Spaces:
Runtime error
Runtime error
import time | |
from threading import Thread | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from transformers import AutoProcessor, LlavaForConditionalGeneration | |
from transformers import TextIteratorStreamer | |
from datasets import load_dataset | |
import spaces | |
import pandas as pd | |
rekaeval = "RekaAI/VibeEval" | |
dataset = load_dataset(rekaeval, split="test") | |
df = pd.DataFrame(dataset) | |
df = df[['media_url', 'prompt', 'reference']] | |
df_markdown = df[['media_url', 'prompt']].copy() | |
# Function to convert URL to HTML img tag | |
def mediaurl_to_img_tag(url): | |
return f'<img src="{url}">' | |
# Apply the function to the DataFrame column | |
df_markdown['media_url'] = df_markdown['media_url'].apply(mediaurl_to_img_tag) | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<img src="https://avatars.githubusercontent.com/u/51063788?s=400&u=479ecc9d93d8a373b5c2e69ebe846f394811e94a&v=4)" style="width:40%" opacity="0.30"> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama3-8B With REKA Vibe-Eval</h1> | |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Test your Vision LLMs with new Vibe-Evals from REKA</p> | |
</div> | |
""" | |
title="Testing LLaVA-Llama3-8b with Reka's Vibe-Eval" | |
description="Evaluate <a href='https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers'>LLaVA-Llama3-8B</a> on <b.REKA Vibe-Evals</b>. Click on a row in the Eval dataset and start chatting about it." | |
CSS =""" | |
.contain { display: flex !important; flex-direction: column !important; } | |
#component-0 { height: 100% !important; } | |
#chatbot { flex-grow: 1 !important; } | |
""" | |
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers" | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = LlavaForConditionalGeneration.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
) | |
model.to("cuda:0") | |
model.generation_config.eos_token_id = 128009 | |
def bot_streaming(message, history): | |
print(message) | |
if message["files"]: | |
# message["files"][-1] is a Dict or just a string | |
if type(message["files"][-1]) == dict: | |
image = message["files"][-1]["path"] | |
else: | |
image = message["files"][-1] | |
else: | |
# if there's no image uploaded for this turn, look for images in the past turns | |
# kept inside tuples, take the last one | |
for hist in history: | |
if type(hist[0]) == tuple: | |
image = hist[0][0] | |
try: | |
if image is None: | |
# Handle the case where image is None | |
gr.Error("You need to upload an image for LLaVA to work.") | |
except NameError: | |
# Handle the case where 'image' is not defined at all | |
gr.Error("You need to upload an image for LLaVA to work.") | |
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
# print(f"prompt: {prompt}") | |
image = Image.open(image) | |
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) | |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True}) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
# print(f"text_prompt: {text_prompt}") | |
buffer = "" | |
time.sleep(0.5) | |
for new_text in streamer: | |
# find <|eot_id|> and remove it from the new_text | |
if "<|eot_id|>" in new_text: | |
new_text = new_text.split("<|eot_id|>")[0] | |
buffer += new_text | |
# generated_text_without_prompt = buffer[len(text_prompt):] | |
generated_text_without_prompt = buffer | |
# print(generated_text_without_prompt) | |
time.sleep(0.06) | |
# print(f"new_text: {generated_text_without_prompt}") | |
yield generated_text_without_prompt | |
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1, elem_id='chatbot') | |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False, scale=1) | |
tmp = '''with gr.Blocks(fill_height=True, ) as demo: | |
gr.ChatInterface( | |
fn=bot_streaming, | |
title="Testing LLaVA-Llama3-8b with Reka's Vibe-Eval", | |
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]}, | |
{"text": "How to make this pastry?", "files": ["./baklava.png"]}], | |
description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", | |
stop_btn="Stop Generation", | |
multimodal=True, | |
textbox=chat_input, | |
chatbot=chatbot, | |
)''' | |
with gr.Blocks(fill_height=True, css=CSS) as demo: | |
gr.HTML(f'<h1><center>{title}</center></h1>') | |
gr.HTML(f'<center>{description}</center>') | |
with gr.Row(equal_height=True): | |
with gr.Column(): | |
gr.ChatInterface( | |
fn=bot_streaming, | |
stop_btn="Stop Generation", | |
multimodal=True, | |
textbox=chat_input, | |
chatbot=chatbot, | |
) | |
with gr.Column(): | |
with gr.Accordion('Open for looking at Ground Truth:', open=False): | |
refrence = gr.Markdown() | |
with gr.Row(): | |
b1 = gr.Button("Previous", interactive=False) | |
b2 = gr.Button("Next") | |
reka = gr.Dataframe(value=df_markdown[0:5], label='Reka-Vibe-Eval', datatype=['markdown', 'str'], wrap=False, interactive=False, height=700) | |
num_start = gr.Number(visible=False, value=0) | |
num_end = gr.Number(visible=False, value=4) | |
def get_example(reka, start, evt: gr.SelectData): | |
print(f'evt.value = {evt.value}') | |
print(f'evt.index = {evt.index}') | |
x = evt.index[0] + start | |
image = df.iloc[x, 0] | |
prompt = df.iloc[x, 1] | |
refrence = df.iloc[x, 2] | |
print(f'image = {image}') | |
print(f'prompt = {prompt}') | |
example = {"text": prompt, "files": [image]} | |
return example, refrence | |
def display_next(dataframe, end): | |
print(f'initial value of end = {end}') | |
start = (end or dataframe.index[-1]) + 1 | |
end = start + 4 | |
df_images = df_markdown.loc[start:end] | |
print(f'returned value of end = {end}') | |
print(f'returned value of start = {start}') | |
return df_images, end, start, gr.Button(interactive=True) | |
def display_previous(dataframe, start): | |
print(f'initial value of start = {start}') | |
end = (start or dataframe.index[-1]) | |
start = end - 5 | |
df_images = df_markdown.loc[start:end] | |
print(f'returned value of start = {start}') | |
print(f'returned value of end = {end}') | |
return df_images, end, start, gr.Button(interactive=False) if start==0 else gr.Button(interactive=True) | |
reka.select(get_example, [reka,num_start], [chat_input, refrence], show_progress="hidden") | |
b2.click(fn=display_next, inputs= [reka, num_end ], outputs=[reka, num_end, num_start, b1], api_name="next_rows", show_progress=False) | |
b1.click(fn=display_previous, inputs= [reka, num_start ], outputs=[reka, num_end, num_start, b1], api_name="previous_rows") | |
demo.queue() | |
demo.launch(debug=True) |