMessage(role="assistant", content=value)
600
+ if function_call is not None:
601
+ delta.function_call = function_call
602
+
603
+ choice_data = ChatCompletionResponseStreamChoice(
604
+ index=0,
605
+ delta=delta,
606
+ finish_reason=None
607
+ )
608
+ chunk = ChatCompletionResponse(
609
+ model=model_id,
610
+ choices=[choice_data],
611
+ object="chat.completion.chunk"
612
+ )
613
+ yield "{}".format(chunk.model_dump_json(exclude_unset=True))
614
+ yield '[DONE]'
615
+
616
+
617
+ if __name__ == "__main__":
618
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
619
+ engine_args = AsyncEngineArgs(
620
+ model=MODEL_PATH,
621
+ tokenizer=MODEL_PATH,
622
+ # 如果你有多张显卡,可以在这里设置成你的显卡数量
623
+ tensor_parallel_size=1,
624
+ dtype="bfloat16",
625
+ trust_remote_code=True,
626
+ # 占用显存的比例,请根据你的显卡显存大小设置合适的值,例如,如果你的显卡有80G,您只想使用24G,请按照24/80=0.3设置
627
+ gpu_memory_utilization=0.9,
628
+ enforce_eager=True,
629
+ worker_use_ray=False,
630
+ engine_use_ray=False,
631
+ disable_log_requests=True,
632
+ max_model_len=MAX_MODEL_LENGTH,
633
+ )
634
+ engine = AsyncLLMEngine.from_engine_args(engine_args)
635
+ uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
requirements.txt ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # use vllm
2
+ # vllm>=0.5.0
3
+
4
+ torch>=2.3.0
5
+ torchvision>=0.18.0
6
+ transformers==4.40.0
7
+ huggingface-hub>=0.23.1
8
+ sentencepiece>=0.2.0
9
+ pydantic>=2.7.1
10
+ timm>=0.9.16
11
+ tiktoken>=0.7.0
12
+ accelerate>=0.30.1
13
+ sentence_transformers>=2.7.0
14
+
15
+ # web demo
16
+ gradio>=4.33.0
17
+
18
+ # openai demo
19
+ openai>=1.34.0
20
+ einops>=0.7.0
21
+ sse-starlette>=2.1.0
22
+
23
+ # INT4
24
+ bitsandbytes>=0.43.1
25
+
26
+ # PEFT model, not need if you don't use PEFT finetune model.
27
+ # peft>=0.11.0
trans_batch_demo.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+
3
+ Here is an example of using batch request glm-4-9b,
4
+ here you need to build the conversation format yourself and then call the batch function to make batch requests.
5
+ Please note that in this demo, the memory consumption is significantly higher.
6
+
7
+ """
8
+
9
+ from typing import Optional, Union
10
+ from transformers import AutoModel, AutoTokenizer, LogitsProcessorList
11
+
12
+ MODEL_PATH = 'THUDM/glm-4-9b-chat'
13
+
14
+ tokenizer = AutoTokenizer.from_pretrained(
15
+ MODEL_PATH,
16
+ trust_remote_code=True,
17
+ encode_special_tokens=True)
18
+ model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").eval()
19
+
20
+
21
+ def process_model_outputs(inputs, outputs, tokenizer):
22
+ responses = []
23
+ for input_ids, output_ids in zip(inputs.input_ids, outputs):
24
+ response = tokenizer.decode(output_ids[len(input_ids):], skip_special_tokens=True).strip()
25
+ responses.append(response)
26
+ return responses
27
+
28
+
29
+ def batch(
30
+ model,
31
+ tokenizer,
32
+ messages: Union[str, list[str]],
33
+ max_input_tokens: int = 8192,
34
+ max_new_tokens: int = 8192,
35
+ num_beams: int = 1,
36
+ do_sample: bool = True,
37
+ top_p: float = 0.8,
38
+ temperature: float = 0.8,
39
+ logits_processor: Optional[LogitsProcessorList] = LogitsProcessorList(),
40
+ ):
41
+ messages = [messages] if isinstance(messages, str) else messages
42
+ batched_inputs = tokenizer(messages, return_tensors="pt", padding="max_length", truncation=True,
43
+ max_length=max_input_tokens).to(model.device)
44
+
45
+ gen_kwargs = {
46
+ "max_new_tokens": max_new_tokens,
47
+ "num_beams": num_beams,
48
+ "do_sample": do_sample,
49
+ "top_p": top_p,
50
+ "temperature": temperature,
51
+ "logits_processor": logits_processor,
52
+ "eos_token_id": model.config.eos_token_id
53
+ }
54
+ batched_outputs = model.generate(**batched_inputs, **gen_kwargs)
55
+ batched_response = process_model_outputs(batched_inputs, batched_outputs, tokenizer)
56
+ return batched_response
57
+
58
+
59
+ if __name__ == "__main__":
60
+
61
+ batch_message = [
62
+ [
63
+ {"role": "user", "content": "我的爸爸和妈妈结婚为什么不能带我去"},
64
+ {"role": "assistant", "content": "因为他们结婚时你还没有出生"},
65
+ {"role": "user", "content": "我刚才的提问是"}
66
+ ],
67
+ [
68
+ {"role": "user", "content": "你好,你是谁"}
69
+ ]
70
+ ]
71
+
72
+ batch_inputs = []
73
+ max_input_tokens = 1024
74
+ for i, messages in enumerate(batch_message):
75
+ new_batch_input = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
76
+ max_input_tokens = max(max_input_tokens, len(new_batch_input))
