Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
from datasets import load_dataset
|
4 |
+
from langchain.schema import Document
|
5 |
+
from langchain.vectorstores import Chroma
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.llms import LlamaCpp
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
10 |
+
|
11 |
+
# Initialize the database
|
12 |
+
def initialize_database():
|
13 |
+
print("🔹 Loading medical dataset...")
|
14 |
+
ds = load_dataset("lavita/ChatDoctor-HealthCareMagic-100k", split="train")
|
15 |
+
qa_pairs = [{"question": x["instruction"], "answer": x["output"]} for x in ds.select(range(1000))]
|
16 |
+
|
17 |
+
# Convert to LangChain Documents
|
18 |
+
print("🔹 Converting to LangChain documents...")
|
19 |
+
docs = [
|
20 |
+
Document(
|
21 |
+
page_content=f"Question: {item['question']}\nAnswer: {item['answer']}",
|
22 |
+
metadata={"source": "ChatDoctor"}
|
23 |
+
)
|
24 |
+
for item in qa_pairs
|
25 |
+
]
|
26 |
+
|
27 |
+
# Embedding documents
|
28 |
+
print("🔹 Embedding documents...")
|
29 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
30 |
+
|
31 |
+
# ChromaDB setup
|
32 |
+
persist_dir = "./chroma_medical_db"
|
33 |
+
if not os.path.exists(persist_dir):
|
34 |
+
print("🔹 Creating new ChromaDB...")
|
35 |
+
vectorstore = Chroma.from_documents(docs, embedding_model, persist_directory=persist_dir)
|
36 |
+
vectorstore.persist()
|
37 |
+
else:
|
38 |
+
print("🔹 Loading existing ChromaDB...")
|
39 |
+
vectorstore = Chroma(persist_directory=persist_dir, embedding_function=embedding_model)
|
40 |
+
|
41 |
+
# Setup the retriever
|
42 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
43 |
+
|
44 |
+
# Local LLM setup
|
45 |
+
print("🔹 Loading local LLM model...")
|
46 |
+
llm = LlamaCpp(
|
47 |
+
model_path="models/tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
|
48 |
+
n_ctx=1024,
|
49 |
+
temperature=0.7,
|
50 |
+
max_tokens=512,
|
51 |
+
streaming=True,
|
52 |
+
callbacks=[StreamingStdOutCallbackHandler()],
|
53 |
+
verbose=True,
|
54 |
+
f16_kv=True,
|
55 |
+
use_mlock=True,
|
56 |
+
use_mmap=True,
|
57 |
+
n_threads=4,
|
58 |
+
n_batch=64
|
59 |
+
)
|
60 |
+
|
61 |
+
# Build RAG QA chain
|
62 |
+
print("🔹 Building RAG chain...")
|
63 |
+
qa_chain = RetrievalQA.from_chain_type(
|
64 |
+
llm=llm,
|
65 |
+
retriever=retriever,
|
66 |
+
return_source_documents=True
|
67 |
+
)
|
68 |
+
|
69 |
+
return qa_chain
|
70 |
+
|
71 |
+
# Function to handle the query
|
72 |
+
def handle_query(query):
|
73 |
+
qa_chain = initialize_database()
|
74 |
+
print(f"🔹 Query: {query}")
|
75 |
+
result = qa_chain(query)
|
76 |
+
response = {
|
77 |
+
"answer": result['result'],
|
78 |
+
"sources": result['source_documents']
|
79 |
+
}
|
80 |
+
return response
|
81 |
+
|
82 |
+
# Main CLI functionality
|
83 |
+
def main():
|
84 |
+
parser = argparse.ArgumentParser(description="Medical Question-Answering CLI Application")
|
85 |
+
parser.add_argument("query", type=str, help="Query to ask the medical AI agent")
|
86 |
+
|
87 |
+
args = parser.parse_args()
|
88 |
+
query = args.query
|
89 |
+
|
90 |
+
result = handle_query(query)
|
91 |
+
print("\n🧠 Answer:")
|
92 |
+
print(result["answer"])
|
93 |
+
print("\nSource Documents:")
|
94 |
+
for doc in result["sources"]:
|
95 |
+
print(doc["text"])
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
main()
|