delete print model.device
Browse files
app.py
CHANGED
@@ -361,6 +361,7 @@ def construction_all():
|
|
361 |
@torch.no_grad()
|
362 |
@spaces.GPU(duration=120)
|
363 |
def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, do_sample=False, temperature=1.0, top_p=1.0, top_k=50):
|
|
|
364 |
print(f"evaluate_v1 {model.device} {model.lm.device} {pipeline.device}")
|
365 |
model = model.to("cuda")
|
366 |
print(f"after evaluate_v1 {model.device} {model.lm.device} {pipeline.device}")
|
@@ -406,6 +407,7 @@ def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, do_sample=Fa
|
|
406 |
return pred_json_example
|
407 |
|
408 |
def inference(generate_method, intention, model, quantizer, tokenizer, width, height, do_sample=True, temperature=1.0, top_p=1.0, top_k=50):
|
|
|
409 |
rawdata = {}
|
410 |
rawdata["wholecaption"] = intention
|
411 |
rawdata["layout"] = []
|
@@ -414,7 +416,7 @@ def inference(generate_method, intention, model, quantizer, tokenizer, width, he
|
|
414 |
max_try_time = 5
|
415 |
preddata = None
|
416 |
while preddata is None and max_try_time > 0:
|
417 |
-
print(f"
|
418 |
preddata = evaluate_v1(rawdata, model, quantizer, tokenizer, width, height, do_sample=do_sample, temperature=temperature, top_p=top_p, top_k=top_k)
|
419 |
max_try_time -= 1
|
420 |
else:
|
@@ -423,6 +425,50 @@ def inference(generate_method, intention, model, quantizer, tokenizer, width, he
|
|
423 |
|
424 |
return preddata
|
425 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
@spaces.GPU(duration=120)
|
427 |
def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae):
|
428 |
print(validation_box)
|
@@ -515,48 +561,6 @@ def process_svg(text_input, tuple_input, seed, true_gs, inference_steps):
|
|
515 |
"""
|
516 |
|
517 |
return result_images, svg_file_path, svg_editor
|
518 |
-
|
519 |
-
def process_preddate(intention, temperature, top_p, generate_method='v1'):
|
520 |
-
intention = intention.replace('\n', '').replace('\r', '').replace('\\', '')
|
521 |
-
intention = ensure_space_after_period(intention)
|
522 |
-
print(f"process_preddate: {model.lm.device}")
|
523 |
-
if temperature == 0.0:
|
524 |
-
# print("looking for greedy decoding strategies, set `do_sample=False`.")
|
525 |
-
# preddata = inference_partial(generate_method, intention, do_sample=False)
|
526 |
-
preddata = inference(generate_method, intention, model=model, quantizer=quantizer, tokenizer=tokenizer, width=512, height=512, do_sample=False)
|
527 |
-
else:
|
528 |
-
# preddata = inference_partial(generate_method, intention, temperature=temperature, top_p=top_p)
|
529 |
-
preddata = inference(generate_method, intention, model=model, quantizer=quantizer, tokenizer=tokenizer, width=512, height=512, temperature=temperature, top_p=top_p)
|
530 |
-
|
531 |
-
layouts = preddata["layout"]
|
532 |
-
list_box = []
|
533 |
-
for i, layout in enumerate(layouts):
|
534 |
-
x, y = layout["x"], layout["y"]
|
535 |
-
width, height = layout["width"], layout["height"]
|
536 |
-
if i == 0:
|
537 |
-
list_box.append((0, 0, width, height))
|
538 |
-
list_box.append((0, 0, width, height))
|
539 |
-
else:
|
540 |
-
left = x - width // 2
|
541 |
-
top = y - height // 2
|
542 |
-
right = x + width // 2
|
543 |
-
bottom = y + height // 2
|
544 |
-
list_box.append((left, top, right, bottom))
|
545 |
-
|
546 |
-
# print(list_box)
|
547 |
-
filtered_boxes = list_box[:2]
|
548 |
-
for i in range(2, len(list_box)):
|
549 |
-
keep = True
|
550 |
-
for j in range(1, len(filtered_boxes)):
|
551 |
-
iou = calculate_iou(list_box[i], filtered_boxes[j])
|
552 |
-
if iou > 0.65:
|
553 |
-
print(list_box[i], filtered_boxes[j])
|
554 |
-
keep = False
|
555 |
-
break
|
556 |
-
if keep:
|
557 |
-
filtered_boxes.append(list_box[i])