77
+ batch_inputs.append(new_batch_input)
78
+ gen_kwargs = {
79
+ "max_input_tokens": max_input_tokens,
80
+ "max_new_tokens": 8192,
81
+ "do_sample": True,
82
+ "top_p": 0.8,
83
+ "temperature": 0.8,
84
+ "num_beams": 1,
85
+ }
86
+
87
+ batch_responses = batch(model, tokenizer, batch_inputs, **gen_kwargs)
88
+ for response in batch_responses:
89
+ print("=" * 10)
90
+ print(response)
trans_cli_demo.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This script creates a CLI demo with transformers backend for the glm-4-9b model,
3
+ allowing users to interact with the model through a command-line interface.
4
+
5
+ Usage:
6
+ - Run the script to start the CLI demo.
7
+ - Interact with the model by typing questions and receiving responses.
8
+
9
+ Note: The script includes a modification to handle markdown to plain text conversion,
10
+ ensuring that the CLI interface displays formatted text correctly.
11
+ """
12
+
13
+ import os
14
+ import torch
15
+ from threading import Thread
16
+ from transformers import AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, AutoModel
17
+
18
+ MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4-9b-chat')
19
+
20
+ ## If use peft model.
21
+ # def load_model_and_tokenizer(model_dir, trust_remote_code: bool = True):
22
+ # if (model_dir / 'adapter_config.json').exists():
23
+ # model = AutoModel.from_pretrained(
24
+ # model_dir, trust_remote_code=trust_remote_code, device_map='auto'
25
+ # )
26
+ # tokenizer_dir = model.peft_config['default'].base_model_name_or_path
27
+ # else:
28
+ # model = AutoModel.from_pretrained(
29
+ # model_dir, trust_remote_code=trust_remote_code, device_map='auto'
30
+ # )
31
+ # tokenizer_dir = model_dir
32
+ # tokenizer = AutoTokenizer.from_pretrained(
33
+ # tokenizer_dir, trust_remote_code=trust_remote_code, use_fast=False
34
+ # )
35
+ # return model, tokenizer
36
+
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained(
39
+ MODEL_PATH,
40
+ trust_remote_code=True,
41
+ encode_special_tokens=True
42
+ )
43
+ model = AutoModel.from_pretrained(
44
+ MODEL_PATH,
45
+ trust_remote_code=True,
46
+ device_map="auto").eval()
47
+
48
+
49
+ class StopOnTokens(StoppingCriteria):
50
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
51
+ stop_ids = model.config.eos_token_id
52
+ for stop_id in stop_ids:
53
+ if input_ids[0][-1] == stop_id:
54
+ return True
55
+ return False
56
+
57
+
58
+ if __name__ == "__main__":
59
+ history = []
60
+ max_length = 8192
61
+ top_p = 0.8
62
+ temperature = 0.6
63
+ stop = StopOnTokens()
64
+
65
+ print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")
66
+ while True:
67
+ user_input = input("\nYou: ")
68
+ if user_input.lower() in ["exit", "quit"]:
69
+ break
70
+ history.append([user_input, ""])
71
+
72
+ messages = []
73
+ for idx, (user_msg, model_msg) in enumerate(history):
74
+ if idx == len(history) - 1 and not model_msg:
75
+ messages.append({"role": "user", "content": user_msg})
76
+ break
77
+ if user_msg:
78
+ messages.append({"role": "user", "content": user_msg})
79
+ if model_msg:
80
+ messages.append({"role": "assistant", "content": model_msg})
81
+ model_inputs = tokenizer.apply_chat_template(
82
+ messages,
83
+ add_generation_prompt=True,
84
+ tokenize=True,
85
+ return_tensors="pt"
86
+ ).to(model.device)
87
+ streamer = TextIteratorStreamer(
88
+ tokenizer=tokenizer,
89
+ timeout=60,
90
+ skip_prompt=True,
91
+ skip_special_tokens=True
92
+ )
93
+ generate_kwargs = {
94
+ "input_ids": model_inputs,
95
+ "streamer": streamer,
96
+ "max_new_tokens": max_length,
97
+ "do_sample": True,
98
+ "top_p": top_p,
99
+ "temperature": temperature,
100
+ "stopping_criteria": StoppingCriteriaList([stop]),
101
+ "repetition_penalty": 1.2,
102
+ "eos_token_id": model.config.eos_token_id,
103
+ }
104
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
105
+ t.start()
106
+ print("GLM-4:", end="", flush=True)
107
+ for new_token in streamer:
108
+ if new_token:
109
+ print(new_token, end="", flush=True)
110
+ history[-1][1] += new_token
111
+
112
+ history[-1][1] = history[-1][1].strip()
trans_cli_vision_demo.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This script creates a CLI demo with transformers backend for the glm-4v-9b model,
3
+ allowing users to interact with the model through a command-line interface.
