Gopi9177 commited on
Commit
7dba2e2
Β·
verified Β·
1 Parent(s): 7a45015

Create Tech.py

Browse files
Files changed (1) hide show
  1. pages/Tech.py +152 -0
pages/Tech.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import string
3
+ import numpy as np
4
+ import pandas as pd
5
+ import nltk
6
+ from nltk.corpus import stopwords
7
+ from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
8
+ from sklearn.naive_bayes import MultinomialNB
9
+ from sklearn.linear_model import LogisticRegression
10
+ from sklearn.svm import SVC
11
+ from sklearn.ensemble import RandomForestClassifier
12
+ from sklearn.datasets import fetch_20newsgroups
13
+ from sklearn.model_selection import train_test_split
14
+ from sklearn.metrics import accuracy_score, classification_report
15
+ from sklearn.decomposition import LatentDirichletAllocation, NMF
16
+ from wordcloud import WordCloud
17
+ import matplotlib.pyplot as plt
18
+
19
+ # Download NLTK stopwords
20
+ nltk.download('stopwords')
21
+ stop_words = set(stopwords.words('english'))
22
+
23
+ # Page title with emoji
24
+ st.markdown("""
25
+ <h1 style='text-align: center; color: #FF5733;'>🌟 Techniques of NLP 🌟</h1>
26
+ """, unsafe_allow_html=True)
27
+
28
+ # Text Preprocessing
29
+ st.markdown("""
30
+ <h2 style='color: #2E86C1;'>πŸ”Ή 1. Text Preprocessing</h2>
31
+ """, unsafe_allow_html=True)
32
+
33
+ st.subheader('πŸ“– Definition:')
34
+ st.write("""
35
+ Text preprocessing is the process of cleaning and preparing raw text for further analysis or modeling.
36
+ This includes tasks such as removing unnecessary punctuation, converting text to lowercase,
37
+ and handling special characters like emojis.
38
+ """)
39
+
40
+ # Interactive example for preprocessing
41
+ text_input = st.text_area("✍️ Enter text to preprocess", "I love NLP! 😍 This is amazing.")
42
+
43
+ col1, col2, col3, col4 = st.columns(4)
44
+
45
+ with col1:
46
+ if st.button('βœ‚οΈ Remove Punctuation'):
47
+ processed_text = ''.join([char for char in text_input if char not in string.punctuation])
48
+ st.success(f"Text without punctuation: {processed_text}")
49
+
50
+ with col2:
51
+ if st.button('πŸ”‘ Convert to Lowercase'):
52
+ lowercase_text = text_input.lower()
53
+ st.success(f"Text in lowercase: {lowercase_text}")
54
+
55
+ with col3:
56
+ if st.button('😊 Remove Emojis'):
57
+ processed_text_no_emoji = ''.join(char for char in text_input if char.isalnum() or char.isspace())
58
+ st.success(f"Text without emojis: {processed_text_no_emoji}")
59
+
60
+ with col4:
61
+ if st.button('🚫 Remove Stopwords'):
62
+ words = text_input.split()
63
+ filtered_text = ' '.join([word for word in words if word.lower() not in stop_words])
64
+ st.success(f"Text without stopwords: {filtered_text}")
65
+
66
+ # Text Vectorization
67
+ st.markdown("""
68
+ <h2 style='color: #2E86C1;'>πŸ“Š 2. Text Vectorization</h2>
69
+ """, unsafe_allow_html=True)
70
+
71
+ st.subheader('πŸ“– Definition:')
72
+ st.write("""
73
+ Text vectorization converts text into numerical form so that machine learning models can process it.
74
+ Two common techniques are Bag of Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF).
75
+ """)
76
+
77
+ # Interactive example for vectorization
78
+ vectorization_choice = st.selectbox('πŸ›  Choose vectorization technique:', ('Bag of Words', 'TF-IDF'))
79
+
80
+ # New example for vectorization
81
+ sample_text = ["Artificial intelligence is transforming the world.", "Natural Language Processing is a subset of AI.", "Machine learning algorithms improve over time!"]
