debug
Browse files- __pycache__/custom_model_mmdit.cpython-310.pyc +0 -0
- __pycache__/custom_model_transp_vae.cpython-310.pyc +0 -0
- __pycache__/custom_pipeline.cpython-310.pyc +0 -0
- __pycache__/modeling_crello.cpython-310.pyc +0 -0
- __pycache__/quantizer.cpython-310.pyc +0 -0
- app.py +17 -3
- image.svg +0 -0
- modeling_crello.py +3 -0
__pycache__/custom_model_mmdit.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
__pycache__/custom_model_transp_vae.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
__pycache__/custom_pipeline.cpython-310.pyc
ADDED
Binary file (18 kB). View file
|
|
__pycache__/modeling_crello.cpython-310.pyc
ADDED
Binary file (6.4 kB). View file
|
|
__pycache__/quantizer.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
app.py
CHANGED
@@ -333,10 +333,11 @@ def construction_layout():
|
|
333 |
# quantizer = quantizer.to("cuda")
|
334 |
# tokenizer = tokenizer.to("cuda")
|
335 |
model.lm = model.lm.to("cuda")
|
|
|
336 |
return model, quantizer, tokenizer, params_dict["width"], params_dict["height"], device
|
337 |
|
338 |
@torch.no_grad()
|
339 |
-
@spaces.GPU(
|
340 |
def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_sample=False, temperature=1.0, top_p=1.0, top_k=50):
|
341 |
json_example = inputs
|
342 |
input_intension = '{"wholecaption":"' + json_example["wholecaption"] + '","layout":[{"layer":'
|
@@ -344,14 +345,17 @@ def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_s
|
|
344 |
inputs = tokenizer(
|
345 |
input_intension, return_tensors="pt"
|
346 |
).to(model.lm.device)
|
|
|
347 |
print("tokenizer2")
|
348 |
|
349 |
stopping_criteria = StoppingCriteriaList()
|
350 |
stopping_criteria.append(StopAtSpecificTokenCriteria(token_id_list=[128000]))
|
351 |
|
352 |
print("lm1")
|
|
|
353 |
outputs = model.lm.generate(**inputs, use_cache=True, max_length=8000, stopping_criteria=stopping_criteria, do_sample=do_sample, temperature=temperature, top_p=top_p, top_k=top_k)
|
354 |
print("lm2")
|
|
|
355 |
inputs_length = inputs['input_ids'].shape[1]
|
356 |
outputs = outputs[:, inputs_length:]
|
357 |
|
@@ -427,7 +431,7 @@ def construction():
|
|
427 |
|
428 |
return pipeline, transp_vae
|
429 |
|
430 |
-
@spaces.GPU(
|
431 |
def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae):
|
432 |
print(validation_box)
|
433 |
output, rgba_output, _, _ = pipeline(
|
@@ -474,7 +478,17 @@ def svg_test_one_sample(validation_prompt, validation_box_str, seed, true_gs, in
|
|
474 |
svg_file_path = './image.svg'
|
475 |
os.makedirs(os.path.dirname(svg_file_path), exist_ok=True)
|
476 |
with open(svg_file_path, 'w', encoding='utf-8') as f:
|
477 |
-
f.write(svg_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
|
479 |
return result_images, svg_file_path
|
480 |
|
|
|
333 |
# quantizer = quantizer.to("cuda")
|
334 |
# tokenizer = tokenizer.to("cuda")
|
335 |
model.lm = model.lm.to("cuda")
|
336 |
+
print(model.lm.device)
|
337 |
return model, quantizer, tokenizer, params_dict["width"], params_dict["height"], device
|
338 |
|
339 |
@torch.no_grad()
|
340 |
+
@spaces.GPU(duration=60)