4
+
5
+ Usage:
6
+ - Run the script to start the CLI demo.
7
+ - Interact with the model by typing questions and receiving responses.
8
+
9
+ Note: The script includes a modification to handle markdown to plain text conversion,
10
+ ensuring that the CLI interface displays formatted text correctly.
11
+ """
12
+
13
+ import os
14
+ import torch
15
+ from threading import Thread
16
+ from transformers import (
17
+ AutoTokenizer,
18
+ StoppingCriteria,
19
+ StoppingCriteriaList,
20
+ TextIteratorStreamer, AutoModel, BitsAndBytesConfig
21
+ )
22
+
23
+ from PIL import Image
24
+
25
+ MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4v-9b')
26
+
27
+ tokenizer = AutoTokenizer.from_pretrained(
28
+ MODEL_PATH,
29
+ trust_remote_code=True,
30
+ encode_special_tokens=True
31
+ )
32
+ model = AutoModel.from_pretrained(
33
+ MODEL_PATH,
34
+ trust_remote_code=True,
35
+ device_map="auto",
36
+ torch_dtype=torch.bfloat16
37
+ ).eval()
38
+
39
+ ## For INT4 inference
40
+ # model = AutoModel.from_pretrained(
41
+ # MODEL_PATH,
42
+ # trust_remote_code=True,
43
+ # quantization_config=BitsAndBytesConfig(load_in_4bit=True),
44
+ # torch_dtype=torch.bfloat16,
45
+ # low_cpu_mem_usage=True
46
+ # ).eval()
47
+
48
+ class StopOnTokens(StoppingCriteria):
49
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
50
+ stop_ids = model.config.eos_token_id
51
+ for stop_id in stop_ids:
52
+ if input_ids[0][-1] == stop_id:
53
+ return True
54
+ return False
55
+
56
+
57
+ if __name__ == "__main__":
58
+ history = []
59
+ max_length = 1024
60
+ top_p = 0.8
61
+ temperature = 0.6
62
+ stop = StopOnTokens()
63
+ uploaded = False
64
+ image = None
65
+ print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")
66
+ image_path = input("Image Path:")
67
+ try:
68
+ image = Image.open(image_path).convert("RGB")
69
+ except:
70
+ print("Invalid image path. Continuing with text conversation.")
71
+ while True:
72
+ user_input = input("\nYou: ")
73
+ if user_input.lower() in ["exit", "quit"]:
74
+ break
75
+ history.append([user_input, ""])
76
+
77
+ messages = []
78
+ for idx, (user_msg, model_msg) in enumerate(history):
79
+ if idx == len(history) - 1 and not model_msg:
80
+ messages.append({"role": "user", "content": user_msg})
81
+ if image and not uploaded:
82
+ messages[-1].update({"image": image})
83
+ uploaded = True
84
+ break
85
+ if user_msg:
86
+ messages.append({"role": "user", "content": user_msg})
87
+ if model_msg:
88
+ messages.append({"role": "assistant", "content": model_msg})
89
+ model_inputs = tokenizer.apply_chat_template(
90
+ messages,
91
+ add_generation_prompt=True,
92
+ tokenize=True,
93
+ return_tensors="pt",
94
+ return_dict=True
95
+ ).to(next(model.parameters()).device)
96
+ streamer = TextIteratorStreamer(
97
+ tokenizer=tokenizer,
98
+ timeout=60,
99
+ skip_prompt=True,
100
+ skip_special_tokens=True
101
+ )
102
+ generate_kwargs = {
103
+ **model_inputs,
104
+ "streamer": streamer,
105
+ "max_new_tokens": max_length,
106
+ "do_sample": True,
107
+ "top_p": top_p,
108
+ "temperature": temperature,
109
+ "stopping_criteria": StoppingCriteriaList([stop]),
110
+ "repetition_penalty": 1.2,
111
+ "eos_token_id": [151329, 151336, 151338],
112
+ }
113
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
114
+ t.start()
115
+ print("GLM-4V:", end="", flush=True)
116
+ for new_token in streamer:
117
+ if new_token:
118
+ print(new_token, end="", flush=True)
119
+ history[-1][1] += new_token
120
+
121
+ history[-1][1] = history[-1][1].strip()
trans_cli_vision_gradio_demo.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This script creates a Gradio demo with a Transformers backend for the glm-4v-9b model, allowing users to interact with the model through a Gradio web UI.
