check / app.py
Gopikanth123's picture
Update app.py
a6f2237 verified
raw
history blame
5.22 kB
import streamlit as st
import torch
import soundfile as sf
import pyttsx3
import threading
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from gradio_client import Client
# Initialize session state
if "messages" not in st.session_state:
st.session_state["messages"] = [] # Store chat history
# Load the Wav2Vec 2.0 model and processor from Hugging Face
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h")
# Function to generate a response using Gradio client
def generate_response(query):
try:
client = Client("Gopikanth123/llama2")
result = client.predict(query=query, api_name="/predict")
return result
except Exception as e:
return f"Error communicating with the Gradio backend: {e}"
# Function to handle user input and bot response
def handle_user_input(user_input):
if user_input:
# Add user message to session state
st.session_state["messages"].append({"user": user_input})
# Generate bot response
response = generate_response(user_input)
st.session_state["messages"].append({"bot": response})
# Speak out bot response in a new thread to avoid blocking
threading.Thread(target=speak_text, args=(response,), daemon=True).start()
# Function to speak text (Voice Output)
def speak_text(text):
engine = pyttsx3.init()
engine.stop() # Ensure no previous loop is running
engine.say(text)
engine.runAndWait()
# Function to update chat history dynamically
def update_chat_history():
chat_history = st.session_state["messages"]
for msg in chat_history:
if "user" in msg:
st.markdown(f"<div class='chat-bubble user-message'><strong>You:</strong> {msg['user']}</div>", unsafe_allow_html=True)
if "bot" in msg:
st.markdown(f"<div class='chat-bubble bot-message'><strong>Bot:</strong> {msg['bot']}</div>", unsafe_allow_html=True)
# Function to recognize speech using Hugging Face's Wav2Vec 2.0
def recognize_speech_huggingface():
st.info("Listening... Speak into the microphone.")
fs = 16000 # Sample rate in Hz
duration = 5 # Duration in seconds
# Record the audio using sounddevice or use a pre-recorded file
# (Here we're using soundfile to record from microphone)
audio_data = sd.rec(int(duration * fs), samplerate=fs, channels=1, dtype='int16')
sd.wait()
# Save the audio file to a temporary buffer
sf.write('audio.wav', audio_data, fs)
# Read the audio file using soundfile and process it
audio_input, _ = sf.read('audio.wav')
# Preprocess the audio and recognize the speech
inputs = processor(audio_input, return_tensors="pt", sampling_rate=fs)
with torch.no_grad():
logits = model(input_values=inputs.input_values).logits
# Decode the logits to text
predicted_ids = torch.argmax(logits, dim=-1)
recognized_text = processor.decode(predicted_ids[0])
st.session_state["user_input"] = recognized_text
st.success(f"Recognized Text: {recognized_text}")
handle_user_input(recognized_text)
# Main Streamlit app
st.set_page_config(page_title="Llama2 Chatbot", page_icon="πŸ€–", layout="wide")
st.markdown(
"""
<style>
.stButton>button {
background-color: #6C63FF;
color: white;
font-size: 16px;
border-radius: 10px;
padding: 10px 20px;
}
.stTextInput>div>input {
border: 2px solid #6C63FF;
border-radius: 10px;
padding: 10px;
}
.chat-container {
background-color: #F7F9FC;
padding: 20px;
border-radius: 15px;
max-height: 400px;
overflow-y: auto;
}
.chat-bubble {
padding: 10px 15px;
border-radius: 15px;
margin: 5px 0;
max-width: 80%;
display: inline-block;
}
.user-message {
background-color: #D1C4E9;
text-align: left;
margin-left: auto;
}
.bot-message {
background-color: #BBDEFB;
text-align: left;
margin-right: auto;
}
.input-container {
display: flex;
justify-content: space-between;
gap: 10px;
padding: 10px 0;
}
</style>
""",
unsafe_allow_html=True
)
st.title("πŸ€– Chat with Llama2 Bot")
st.markdown(
"""
Welcome to the *Llama2 Chatbot*!
- *Type* your message below, or
- *Use the microphone* to speak to the bot.
"""
)
# Display chat history
chat_history_container = st.container()
with chat_history_container:
# Add input field within a form
with st.form(key='input_form', clear_on_submit=True):
user_input = st.text_input("Type your message here...", placeholder="Hello, how are you?")
submit_button = st.form_submit_button("Send")
# Handle form submission
if submit_button:
handle_user_input(user_input)
# Separate button for speech recognition outside of the form
if st.button("Speak"):
recognize_speech_huggingface()
st.markdown("### Chat History")
# Update chat history on every interaction
update_chat_history()