ysharma's picture
ysharma HF staff
Update app.py
9dfedcc verified
import time
from threading import Thread
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import TextIteratorStreamer
from datasets import load_dataset
import spaces
import pandas as pd
rekaeval = "RekaAI/VibeEval"
dataset = load_dataset(rekaeval, split="test")
df = pd.DataFrame(dataset)
df = df[['media_url', 'prompt', 'reference']]
df_markdown = df[['media_url', 'prompt']].copy()
# Function to convert URL to HTML img tag
def mediaurl_to_img_tag(url):
return f'<img src="{url}">'
# Apply the function to the DataFrame column
df_markdown['media_url'] = df_markdown['media_url'].apply(mediaurl_to_img_tag)
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://avatars.githubusercontent.com/u/51063788?s=400&u=479ecc9d93d8a373b5c2e69ebe846f394811e94a&v=4)" style="width:40%" opacity="0.30">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama3-8B With REKA Vibe-Eval</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Test your Vision LLMs with new Vibe-Evals from REKA</p>
</div>
"""
title="Testing LLaVA-Llama3-8b with Reka's Vibe-Eval"
description="Evaluate <a href='https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers'>LLaVA-Llama3-8B</a> on <b.REKA Vibe-Evals</b>. Click on a row in the Eval dataset and start chatting about it."
CSS ="""
.contain { display: flex !important; flex-direction: column !important; }
#component-0 { height: 100% !important; }
#chatbot { flex-grow: 1 !important; }
"""
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
processor = AutoProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
model.to("cuda:0")
model.generation_config.eos_token_id = 128009
@spaces.GPU
def bot_streaming(message, history):
print(message)
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
gr.Error("You need to upload an image for LLaVA to work.")
except NameError:
# Handle the case where 'image' is not defined at all
gr.Error("You need to upload an image for LLaVA to work.")
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"prompt: {prompt}")
image = Image.open(image)
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"text_prompt: {text_prompt}")
buffer = ""
time.sleep(0.5)
for new_text in streamer:
# find <|eot_id|> and remove it from the new_text
if "<|eot_id|>" in new_text:
new_text = new_text.split("<|eot_id|>")[0]
buffer += new_text
# generated_text_without_prompt = buffer[len(text_prompt):]
generated_text_without_prompt = buffer
# print(generated_text_without_prompt)
time.sleep(0.06)
# print(f"new_text: {generated_text_without_prompt}")
yield generated_text_without_prompt
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1, elem_id='chatbot')
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False, scale=1)
tmp = '''with gr.Blocks(fill_height=True, ) as demo:
gr.ChatInterface(
fn=bot_streaming,
title="Testing LLaVA-Llama3-8b with Reka's Vibe-Eval",
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
{"text": "How to make this pastry?", "files": ["./baklava.png"]}],
description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
)'''
with gr.Blocks(fill_height=True, css=CSS) as demo:
gr.HTML(f'<h1><center>{title}</center></h1>')
gr.HTML(f'<center>{description}</center>')
with gr.Row(equal_height=True):
with gr.Column():
gr.ChatInterface(
fn=bot_streaming,
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
)
with gr.Column():
with gr.Accordion('Open for looking at Ground Truth:', open=False):
refrence = gr.Markdown()
with gr.Row():
b1 = gr.Button("Previous", interactive=False)
b2 = gr.Button("Next")
reka = gr.Dataframe(value=df_markdown[0:5], label='Reka-Vibe-Eval', datatype=['markdown', 'str'], wrap=False, interactive=False, height=700)
num_start = gr.Number(visible=False, value=0)
num_end = gr.Number(visible=False, value=4)
def get_example(reka, start, evt: gr.SelectData):
print(f'evt.value = {evt.value}')
print(f'evt.index = {evt.index}')
x = evt.index[0] + start
image = df.iloc[x, 0]
prompt = df.iloc[x, 1]
refrence = df.iloc[x, 2]
print(f'image = {image}')
print(f'prompt = {prompt}')
example = {"text": prompt, "files": [image]}
return example, refrence
def display_next(dataframe, end):
print(f'initial value of end = {end}')
start = (end or dataframe.index[-1]) + 1
end = start + 4
df_images = df_markdown.loc[start:end]
print(f'returned value of end = {end}')
print(f'returned value of start = {start}')
return df_images, end, start, gr.Button(interactive=True)
def display_previous(dataframe, start):
print(f'initial value of start = {start}')
end = (start or dataframe.index[-1])
start = end - 5
df_images = df_markdown.loc[start:end]
print(f'returned value of start = {start}')
print(f'returned value of end = {end}')
return df_images, end, start, gr.Button(interactive=False) if start==0 else gr.Button(interactive=True)
reka.select(get_example, [reka,num_start], [chat_input, refrence], show_progress="hidden")
b2.click(fn=display_next, inputs= [reka, num_end ], outputs=[reka, num_end, num_start, b1], api_name="next_rows", show_progress=False)
b1.click(fn=display_previous, inputs= [reka, num_start ], outputs=[reka, num_end, num_start, b1], api_name="previous_rows")
demo.queue()
demo.launch(debug=True)