3
+
4
+ Usage:
5
+ - Run the script to start the Gradio server.
6
+ - Interact with the model via the web UI.
7
+
8
+ Requirements:
9
+ - Gradio package
10
+ - Type `pip install gradio` to install Gradio.
11
+ """
12
+
13
+ import os
14
+ import torch
15
+ import gradio as gr
16
+ from threading import Thread
17
+ from transformers import (
18
+ AutoTokenizer,
19
+ StoppingCriteria,
20
+ StoppingCriteriaList,
21
+ TextIteratorStreamer, AutoModel, BitsAndBytesConfig
22
+ )
23
+ from PIL import Image
24
+ import requests
25
+ from io import BytesIO
26
+
27
+ MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4v-9b')
28
+
29
+ tokenizer = AutoTokenizer.from_pretrained(
30
+ MODEL_PATH,
31
+ trust_remote_code=True,
32
+ encode_special_tokens=True
33
+ )
34
+ model = AutoModel.from_pretrained(
35
+ MODEL_PATH,
36
+ trust_remote_code=True,
37
+ device_map="auto",
38
+ torch_dtype=torch.bfloat16
39
+ ).eval()
40
+
41
+ class StopOnTokens(StoppingCriteria):
42
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
43
+ stop_ids = model.config.eos_token_id
44
+ for stop_id in stop_ids:
45
+ if input_ids[0][-1] == stop_id:
46
+ return True
47
+ return False
48
+
49
+ def get_image(image_path=None, image_url=None):
50
+ if image_path:
51
+ return Image.open(image_path).convert("RGB")
52
+ elif image_url:
53
+ response = requests.get(image_url)
54
+ return Image.open(BytesIO(response.content)).convert("RGB")
55
+ return None
56
+
57
+ def chatbot(image_path=None, image_url=None, assistant_prompt=""):
58
+ image = get_image(image_path, image_url)
59
+
60
+ messages = [
61
+ {"role": "assistant", "content": assistant_prompt},
62
+ {"role": "user", "content": "", "image": image}
63
+ ]
64
+
65
+ model_inputs = tokenizer.apply_chat_template(
66
+ messages,
67
+ add_generation_prompt=True,
68
+ tokenize=True,
69
+ return_tensors="pt",
70
+ return_dict=True
71
+ ).to(next(model.parameters()).device)
72
+
73
+ streamer = TextIteratorStreamer(
74
+ tokenizer=tokenizer,
75
+ timeout=60,
76
+ skip_prompt=True,
77
+ skip_special_tokens=True
78
+ )
79
+
80
+ generate_kwargs = {
81
+ **model_inputs,
82
+ "streamer": streamer,
83
+ "max_new_tokens": 1024,
84
+ "do_sample": True,
85
+ "top_p": 0.8,
86
+ "temperature": 0.6,
87
+ "stopping_criteria": StoppingCriteriaList([StopOnTokens()]),
88
+ "repetition_penalty": 1.2,
89
+ "eos_token_id": [151329, 151336, 151338],
90
+ }
91
+
92
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
93
+ t.start()
94
+
95
+ response = ""
96
+ for new_token in streamer:
97
+ if new_token:
98
+ response += new_token
99
+
100
+ return image, response.strip()
101
+
102
+ with gr.Blocks() as demo:
103
+ demo.title = "GLM-4V-9B Image Recognition Demo"
104
+ demo.description = """
105
+ This demo uses the GLM-4V-9B model to got image infomation.
106
+ """
107
+ with gr.Row():
108
+ with gr.Column():
109
+ image_path_input = gr.File(label="Upload Image (High-Priority)", type="filepath")
110
+ image_url_input = gr.Textbox(label="Image URL (Low-Priority)")
111
+ assistant_prompt_input = gr.Textbox(label="Assistant Prompt (You Can Change It)", value="这是什么?")