|
341 |
def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_sample=False, temperature=1.0, top_p=1.0, top_k=50):
|
342 |
json_example = inputs
|
343 |
input_intension = '{"wholecaption":"' + json_example["wholecaption"] + '","layout":[{"layer":'
|
|
|
345 |
inputs = tokenizer(
|
346 |
input_intension, return_tensors="pt"
|
347 |
).to(model.lm.device)
|
348 |
+
print(inputs.device)
|
349 |
print("tokenizer2")
|
350 |
|
351 |
stopping_criteria = StoppingCriteriaList()
|
352 |
stopping_criteria.append(StopAtSpecificTokenCriteria(token_id_list=[128000]))
|
353 |
|
354 |
print("lm1")
|
355 |
+
print(model.lm.device)
|
356 |
outputs = model.lm.generate(**inputs, use_cache=True, max_length=8000, stopping_criteria=stopping_criteria, do_sample=do_sample, temperature=temperature, top_p=top_p, top_k=top_k)
|
357 |
print("lm2")
|
358 |
+
|
359 |
inputs_length = inputs['input_ids'].shape[1]
|
360 |
outputs = outputs[:, inputs_length:]
|
361 |
|
|
|
431 |
|
432 |
return pipeline, transp_vae
|
433 |
|
434 |
+
@spaces.GPU(duration=60)
|
435 |
def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae):
|
436 |
print(validation_box)
|
437 |
output, rgba_output, _, _ = pipeline(
|
|
|
478 |
svg_file_path = './image.svg'
|
479 |
os.makedirs(os.path.dirname(svg_file_path), exist_ok=True)
|
480 |
with open(svg_file_path, 'w', encoding='utf-8') as f:
|
481 |
+
f.write(svg_img)
|
482 |
+
|
483 |
+
if not isinstance(result_images, list):
|
484 |
+
raise TypeError("result_images 必须是一个列表")
|
485 |
+
else:
|
486 |
+
print(len(result_images))
|
487 |
+
|
488 |
+
if not os.path.exists(svg_file_path):
|
489 |
+
raise FileNotFoundError(f"文件 {svg_file_path} 未创建")
|
490 |
+
if os.path.getsize(svg_file_path) == 0:
|
491 |
+
raise ValueError(f"文件 {svg_file_path} 内容为空")
|
492 |
|
493 |
return result_images, svg_file_path
|
494 |
|
image.svg
ADDED
|
modeling_crello.py
CHANGED
@@ -196,6 +196,7 @@ class CrelloModel(PreTrainedModel):
|
|
196 |
self,
|
197 |
labels: torch.LongTensor,
|
198 |
):
|
|
|
199 |
batch_size = labels.shape[0]
|
200 |
full_labels = labels.detach().clone()
|
201 |
|
@@ -219,10 +220,12 @@ class CrelloModel(PreTrainedModel):
|
|
219 |
pad_idx.append(k + 1)
|
220 |
assert len(pad_idx) == batch_size, (len(pad_idx), batch_size)
|
221 |
|
|
|
222 |
output = self.lm( inputs_embeds=input_embs,
|
223 |
# input_ids=labels,
|
224 |
labels=full_labels,
|
225 |
output_hidden_states=True)
|
|
|
226 |
|
227 |
return output, full_labels, input_embs_norm
|
228 |
|
|
|
196 |
self,
|
197 |
labels: torch.LongTensor,
|
198 |
):
|
199 |
+
print("inside Crello")
|
200 |
batch_size = labels.shape[0]
|
201 |
full_labels = labels.detach().clone()
|
202 |
|
|
|
220 |
pad_idx.append(k + 1)
|
221 |
assert len(pad_idx) == batch_size, (len(pad_idx), batch_size)
|
222 |
|
223 |
+
print("inside Crello, lm1")
|
224 |
output = self.lm( inputs_embeds=input_embs,
|
225 |
# input_ids=labels,
|
226 |
labels=full_labels,
|
227 |
output_hidden_states=True)
|
228 |
+
print("inside Crello, lm2")
|
229 |
|
230 |
return output, full_labels, input_embs_norm
|
231 |
|