Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import torch | |
from threading import Thread | |
# Load model and tokenizer | |
model_name = "GoofyLM/gonzalez-v1" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="auto", | |
torch_dtype=torch.float16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Set pad token if missing | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
# Define a custom chat template if one is not available | |
if tokenizer.chat_template is None: | |
# Basic ChatML-style template | |
tokenizer.chat_template = "{% for message in messages %}\n{% if message['role'] == 'system' %}<|system|>\n{{ message['content'] }}\n{% elif message['role'] == 'user' %}<|user|>\n{{ message['content'] }}\n{% elif message['role'] == 'assistant' %}<|assistant|>\n{{ message['content'] }}\n{% endif %}\n{% endfor %}\n{% if add_generation_prompt %}<|assistant|>\n{% endif %}" | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Build conversation messages | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
# Format prompt using chat template | |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# Set up streaming | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
# Configure generation parameters | |
do_sample = temperature > 0 or top_p < 1.0 | |
generation_kwargs = dict( | |
**inputs, | |
streamer=streamer, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=do_sample, | |
pad_token_id=tokenizer.pad_token_id | |
) | |
# Start generation in separate thread | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
# Stream response | |
response = "" | |
for token in streamer: | |
response += token | |
yield response | |
# Create Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="", label="System message"), | |
gr.Slider(1, 215, value=72, label="Max new tokens"), | |
gr.Slider(0.1, 4.0, value=0.7, label="Temperature"), | |
gr.Slider(0.1, 1.0, value=0.95, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo. launch() |