112
+ submit_button = gr.Button("Submit")
113
+ with gr.Column():
114
+ chatbot_output = gr.Textbox(label="GLM-4V-9B Model Response")
115
+ image_output = gr.Image(label="Image Preview")
116
+
117
+ submit_button.click(chatbot,
118
+ inputs=[image_path_input, image_url_input, assistant_prompt_input],
119
+ outputs=[image_output, chatbot_output])
120
+
121
+ demo.launch(server_name="127.0.0.1", server_port=8911, inbrowser=True, share=False)
trans_stress_test.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import time
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
4
+ import torch
5
+ from threading import Thread
6
+
7
+ MODEL_PATH = 'THUDM/glm-4-9b-chat'
8
+
9
+
10
+ def stress_test(token_len, n, num_gpu):
11
+ device = torch.device(f"cuda:{num_gpu - 1}" if torch.cuda.is_available() and num_gpu > 0 else "cpu")
12
+ tokenizer = AutoTokenizer.from_pretrained(
13
+ MODEL_PATH,
14
+ trust_remote_code=True,
15
+ padding_side="left"
16
+ )
17
+ model = AutoModelForCausalLM.from_pretrained(
18
+ MODEL_PATH,
19
+ trust_remote_code=True,
20
+ torch_dtype=torch.bfloat16
21
+ ).to(device).eval()
22
+
23
+ # Use INT4 weight infer
24
+ # model = AutoModelForCausalLM.from_pretrained(
25
+ # MODEL_PATH,
26
+ # trust_remote_code=True,
27
+ # quantization_config=BitsAndBytesConfig(load_in_4bit=True),
28
+ # low_cpu_mem_usage=True,
29
+ # ).eval()
30
+
31
+ times = []
32
+ decode_times = []
33
+
34
+ print("Warming up...")
35
+ vocab_size = tokenizer.vocab_size
36
+ warmup_token_len = 20
37
+ random_token_ids = torch.randint(3, vocab_size - 200, (warmup_token_len - 5,), dtype=torch.long)
38
+ start_tokens = [151331, 151333, 151336, 198]
39
+ end_tokens = [151337]
40
+ input_ids = torch.tensor(start_tokens + random_token_ids.tolist() + end_tokens, dtype=torch.long).unsqueeze(0).to(
41
+ device)
42
+ attention_mask = torch.ones_like(input_ids, dtype=torch.bfloat16).to(device)
43
+ position_ids = torch.arange(len(input_ids[0]), dtype=torch.bfloat16).unsqueeze(0).to(device)
44
+ warmup_inputs = {
45
+ 'input_ids': input_ids,
46
+ 'attention_mask': attention_mask,
47
+ 'position_ids': position_ids
48
+ }
49
+ with torch.no_grad():
50
+ _ = model.generate(
51
+ input_ids=warmup_inputs['input_ids'],
52
+ attention_mask=warmup_inputs['attention_mask'],
53
+ max_new_tokens=2048,
54
+ do_sample=False,
55
+ repetition_penalty=1.0,
56
+ eos_token_id=[151329, 151336, 151338]
57
+ )
58
+ print("Warming up complete. Starting stress test...")
59
+
60
+ for i in range(n):
61
+ random_token_ids = torch.randint(3, vocab_size - 200, (token_len - 5,), dtype=torch.long)
62
+ input_ids = torch.tensor(start_tokens + random_token_ids.tolist() + end_tokens, dtype=torch.long).unsqueeze(
63
+ 0).to(device)
64
+ attention_mask = torch.ones_like(input_ids, dtype=torch.bfloat16).to(device)
65
+ position_ids = torch.arange(len(input_ids[0]), dtype=torch.bfloat16).unsqueeze(0).to(device)
66
+ test_inputs = {
67
+ 'input_ids': input_ids,
68
+ 'attention_mask': attention_mask,
69
+ 'position_ids': position_ids
70
+ }
71
+
72
+ streamer = TextIteratorStreamer(
73
+ tokenizer=tokenizer,
74
+ timeout=36000,
75
+ skip_prompt=True,
76
+ skip_special_tokens=True
77
+ )
78
+
79
+ generate_kwargs = {
80
+ "input_ids": test_inputs['input_ids'],
81
+ "attention_mask": test_inputs['attention_mask'],
82
+ "max_new_tokens": 512,
83
+ "do_sample": False,
84
+ "repetition_penalty": 1.0,
85
+ "eos_token_id": [151329, 151336, 151338],
86
+ "streamer": streamer
87
+ }
88
+
89
+ start_time = time.time()
90
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
91
+ t.start()
92
+
93
+ first_token_time = None
94
+ all_token_times = []
95
+
96
+ for token in streamer:
97
+ current_time = time.time()
98
+ if first_token_time is None:
99
+ first_token_time = current_time
100
+ times.append(first_token_time - start_time)
101
+ all_token_times.append(current_time)
102
+
103
+ t.join()
104
+ end_time = time.time()
105
+
106
+ avg_decode_time_per_token = len(all_token_times) / (end_time - first_token_time) if all_token_times else 0
107
+ decode_times.append(avg_decode_time_per_token)
108
+ print(
109
+ f"Iteration {i + 1}/{n} - Prefilling Time: {times[-1]:.4f} seconds - Average Decode Time: {avg_decode_time_per_token:.4f} tokens/second")
110
+
111
+ torch.cuda.empty_cache()
112
+
113
+ avg_first_token_time = sum(times) / n
114
+ avg_decode_time = sum(decode_times) / n
115
+ print(f"\nAverage First Token Time over {n} iterations: {avg_first_token_time:.4f} seconds")
116
+ print(f"Average Decode Time per Token over {n} iterations: {avg_decode_time:.4f} tokens/second")
117
+ return times, avg_first_token_time, decode_times, avg_decode_time
118
+
119
+
120
+ def main():
121
+ parser = argparse.ArgumentParser(description="Stress test for model inference")
122
+ parser.add_argument('--token_len', type=int, default=1000, help='Number of tokens for each test')
123
+ parser.add_argument('--n', type=int, default=3, help='Number of iterations for the stress test')
124
+ parser.add_argument('--num_gpu', type=int, default=1, help='Number of GPUs to use for inference')
125
+ args = parser.parse_args()
126
+
127
+ token_len = args.token_len
128
+ n = args.n
129
+ num_gpu = args.num_gpu
130
+
131
+ stress_test(token_len, n, num_gpu)
132
+
133
+
134
+ if __name__ == "__main__":
135
+ main()
trans_web_demo.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This script creates an interactive web demo for the GLM-4-9B model using Gradio,
3
+ a Python library for building quick and easy UI components for machine learning models.
