import einops from collections import OrderedDict from functools import partial from typing import Callable import torch import torch.nn as nn import torchvision from torch.utils.checkpoint import checkpoint from accelerate.utils import set_module_tensor_to_device from diffusers.models.embeddings import apply_rotary_emb, FluxPosEmbed from diffusers.models.modeling_utils import ModelMixin from diffusers.configuration_utils import ConfigMixin from diffusers.loaders import FromOriginalModelMixin class MLPBlock(torchvision.ops.misc.MLP): """Transformer MLP block.""" _version = 2 def __init__(self, in_dim: int, mlp_dim: int, dropout: float): super().__init__(in_dim, [mlp_dim, in_dim], activation_layer=nn.GELU, inplace=None, dropout=dropout) for m in self.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.normal_(m.bias, std=1e-6) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): version = local_metadata.get("version", None) if version is None or version < 2: # Replacing legacy MLPBlock with MLP. See https://github.com/pytorch/vision/pull/6053 for i in range(2): for type in ["weight", "bias"]: old_key = f"{prefix}linear_{i+1}.{type}" new_key = f"{prefix}{3*i}.{type}" if old_key in state_dict: state_dict[new_key] = state_dict.pop(old_key) super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) class EncoderBlock(nn.Module): """Transformer encoder block.""" def __init__( self, num_heads: int, hidden_dim: int, mlp_dim: int, dropout: float, attention_dropout: float, norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), ): super().__init__() self.num_heads = num_heads self.hidden_dim = hidden_dim self.num_heads = num_heads # Attention block self.ln_1 = norm_layer(hidden_dim) self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True) self.dropout = nn.Dropout(dropout) # MLP block self.ln_2 = norm_layer(hidden_dim) self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout) def forward(self, input: torch.Tensor, freqs_cis): torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}") B, L, C = input.shape x = self.ln_1(input) if freqs_cis is not None: query = x.view(B, L, self.num_heads, self.hidden_dim // self.num_heads).transpose(1, 2) query = apply_rotary_emb(query, freqs_cis) query = query.transpose(1, 2).reshape(B, L, self.hidden_dim) x, _ = self.self_attention(query, query, x, need_weights=False) x = self.dropout(x) x = x + input y = self.ln_2(x) y = self.mlp(y) return x + y class Encoder(nn.Module): """Transformer Model Encoder for sequence to sequence translation.""" def __init__( self, seq_length: int, num_layers: int, num_heads: int, hidden_dim: int, mlp_dim: int, dropout: float, attention_dropout: float, norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), ): super().__init__() # Note that batch_size is on the first dim because # we have batch_first=True in nn.MultiAttention() by default # self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02)) # from BERT self.dropout = nn.Dropout(dropout) layers: OrderedDict[str, nn.Module] = OrderedDict() for i in range(num_layers): layers[f"encoder_layer_{i}"] = EncoderBlock( num_heads, hidden_dim, mlp_dim, dropout, attention_dropout, norm_layer, ) self.layers = nn.Sequential(layers) self.ln = norm_layer(hidden_dim) def forward(self, input: torch.Tensor, freqs_cis): torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}") input = input # + self.pos_embedding x = self.dropout(input) for l in self.layers: x = checkpoint(l, x, freqs_cis) x = self.ln(x) return x class ViTEncoder(nn.Module): def __init__(self, arch='vit-b/32'): super().__init__() self.arch = arch if self.arch == 'vit-b/32': ch = 768 layers = 12 heads = 12 elif self.arch == 'vit-h/14': ch = 1280 layers = 32 heads = 16 self.encoder = Encoder( seq_length=-1, num_layers=layers, num_heads=heads, hidden_dim=ch, mlp_dim=ch*4, dropout=0.0, attention_dropout=0.0, ) self.fc_in = nn.Linear(16, ch) self.fc_out = nn.Linear(ch, 256) if self.arch == 'vit-b/32': from torchvision.models.vision_transformer import vit_b_32, ViT_B_32_Weights vit = vit_b_32(weights=ViT_B_32_Weights.DEFAULT) elif self.arch == 'vit-h/14': from torchvision.models.vision_transformer import vit_h_14, ViT_H_14_Weights vit = vit_h_14(weights=ViT_H_14_Weights.IMAGENET1K_SWAG_E2E_V1) missing_keys, unexpected_keys = self.encoder.load_state_dict(vit.encoder.state_dict(), strict=False) if len(missing_keys) > 0 or len(unexpected_keys) > 0: print(f"ViT Encoder Missing keys: {missing_keys}") print(f"ViT Encoder Unexpected keys: {unexpected_keys}") del vit def forward(self, x, freqs_cis): out = self.fc_in(x) out = self.encoder(out, freqs_cis) out = checkpoint(self.fc_out, out) return out def patchify(x, patch_size=8): if len(x.shape) == 4: bs, c, h, w = x.shape x = einops.rearrange(x, "b c (h p1) (w p2) -> b (c p1 p2) h w", p1=patch_size, p2=patch_size) elif len(x.shape) == 3: c, h, w = x.shape x = einops.rearrange(x, "c (h p1) (w p2) -> (c p1 p2) h w", p1=patch_size, p2=patch_size) return x def unpatchify(x, patch_size=8): if len(x.shape) == 4: bs, c, h, w = x.shape x = einops.rearrange(x, "b (c p1 p2) h w -> b c (h p1) (w p2)", p1=patch_size, p2=patch_size) elif len(x.shape) == 3: c, h, w = x.shape x = einops.rearrange(x, "(c p1 p2) h w -> c (h p1) (w p2)", p1=patch_size, p2=patch_size) return x def crop_each_layer(hidden_states, use_layers, list_layer_box, H, W, pos_embedding): token_list = [] cos_list, sin_list = [], [] for layer_idx in range(hidden_states.shape[1]): if list_layer_box[layer_idx] is None: continue else: x1, y1, x2, y2 = list_layer_box[layer_idx] x1, y1, x2, y2 = x1 // 8, y1 // 8, x2 // 8, y2 // 8 layer_token = hidden_states[:, layer_idx, y1:y2, x1:x2] c, h, w = layer_token.shape layer_token = layer_token.reshape(c, -1) token_list.append(layer_token) ids = prepare_latent_image_ids(-1, H * 2, W * 2, hidden_states.device, hidden_states.dtype) ids[:, 0] = use_layers[layer_idx] image_rotary_emb = pos_embedding(ids) pos_cos, pos_sin = image_rotary_emb[0].reshape(H, W, -1), image_rotary_emb[1].reshape(H, W, -1) cos_list.append(pos_cos[y1:y2, x1:x2].reshape(-1, 64)) sin_list.append(pos_sin[y1:y2, x1:x2].reshape(-1, 64)) token_list = torch.cat(token_list, dim=1).permute(1, 0) cos_list = torch.cat(cos_list, dim=0) sin_list = torch.cat(sin_list, dim=0) return token_list, (cos_list, sin_list) def prepare_latent_image_ids(batch_size, height, width, device, dtype): latent_image_ids = torch.zeros(height // 2, width // 2, 3) latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape latent_image_ids = latent_image_ids.reshape( latent_image_id_height * latent_image_id_width, latent_image_id_channels ) return latent_image_ids.to(device=device, dtype=dtype) class AutoencoderKLTransformerTraining(ModelMixin, ConfigMixin, FromOriginalModelMixin): def __init__(self): super().__init__() self.decoder_arch = 'vit' self.layer_embedding = 'rope' self.decoder = ViTEncoder() self.pos_embedding = FluxPosEmbed(theta=10000, axes_dim=(8, 28, 28)) if 'rel' in self.layer_embedding or 'abs' in self.layer_embedding: self.layer_embedding = nn.Parameter(torch.empty(16, 2 + self.max_layers, 1, 1).normal_(std=0.02), requires_grad=True) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def encode(self, z_2d, box, use_layers): B, C, T, H, W = z_2d.shape z, freqs_cis = [], [] for b in range(B): _z = z_2d[b] if 'vit' in self.decoder_arch: _use_layers = torch.tensor(use_layers[b], device=z_2d.device) if 'rel' in self.layer_embedding: _use_layers[_use_layers > 2] = 2 if 'rel' in self.layer_embedding or 'abs' in self.layer_embedding: _z = _z + self.layer_embedding[:, _use_layers] # + self.pos_embedding if 'rope' not in self.layer_embedding: use_layers[b] = [0] * len(use_layers[b]) _z, cis = crop_each_layer(_z, use_layers[b], box[b], H, W, self.pos_embedding) ### modified z.append(_z) freqs_cis.append(cis) return z, freqs_cis def decode(self, z, freqs_cis, box, H, W): B = len(z) pad = torch.zeros(4, H, W, device=z[0].device, dtype=z[0].dtype) pad[3, :, :] = -1 x = [] for b in range(B): _x = [] _z = self.decoder(z[b].unsqueeze(0), freqs_cis[b]).squeeze(0) current_index = 0 for layer_idx in range(len(box[b])): if box[b][layer_idx] == None: _x.append(pad.clone()) else: x1, y1, x2, y2 = box[b][layer_idx] x1_tok, y1_tok, x2_tok, y2_tok = x1 // 8, y1 // 8, x2 // 8, y2 // 8 token_length = (x2_tok - x1_tok) * (y2_tok - y1_tok) tokens = _z[current_index:current_index + token_length] pixels = einops.rearrange(tokens, "(h w) c -> c h w", h=y2_tok - y1_tok, w=x2_tok - x1_tok) unpatched = unpatchify(pixels) pixels = pad.clone() pixels[:, y1:y2, x1:x2] = unpatched _x.append(pixels) current_index += token_length _x = torch.stack(_x, dim=1) x.append(_x) x = torch.stack(x, dim=0) return x def forward(self, z_2d, box, use_layers=None): z_2d = z_2d.transpose(0, 1).unsqueeze(0) use_layers = use_layers or [list(range(z_2d.shape[2]))] z, freqs_cis = self.encode(z_2d, box, use_layers) H, W = z_2d.shape[-2:] x_hat = self.decode(z, freqs_cis, box, H * 8, W * 8) assert x_hat.shape[0] == 1, x_hat.shape x_hat = einops.rearrange(x_hat[0], "c t h w -> t c h w") x_hat_rgb, x_hat_alpha = x_hat[:, :3], x_hat[:, 3:] return x_hat_rgb, x_hat_alpha