|
558 |
-
|
559 |
-
return str(filtered_boxes), intention, str(filtered_boxes)
|
560 |
|
561 |
def main():
|
562 |
construction_all()
|
|
|
361 |
@torch.no_grad()
|
362 |
@spaces.GPU(duration=120)
|
363 |
def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, do_sample=False, temperature=1.0, top_p=1.0, top_k=50):
|
364 |
+
print(f"evaluate_v1")
|
365 |
print(f"evaluate_v1 {model.device} {model.lm.device} {pipeline.device}")
|
366 |
model = model.to("cuda")
|
367 |
print(f"after evaluate_v1 {model.device} {model.lm.device} {pipeline.device}")
|
|
|
407 |
return pred_json_example
|
408 |
|
409 |
def inference(generate_method, intention, model, quantizer, tokenizer, width, height, do_sample=True, temperature=1.0, top_p=1.0, top_k=50):
|
410 |
+
print(f"start inference")
|
411 |
rawdata = {}
|
412 |
rawdata["wholecaption"] = intention
|
413 |
rawdata["layout"] = []
|
|
|
416 |
max_try_time = 5
|
417 |
preddata = None
|
418 |
while preddata is None and max_try_time > 0:
|
419 |
+
print(f"preddata = evaluate_v1")
|
420 |
preddata = evaluate_v1(rawdata, model, quantizer, tokenizer, width, height, do_sample=do_sample, temperature=temperature, top_p=top_p, top_k=top_k)
|
421 |
max_try_time -= 1
|
422 |
else:
|
|
|
425 |
|
426 |
return preddata
|
427 |
|
428 |
+
def process_preddate(intention, temperature, top_p, generate_method='v1'):
|
429 |
+
intention = intention.replace('\n', '').replace('\r', '').replace('\\', '')
|
430 |
+
intention = ensure_space_after_period(intention)
|
431 |
+
print(f"process_preddate")
|
432 |
+
if temperature == 0.0:
|
433 |
+
# print("looking for greedy decoding strategies, set `do_sample=False`.")
|
434 |
+
# preddata = inference_partial(generate_method, intention, do_sample=False)
|
435 |
+
print(f"preddata = inference temperatrue = 0.0")
|
436 |
+
preddata = inference(generate_method, intention, model=model, quantizer=quantizer, tokenizer=tokenizer, width=512, height=512, do_sample=False)
|
437 |
+
else:
|
438 |
+
# preddata = inference_partial(generate_method, intention, temperature=temperature, top_p=top_p)
|
439 |
+
print(f"preddata = inference temperatrue != 0.0")
|
440 |
+
preddata = inference(generate_method, intention, model=model, quantizer=quantizer, tokenizer=tokenizer, width=512, height=512, temperature=temperature, top_p=top_p)
|
441 |
+
|
442 |
+
layouts = preddata["layout"]
|
443 |
+
list_box = []
|
444 |
+
for i, layout in enumerate(layouts):
|
445 |
+
x, y = layout["x"], layout["y"]
|
446 |
+
width, height = layout["width"], layout["height"]
|
447 |
+
if i == 0:
|
448 |
+
list_box.append((0, 0, width, height))
|
449 |
+
list_box.append((0, 0, width, height))
|
450 |
+
else:
|
451 |
+
left = x - width // 2
|
452 |
+
top = y - height // 2
|
453 |
+
right = x + width // 2
|
454 |
+
bottom = y + height // 2
|
455 |
+
list_box.append((left, top, right, bottom))
|
456 |
+
|
457 |
+
# print(list_box)
|
458 |
+
filtered_boxes = list_box[:2]
|
459 |
+
for i in range(2, len(list_box)):
|
460 |
+
keep = True
|
461 |
+
for j in range(1, len(filtered_boxes)):
|
462 |
+
iou = calculate_iou(list_box[i], filtered_boxes[j])
|
463 |
+
if iou > 0.65:
|
464 |
+
print(list_box[i], filtered_boxes[j])
|
465 |
+
keep = False
|
466 |
+
break
|
467 |
+
if keep:
|
468 |
+
filtered_boxes.append(list_box[i])
|
469 |
+
|
470 |
+
return str(filtered_boxes), intention, str(filtered_boxes)
|
471 |
+
|
472 |
@spaces.GPU(duration=120)
|
473 |
def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae):
|
474 |
print(validation_box)
|
|
|
561 |
"""
|
562 |
|
563 |
return result_images, svg_file_path, svg_editor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
|
565 |
def main():
|
566 |
construction_all()
|