4
+ It's designed to showcase the capabilities of the GLM-4-9B model in a user-friendly interface,
5
+ allowing users to interact with the model through a chat-like interface.
6
+ """
7
+
8
+ import os
9
+ from pathlib import Path
10
+ from threading import Thread
11
+ from typing import Union
12
+
13
+ import gradio as gr
14
+ import torch
15
+ import pandas as pd
16
+ from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM
17
+ from transformers import (
18
+ AutoModelForCausalLM,
19
+ AutoTokenizer,
20
+ PreTrainedModel,
21
+ PreTrainedTokenizer,
22
+ PreTrainedTokenizerFast,
23
+ StoppingCriteria,
24
+ StoppingCriteriaList,
25
+ TextIteratorStreamer
26
+ )
27
+
28
+ ModelType = Union[PreTrainedModel, PeftModelForCausalLM]
29
+ TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
30
+
31
+ MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4-9b-chat')
32
+ TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)
33
+
34
+
35
+ def _resolve_path(path: Union[str, Path]) -> Path:
36
+ return Path(path).expanduser().resolve()
37
+
38
+
39
+ def load_model_and_tokenizer(
40
+ model_dir: Union[str, Path], trust_remote_code: bool = True
41
+ ) -> tuple[ModelType, TokenizerType]:
42
+ model_dir = _resolve_path(model_dir)
43
+ if (model_dir / 'adapter_config.json').exists():
44
+ model = AutoPeftModelForCausalLM.from_pretrained(
45
+ model_dir, trust_remote_code=trust_remote_code, device_map='auto'
46
+ )
47
+ tokenizer_dir = model.peft_config['default'].base_model_name_or_path
48
+ else:
49
+ model = AutoModelForCausalLM.from_pretrained(
50
+ model_dir, trust_remote_code=trust_remote_code, device_map='auto'
51
+ )
52
+ tokenizer_dir = model_dir
53
+ tokenizer = AutoTokenizer.from_pretrained(
54
+ tokenizer_dir, trust_remote_code=trust_remote_code, use_fast=False
55
+ )
56
+ return model, tokenizer
57
+
58
+ def load_knowledge_base(file: Union[str, Path]) -> pd.DataFrame:
59
+ return pd.read_excel(file)
60
+
61
+ def retrieve_from_knowledge_base(query: str, knowledge_base: pd.DataFrame) -> str:
62
+ # Convert the knowledge base to a dictionary
63
+ kb_dict = pd.Series(knowledge_base.iloc[:, 1].values, index=knowledge_base.iloc[:, 0]).to_dict()
64
+
65
+ # Search for relevant fields
66
+ relevant_info = []
67
+ for field, content in kb_dict.items():
68
+ if query.lower() in field.lower() or query.lower() in content.lower():
69
+ relevant_info.append(f"{field}: {content}")
70
+
71
+ if not relevant_info:
72
+ return "No relevant information found."