82
+
83
+ if st.button('πŸš€ Apply Vectorization'):
84
+ vectorizer = CountVectorizer() if vectorization_choice == 'Bag of Words' else TfidfVectorizer()
85
+ X = vectorizer.fit_transform(sample_text)
86
+ st.write(f"**Vectorized Representation:**\n{X.toarray()}")
87
+ st.write(f"**Feature names:** {vectorizer.get_feature_names_out()}")
88
+
89
+ # Basic Machine Learning
90
+ st.markdown("""
91
+ <h2 style='color: #2E86C1;'>πŸ€– 3. Basic Machine Learning</h2>
92
+ """, unsafe_allow_html=True)
93
+
94
+ st.subheader('πŸ“– Definition:')
95
+ st.write("""
96
+ Basic machine learning techniques, such as Naive Bayes, Logistic Regression, and Support Vector Machines (SVM),
97
+ are commonly used for text classification tasks.
98
+ """)
99
+
100
+ # Load dataset
101
+ newsgroups = fetch_20newsgroups(subset='train')
102
+ X_train, X_test, y_train, y_test = train_test_split(newsgroups.data, newsgroups.target, test_size=0.3)
103
+
104
+ model_choice = st.selectbox('πŸ€” Choose machine learning model for text classification:',
105
+ ('Naive Bayes', 'Logistic Regression', 'SVM', 'Random Forest'))
106
+
107
+ # Vectorization for classification
108
+ vectorizer = TfidfVectorizer()
109
+ X_train_vec = vectorizer.fit_transform(X_train)
110
+ X_test_vec = vectorizer.transform(X_test)
111
+
112
+ if st.button('🎯 Train Model'):
113
+ model = {'Naive Bayes': MultinomialNB(), 'Logistic Regression': LogisticRegression(max_iter=1000),
114
+ 'SVM': SVC(), 'Random Forest': RandomForestClassifier()}[model_choice]
115
+
116
+ model.fit(X_train_vec, y_train)
117
+ y_pred = model.predict(X_test_vec)
118
+
119
+ accuracy = accuracy_score(y_test, y_pred)
120
+ st.success(f"πŸ† Model Accuracy: {accuracy * 100:.2f}%")
121
+ st.text("πŸ“Š Classification Report:")
122
+ st.text(classification_report(y_test, y_pred))
123
+
124
+ # Topic Modeling
125
+ st.markdown("""
126
+ <h2 style='color: #2E86C1;'>πŸ“š 4. Topic Modeling</h2>
127
+ """, unsafe_allow_html=True)
128
+
129
+ st.subheader('πŸ“– Definition:')
130
+ st.write("""
131
+ Topic modeling is a technique used to identify the underlying topics in a collection of text data.
132
+ Latent Dirichlet Allocation (LDA) and Non-negative Matrix Factorization (NMF) are two common techniques for this task.
133
+ """)
134
+
135
+ topic_model_choice = st.selectbox('πŸ” Choose topic modeling technique:', ('LDA', 'NMF'))
136
+
137
+ if st.button('πŸ“Œ Run Topic Modeling'):
138
+ vectorizer = TfidfVectorizer(max_df=0.95, min_df=2)
139
+ X = vectorizer.fit_transform(newsgroups.data)
140
+
141
+ model = LatentDirichletAllocation(n_components=5, random_state=42) if topic_model_choice == 'LDA' else NMF(n_components=5, random_state=42)
142
+ model.fit(X)
143
+ feature_names = vectorizer.get_feature_names_out()
144
+
145
+ for topic_idx, topic in enumerate(model.components_):
146
+ st.write(f"πŸ“ **Topic {topic_idx + 1}:**")
147
+ top_words_idx = topic.argsort()[:-10 - 1:-1]
148
+ top_words = [feature_names[i] for i in top_words_idx]
149
+ st.success(", ".join(top_words))
150
+
151
+ wordcloud = WordCloud(width=800, height=400, background_color='white').generate(" ".join(top_words))
152
+ st.image(wordcloud.to_array(), caption=f"πŸŒ₯ Word Cloud for Topic {topic_idx + 1}")