Gopi9177 commited on
Commit
79116c1
Β·
verified Β·
1 Parent(s): d092a4f

Update pages/Basics Of NLP.py

Browse files
Files changed (1) hide show
  1. pages/Basics Of NLP.py +1 -37
pages/Basics Of NLP.py CHANGED
@@ -12,8 +12,6 @@ nltk.download("stopwords")
12
  nltk.download("wordnet")
13
  nltk.download("vader_lexicon")
14
 
15
- # Load spaCy model
16
- nlp = spacy.load("en_core_web_sm")
17
 
18
  # Streamlit app configuration
19
  st.set_page_config(page_title="NLP Basics", page_icon="πŸ€–", layout="wide")
@@ -40,7 +38,7 @@ if not text_input.strip():
40
  st.warning("Please enter some text to explore NLP concepts.")
41
 
42
  # NLP Processing Sections
43
- tabs = st.tabs(["Tokenization", "Stopwords", "Lemmatization & Stemming", "Bag of Words (BoW)", "TF-IDF", "Named Entity Recognition", "Sentiment Analysis", "Text Summarization", "Word Cloud Visualization"])
44
 
45
  # Tokenization
46
  with tabs[0]:
@@ -103,40 +101,6 @@ with tabs[4]:
103
  st.write("**TF-IDF Matrix:**", tfidf_matrix.toarray())
104
  st.write("**Feature Names:**", tfidf_vectorizer.get_feature_names_out())
105
 
106
- # Named Entity Recognition (NER)
107
- with tabs[5]:
108
- st.header("🏷 Named Entity Recognition (NER)")
109
- if text_input.strip():
110
- doc = nlp(text_input)
111
- entities = [(ent.text, ent.label_) for ent in doc.ents]
112
- st.write("**Named Entities:**", entities)
113
-
114
- # Sentiment Analysis
115
- with tabs[6]:
116
- st.header("😊 Sentiment Analysis")
117
- if text_input.strip():
118
- sia = SentimentIntensityAnalyzer()
119
- sentiment_scores = sia.polarity_scores(text_input)
120
- st.write("**Sentiment Scores:**", sentiment_scores)
121
-
122
- # Text Summarization
123
- with tabs[7]:
124
- st.header("πŸ“ Text Summarization")
125
- if text_input.strip():
126
- parser = PlaintextParser.from_string(text_input, Tokenizer("english"))
127
- summarizer = LsaSummarizer()
128
- summary = summarizer(parser.document, 3) # Summarize into 3 sentences
129
- st.write("**Summary:**", " ".join([str(s) for s in summary]))
130
-
131
- # Word Cloud Visualization
132
- with tabs[8]:
133
- st.header("☁️ Word Cloud Visualization")
134
- if text_input.strip():
135
- wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text_input)
136
- fig, ax = plt.subplots()
137
- ax.imshow(wordcloud, interpolation='bilinear')
138
- ax.axis("off")
139
- st.pyplot(fig)
140
 
141
  # Footer
142
  st.markdown("---")
 
12
  nltk.download("wordnet")
13
  nltk.download("vader_lexicon")
14
 
 
 
15
 
16
  # Streamlit app configuration
17
  st.set_page_config(page_title="NLP Basics", page_icon="πŸ€–", layout="wide")
 
38
  st.warning("Please enter some text to explore NLP concepts.")
39
 
40
  # NLP Processing Sections
41
+ tabs = st.tabs(["Tokenization", "Stopwords", "Lemmatization & Stemming", "Bag of Words (BoW)", "TF-IDF"])
42
 
43
  # Tokenization
44
  with tabs[0]:
 
101
  st.write("**TF-IDF Matrix:**", tfidf_matrix.toarray())
102
  st.write("**Feature Names:**", tfidf_vectorizer.get_feature_names_out())
103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  # Footer
106
  st.markdown("---")