73
+
74
+ return "\n".join(relevant_info)
75
+
76
+ model, tokenizer = load_model_and_tokenizer(MODEL_PATH, trust_remote_code=True)
77
+ knowledge_base = pd.DataFrame()
78
+
79
+ class StopOnTokens(StoppingCriteria):
80
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
81
+ stop_ids = model.config.eos_token_id
82
+ for stop_id in stop_ids:
83
+ if input_ids[0][-1] == stop_id:
84
+ return True
85
+ return False
86
+
87
+
88
+ def parse_text(text):
89
+ lines = text.split("\n")
90
+ lines = [line for line in lines if line != ""]
91
+ count = 0
92
+ for i, line in enumerate(lines):
93
+ if "```" in line:
94
+ count += 1
95
+ items = line.split('`')
96
+ if count % 2 == 1:
97
+ lines[i] = f'<pre><code class="language-{items[-1]}">'
98
+ else:
99
+ lines[i] = f'<br></code></pre>'
100
+ else:
101
+ if i > 0:
102
+ if count % 2 == 1:
103
+ line = line.replace("`", "\`")
104
+ line = line.replace("<", "&lt;")
105
+ line = line.replace(">", "&gt;")
106
+ line = line.replace(" ", "&nbsp;")
107
+ line = line.replace("*", "&ast;")
108
+ line = line.replace("_", "&lowbar;")
109
+ line = line.replace("-", "&#45;")
110
+ line = line.replace(".", "&#46;")
111
+ line = line.replace("!", "&#33;")
112
+ line = line.replace("(", "&#40;")
113
+ line = line.replace(")", "&#41;")
114
+ line = line.replace("$", "&#36;")
115
+ lines[i] = "<br>" + line
116
+ text = "".join(lines)
117
+ return text
118
+
119
+
120
+ def predict(history, prompt, max_length, top_p, temperature):
121
+ stop = StopOnTokens()
122
+ messages = []
123
+ if prompt:
124
+ messages.append({"role": "system", "content": prompt})
125
+ for idx, (user_msg, model_msg) in enumerate(history):
126
+ if prompt and idx == 0:
127
+ continue
128
+ if idx == len(history) - 1 and not model_msg:
129
+ messages.append({"role": "user", "content": user_msg})
130
+ break
131
+ if user_msg:
132
+ messages.append({"role": "user", "content": user_msg})
133
+ if model_msg:
134
+ messages.append({"role": "assistant", "content": model_msg})
135
+
136
+ if not knowledge_base.empty:
137
+ knowledge_text = retrieve_from_knowledge_base(messages[-1]['content'], knowledge_base)
138
+ messages.append({"role": "system", "content": knowledge_text})
139
+
140
+ model_inputs = tokenizer.apply_chat_template(messages,
141
+ add_generation_prompt=True,
142
+ tokenize=True,
143
+ return_tensors="pt").to(next(model.parameters()).device)
144
+ streamer = TextIteratorStreamer(tokenizer, timeout=60, skip_prompt=True, skip_special_tokens=True)
145
+ generate_kwargs = {
146
+ "input_ids": model_inputs,
147
+ "streamer": streamer,
148
+ "max_new_tokens": max_length,
149
+ "do_sample": True,
150
+ "top_p": top_p,
151
+ "temperature": temperature,
152
+ "stopping_criteria": StoppingCriteriaList([stop]),
153
+ "repetition_penalty": 1.2,
154
+ "eos_token_id": model.config.eos_token_id,
155
+ }
156
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
157
+ t.start()
158
+ for new_token in streamer:
159
+ if new_token:
160
+ history[-1][1] += new_token
161
+ yield history
162
+
163
+ def upload_file(file):
164
+ global knowledge_base
165
+ knowledge_base = load_knowledge_base(file.name)
166
+ return f"Uploaded {file.name}"
167
+
168
+ with gr.Blocks() as demo:
169
+ gr.HTML("""<h1 align="center">GLM-4-9B Gradio Simple Chat Demo</h1>""")
170
+ chatbot = gr.Chatbot()
171
+
172
+ with gr.Row():
173
+ with gr.Column(scale=3):
174
+ with gr.Column(scale=12):
175
+ user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10, container=False)
176
+ with gr.Column(min_width=32, scale=1):
177
+ submitBtn = gr.Button("Submit")
178
+ with gr.Column(scale=1):
179
+ prompt_input = gr.Textbox(show_label=False, placeholder="Prompt", lines=10, container=False)
180
+ pBtn = gr.Button("Set Prompt")
181
+ with gr.Column(scale=1):
182
+ emptyBtn = gr.Button("Clear History")
183
+ max_length = gr.Slider(0, 32768, value=8192, step=1.0, label="Maximum length", interactive=True)
184
+ top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
185
+ temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
186
+ file_upload = gr.File(label="Upload Knowledge Base (.xlsx)", type="filepath", file_types=[".xlsx"])
187
+ upload_message = gr.Textbox(label="", placeholder="", interactive=False)
188
+
189
+
190
+ def user(query, history):
191
+ return "", history + [[parse_text(query), ""]]
192
+
193
+
194
+ def set_prompt(prompt_text):
195
+ return [[parse_text(prompt_text), "成功设置prompt"]]
196
+
197
+
198
+ pBtn.click(set_prompt, inputs=[prompt_input], outputs=chatbot)
199
+
200
+ submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(
201
+ predict, [chatbot, prompt_input, max_length, top_p, temperature], chatbot
202
+ )
203
+ emptyBtn.click(lambda: (None, None), None, [chatbot, prompt_input], queue=False)
204
+ file_upload.upload(upload_file, inputs=file_upload, outputs=upload_message)
205
+
206
+ demo.queue()
207
+ demo.launch(server_name="127.0.0.1", server_port=8000, inbrowser=True, share=True)
vllm_cli_demo.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This script creates a CLI demo with vllm backand for the glm-4-9b model,
3
+ allowing users to interact with the model through a command-line interface.
