Gowthamvemula commited on
Commit
64942a4
·
verified ·
1 Parent(s): c62b16b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +98 -0
app.py CHANGED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ from datasets import load_dataset
4
+ from langchain.schema import Document
5
+ from langchain.vectorstores import Chroma
6
+ from langchain.embeddings import HuggingFaceEmbeddings
7
+ from langchain.llms import LlamaCpp
8
+ from langchain.chains import RetrievalQA
9
+ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
10
+
11
+ # Initialize the database
12
+ def initialize_database():
13
+ print("🔹 Loading medical dataset...")
14
+ ds = load_dataset("lavita/ChatDoctor-HealthCareMagic-100k", split="train")
15
+ qa_pairs = [{"question": x["instruction"], "answer": x["output"]} for x in ds.select(range(1000))]
16
+
17
+ # Convert to LangChain Documents
18
+ print("🔹 Converting to LangChain documents...")
19
+ docs = [
20
+ Document(
21
+ page_content=f"Question: {item['question']}\nAnswer: {item['answer']}",
22
+ metadata={"source": "ChatDoctor"}
23
+ )
24
+ for item in qa_pairs
25
+ ]
26
+
27
+ # Embedding documents
28
+ print("🔹 Embedding documents...")
29
+ embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
30
+
31
+ # ChromaDB setup
32
+ persist_dir = "./chroma_medical_db"
33
+ if not os.path.exists(persist_dir):
34
+ print("🔹 Creating new ChromaDB...")
35
+ vectorstore = Chroma.from_documents(docs, embedding_model, persist_directory=persist_dir)
36
+ vectorstore.persist()
37
+ else:
38
+ print("🔹 Loading existing ChromaDB...")
39
+ vectorstore = Chroma(persist_directory=persist_dir, embedding_function=embedding_model)
40
+
41
+ # Setup the retriever
42
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
43
+
44
+ # Local LLM setup
45
+ print("🔹 Loading local LLM model...")
46
+ llm = LlamaCpp(
47
+ model_path="models/tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
48
+ n_ctx=1024,
49
+ temperature=0.7,
50
+ max_tokens=512,
51
+ streaming=True,
52
+ callbacks=[StreamingStdOutCallbackHandler()],
53
+ verbose=True,
54
+ f16_kv=True,
55
+ use_mlock=True,
56
+ use_mmap=True,
57
+ n_threads=4,
58
+ n_batch=64
59
+ )
60
+
61
+ # Build RAG QA chain
62
+ print("🔹 Building RAG chain...")
63
+ qa_chain = RetrievalQA.from_chain_type(
64
+ llm=llm,
65
+ retriever=retriever,
66
+ return_source_documents=True
67
+ )
68
+
69
+ return qa_chain
70
+
71
+ # Function to handle the query
72
+ def handle_query(query):
73
+ qa_chain = initialize_database()
74
+ print(f"🔹 Query: {query}")
75
+ result = qa_chain(query)
76
+ response = {
77
+ "answer": result['result'],
78
+ "sources": result['source_documents']
79
+ }
80
+ return response
81
+
82
+ # Main CLI functionality
83
+ def main():
84
+ parser = argparse.ArgumentParser(description="Medical Question-Answering CLI Application")
85
+ parser.add_argument("query", type=str, help="Query to ask the medical AI agent")
86
+
87
+ args = parser.parse_args()
88
+ query = args.query
89
+
90
+ result = handle_query(query)
91
+ print("\n🧠 Answer:")
92
+ print(result["answer"])
93
+ print("\nSource Documents:")
94
+ for doc in result["sources"]:
95
+ print(doc["text"])
96
+
97
+ if __name__ == "__main__":
98
+ main()