4
+
5
+ Usage:
6
+ - Run the script to start the CLI demo.
7
+ - Interact with the model by typing questions and receiving responses.
8
+
9
+ Note: The script includes a modification to handle markdown to plain text conversion,
10
+ ensuring that the CLI interface displays formatted text correctly.
11
+ """
12
+ import time
13
+ import asyncio
14
+ from transformers import AutoTokenizer
15
+ from vllm import SamplingParams, AsyncEngineArgs, AsyncLLMEngine
16
+ from typing import List, Dict
17
+
18
+ MODEL_PATH = 'THUDM/glm-4-9b'
19
+
20
+
21
+ def load_model_and_tokenizer(model_dir: str):
22
+ engine_args = AsyncEngineArgs(
23
+ model=model_dir,
24
+ tokenizer=model_dir,
25
+ tensor_parallel_size=1,
26
+ dtype="bfloat16",
27
+ trust_remote_code=True,
28
+ gpu_memory_utilization=0.3,
29
+ enforce_eager=True,
30
+ worker_use_ray=True,
31
+ engine_use_ray=False,
32
+ disable_log_requests=True
33
+ # 如果遇见 OOM 现象,建议开启下述参数
34
+ # enable_chunked_prefill=True,
35
+ # max_num_batched_tokens=8192
36
+ )
37
+ tokenizer = AutoTokenizer.from_pretrained(
38
+ model_dir,
39
+ trust_remote_code=True,
40
+ encode_special_tokens=True
41
+ )
42
+ engine = AsyncLLMEngine.from_engine_args(engine_args)
43
+ return engine, tokenizer
44
+
45
+
46
+ engine, tokenizer = load_model_and_tokenizer(MODEL_PATH)
47
+
48
+
49
+ async def vllm_gen(messages: List[Dict[str, str]], top_p: float, temperature: float, max_dec_len: int):
50
+ inputs = tokenizer.apply_chat_template(
51
+ messages,
52
+ add_generation_prompt=True,
53
+ tokenize=False
54
+ )
55
+ params_dict = {
56
+ "n": 1,
57
+ "best_of": 1,
58
+ "presence_penalty": 1.0,
59
+ "frequency_penalty": 0.0,
60
+ "temperature": temperature,
61
+ "top_p": top_p,
62
+ "top_k": -1,
63
+ "use_beam_search": False,
64
+ "length_penalty": 1,
65
+ "early_stopping": False,
66
+ "stop_token_ids": [151329, 151336, 151338],
67
+ "ignore_eos": False,
68
+ "max_tokens": max_dec_len,
69
+ "logprobs": None,
70
+ "prompt_logprobs": None,
71
+ "skip_special_tokens": True,
72
+ }
73
+ sampling_params = SamplingParams(**params_dict)
74
+ async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}"):
75
+ yield output.outputs[0].text
76
+
77
+
78
+ async def chat():
79
+ history = []
80
+ max_length = 8192
81
+ top_p = 0.8
82
+ temperature = 0.6
83
+
84
+ print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")
85
+ while True:
86
+ user_input = input("\nYou: ")
87
+ if user_input.lower() in ["exit", "quit"]:
88
+ break
89
+ history.append([user_input, ""])
90
+
91
+ messages = []
92
+ for idx, (user_msg, model_msg) in enumerate(history):
93
+ if idx == len(history) - 1 and not model_msg:
94
+ messages.append({"role": "user", "content": user_msg})
95
+ break
96
+ if user_msg:
97
+ messages.append({"role": "user", "content": user_msg})
98
+ if model_msg:
99
+ messages.append({"role": "assistant", "content": model_msg})
100
+
101
+ print("\nGLM-4: ", end="")
102
+ current_length = 0
103
+ output = ""
104
+ async for output in vllm_gen(messages, top_p, temperature, max_length):
105
+ print(output[current_length:], end="", flush=True)
106
+ current_length = len(output)
107
+ history[-1][1] = output
108
+
109
+
110
+ if __name__ == "__main__":
111
+ asyncio.run(chat())